An Introduction of FY3 Satellite Project ---Status and Future Plan

Similar documents
CMA Consideration on early-morning orbit satellite

The current status of FY-3D

Progress on CMA s Meteorological Satellites

The current status of FY-3D. (Submitted by Xiang Fang, CMA) Summary and Purpose of Document

Updates on CMA FENGYUN Meteorological Satellite Programs

Interpretation of Polar-orbiting Satellite Observations. Atmospheric Instrumentation

F O U N D A T I O N A L C O U R S E

The Status Report of FY-2F

Status report on the current and future satellite systems by CMA. Presented to CGMS46-CMA-WP-01, Plenary session, agenda item D.1

Instrumentation planned for MetOp-SG

Brief introduction to. National Satellite Meteorological Center, CMA. Jinsong Wang Deputy Director-General NSMC/CMA

McIDAS support of Suomi-NPP /JPSS and GOES-R L2

Preparation for FY-4A. (Submitted by Xiang Fang, CMA)

Training on FY 3 product suite

REVISION OF THE STATEMENT OF GUIDANCE FOR GLOBAL NUMERICAL WEATHER PREDICTION. (Submitted by Dr. J. Eyre)

APPLICATIONS WITH METEOROLOGICAL SATELLITES. W. Paul Menzel. Office of Research and Applications NOAA/NESDIS University of Wisconsin Madison, WI

Use of FY-3C/GNOS Data for Assessing the on-orbit Performance of Microwave Sounding Instruments

Lecture 19: Operational Remote Sensing in Visible, IR, and Microwave Channels

Xiang FNAG National Satellite Meteorological Center, China Meteorological Administration (NSMC/CMA)

Atmospheric Lidar The Atmospheric Lidar (ATLID) is a high-spectral resolution lidar and will be the first of its type to be flown in space.

VALIDATION OF INSAT-3D DERIVED RAINFALL. (Submitted by Suman Goyal, IMD) Summary and Purpose of Document

Joint Polar Satellite System. 3 rd Post-EPS User Consultation Workshop Mike Haas

MSG system over view

APPENDIX 2 OVERVIEW OF THE GLOBAL PRECIPITATION MEASUREMENT (GPM) AND THE TROPICAL RAINFALL MEASURING MISSION (TRMM) 2-1

The use and impacts of sea surface temperature from passive microwave measurements

Status report on the current and future meteorological satellite systems by CMA

Status of Indian Satellite Meteorological Programme

Evaluation of Satellite and Reanalysis Products of Downward Surface Solar Radiation over East Asia

JAXA Remote Sensing Satellite Missions Utilization for Earth and Environment Observation

The EarthCARE mission: An active view on aerosols, clouds and radiation

Introduction of the Hyperspectral Environmental Suite (HES) on GOES-R and beyond

Lecture 4b: Meteorological Satellites and Instruments. Acknowledgement: Dr. S. Kidder at Colorado State Univ.

GCOM-W1 now on the A-Train

Update on SCOPE-Nowcasting Pilot Project Real Time Ocean Products Suman Goyal Scientist-E

Lecture 4: Meteorological Satellites and Instruments. Acknowledgement: Dr. S. Kidder at Colorado State Univ.

GCOM-C/SGLI and its Lunar Calibration

Topics: Visible & Infrared Measurement Principal Radiation and the Planck Function Infrared Radiative Transfer Equation

Climate & Earth System Science. Introduction to Meteorology & Climate. Chapter 05 SOME OBSERVING INSTRUMENTS. Instrument Enclosure.

Future Opportunities of Using Microwave Data from Small Satellites for Monitoring and Predicting Severe Storms

Lecture 4: Radiation Transfer

METEOSAT THIRD GENERATION

Spectrum of Radiation. Importance of Radiation Transfer. Radiation Intensity and Wavelength. Lecture 3: Atmospheric Radiative Transfer and Climate

PASSIVE MICROWAVE IMAGING. Dr. A. Bhattacharya

BUFR Table D List of common sequences

Lecture 3: Atmospheric Radiative Transfer and Climate

MONITORING WEATHER AND CLIMATE FROM SPACE

CGMS Baseline. Sustained contributions to the Global Observing System. Endorsed by CGMS-46 in Bengaluru, June 2018

Lectures 7 and 8: 14, 16 Oct Sea Surface Temperature

Yi Liu TanSat Science Team

EUMETSAT STATUS AND PLANS

Earth Exploration-Satellite Service (EESS)- Active Spaceborne Remote Sensing and Operations

Remote Sensing of Precipitation

Remote Sensing I: Basics

Remote Sensing in Meteorology: Satellites and Radar. AT 351 Lab 10 April 2, Remote Sensing

GSICS UV Sub-Group Activities

GIFTS SOUNDING RETRIEVAL ALGORITHM DEVELOPMENT

CGMS Baseline In response to CGMS action/recommendation A45.01 HLPP reference: 1.1.8

Assimilation of satellite derived soil moisture for weather forecasting

HY-2A Satellite User s Guide

An Evaluation of FY-3C MWHS-2 and its potential to improve forecast accuracy at ECMWF

Meteorological Satellite Image Interpretations, Part III. Acknowledgement: Dr. S. Kidder at Colorado State Univ.

NEW CGMS BASELINE FOR THE SPACE-BASED GOS. (Submitted by the WMO Secretariat) Summary and Purpose of Document

Radiative Transfer Model based Bias Correction in INSAT-3D/3DR Thermal Observations to Improve Sea Surface Temperature Retrieval

Remote Sensing: Introduction

A 2016 CEOS Chair Initiative. Non-meteorological Applications for Next Generation Geostationary Satellites

REMOTE SENSING KEY!!

IASI Level 2 Product Processing

Variability in Global Top-of-Atmosphere Shortwave Radiation Between 2000 And 2005

THE FEASIBILITY OF EXTRACTING LOWLEVEL WIND BY TRACING LOW LEVEL MOISTURE OBSERVED IN IR IMAGERY OVER CLOUD FREE OCEAN AREA IN THE TROPICS

Remote Sensing How we know what we know A Brief Tour

EPS-SG Candidate Observation Missions

Operational Uses of Bands on the GOES-R Advanced Baseline Imager (ABI) Presented by: Kaba Bah

Principles of Radiative Transfer Principles of Remote Sensing. Marianne König EUMETSAT

ABB Remote Sensing Atmospheric Emitted Radiance Interferometer AERI system overview. Applications

FUNDAMENTALS OF REMOTE SENSING FOR RISKS ASSESSMENT. 1. Introduction

Next generation of EUMETSAT microwave imagers and sounders: new opportunities for cloud and precipitation retrieval

A two-season impact study of the Navy s WindSat surface wind retrievals in the NCEP global data assimilation system

Radio Frequency Earth Science

Comparison of NASA AIRS and MODIS Land Surface Temperature and Infrared Emissivity Measurements from the EOS AQUA platform

Day Microphysics RGB Nephanalysis in daytime. Meteorological Satellite Center, JMA

Inventory & Evaluation of Space-based Instruments: Using OSCAR for space weather

REMOTE SENSING TEST!!

Future GOES (XGOHI, GOES-13/O/P, GOES-R+)

Observations of Integrated Water Vapor and Cloud Liquid Water at SHEBA. James Liljegren

Glaciology HEAT BUDGET AND RADIATION

Study of the Influence of Thin Cirrus Clouds on Satellite Radiances Using Raman Lidar and GOES Data

CLAVR-x is the Clouds from AVHRR Extended Processing System. Responsible for AVHRR cloud products and other products at various times.

New capabilities with high resolution cloud micro-structure facilitated by MTG 2.3 um channel

What are Aerosols? Suspension of very small solid particles or liquid droplets Radii typically in the range of 10nm to

Satellite observation of atmospheric dust

Megha-Tropiques Presentation by Indian Delegation at the 55th Session of UNCOPUOS Vienna 12 June 2012

Earth s Energy Budget: How Is the Temperature of Earth Controlled?

Name(s) Period Date. Earth s Energy Budget: How Is the Temperature of Earth Controlled?

GEOSC/METEO 597K Kevin Bowley Kaitlin Walsh

A New Era: Three-Dimensional Observation and Service with Fully High Resolutions on FY-4 Platform are Coming Next Year

Changes in Earth s Albedo Measured by satellite

THE LAND-SAF SURFACE ALBEDO AND DOWNWELLING SHORTWAVE RADIATION FLUX PRODUCTS

OCEAN COLOUR MONITOR ON-BOARD OCEANSAT-2

Sentinel-3 Sea and Land Surface Temperature Radiometer (SLSTR) Mireya Etxaluze (STFC RAL Space)

Updates on Chinese Meteorological Satellite Programs

Transcription:

7 th GPM workshop An Introduction of FY3 Satellite Project ---Status and Future Plan National Satellite Meteorological Center, CMA Hu Yang Naimeng Lu Dec 04,2007

7 th GPM workshop Contents 1.Introduction of FY3 satellite 2.Introduction of FY3-01 instruments 3.Future Plan of FY3 Project

1. The Present Status of FenYun series Satellite Polar-orbit Launch Date Geostationary Launch Date series Series FY1A Sep.7,1988 FY2A Jun.10,1997 FY1B Sep.3,1990 FY2B Jun.25,2000 FY1C May.10,1999 FY2C Oct.18,2004 FY1D May.15,2002 FY2D Dec.8,2006

Introduction of Fenyun polarorbit meteorological satellite The First Generation polarorbit satellite of China-FY1 FY-1A Launched in sep.7,1988 FY-1B Launched in sep.3,1990 FY-1C Launched in May.5,1999 FY-1D Launched in May.15,2002 The new Generation polar-orbit satellite of China FY3 1990,FY3 satellite project was proposed by NSMC; 1995,Feasibility study was performed 2000,development of FY3 instrument was started FY3 satellite will be launched in May,2008

Comparison of FY1 and FY3 instrument FY-1 Instrument FY-3 Instrument (1)VIRR( VIRR(VisibleVisible and InfraRed Radiometer ) (2)Space environment detection sensor FY-1A,1B FY-1C,1D 5 channels 10 channels (1) VIRR(Visible Visible and InfraRed Radiometer ) (2) IRAS(InfraRed InfraRed Atmospheric Sounder ) (3) MWTS(MicroWave MicroWave Temperature Sounder ) (4) MWHS(MicroWave Humidity Sounder ) (5) MWRI(Microwave Microwave Radiation Imager ) (6) MERSI(MEdium MEdium Resolution Spectral Imager ) (7) SBUS(Solar Solar Backscatter Ultraviolet Sounder ) (8) TOU(Total Total Ozone Unit ) (9) ERM(Earth Earth Radiation Measurement ) (10)SIM(SolarSolar Irradance Monitor ) (11)SEM(SpaceSpace Environment Monitor)

2.Introduction of FY3 instrument characteristics Instrument Channel number Spectrum range Samples/scan line Nadir resolution (km) Science target VIRR 10 IRAS 26 0.43 12.5μm 0.69 15.5 μm 2048 1.1 56 17 MWTS 4 50 57 GHz 15 50-75 MWHS 5 150 183 GHz 98 15 MERSI 20 0.41 12.5 μm 2048/8192 1.1/250 remote sensing of Watercolor Atmospheric Aerosol, water vapour,microphysics of cloud, vegetation, LST, snow and ice Remote sensing of atmospheric vertical temperature and huminity profile, Total water vapour content Atmospheric vertical temperature profile Atmospheric vertical huminity profile Land surface parameters Watercolor Atmospheric Aerosol, water vapour,microphysics of cloud, vegetation, LST, snow and ice SBUS 12 250 340 nm 240 200 Vertical profile of O 3 TOU 6 308 361 nm 31 50 Total O 3 content MWRI 12 10.65 150 GHz 240 15-70 Rainrate cloud water content water vapour soil moisture swe SST SIM 0.2~50μm Solar irradiance monitoring

Visible and InfraRed Radiometer (VIRR) channel Spectrum (μm) NEΔT Dynamic Range (ρ or k) 1 0.58-0.68 0.1% 0-100% 2 0.84-0.89 0.1% 0-100% 3 3.55-3.93 0.3K 180-350k 4 10.3-11.3 0.2k 180-330k 5 11.5-12.5 0.2k 180-330k 6 1.55-1.64 0.15% 0-90% 7 0.43-0.48 0.05% 0-50% 8 0.48-0.53 0.05% 0-50% 9 0.53-0.58 0.05% 0-50% 10 1.325-1.395 0.19% 0-90%

MEdium Resolution Spectral Imager (MERSI) Channel Centre Wavelength (μm) Spectrum bandwidth (μm) Resolution (m) NEΔρ(%) NEΔT(K) Dynamic Range(Maxρ MaxK) 1 0.470 0.05 250 0.45 100% 2 0.550 0.05 250 0.4 100% 3 0.650 0.05 250 0.4 100% 4 0.865 0.05 250 0.45 100% 5 11.25 2.5 250 0.54K 330k 6 0.412 0.02 1000 0.1 80% 7 0.443 0.02 1000 0.1 80% 8 0.490 0.02 1000 0.05 80% 9 0.520 0.02 1000 0.05 80% 10 0.565 0.02 1000 0.05 80% 11 0.650 0.02 1000 0.05 80% 12 0.685 0.02 1000 0.05 80% 13 0.765 0.02 1000 0.05 80% 14 0.865 0.02 1000 0.05 80% 15 0.905 0.02 1000 0.10 90% 16 0.940 0.02 1000 0.10 90% 17 0.980 0.02 1000 0.10 90% 18 1.030 0.02 1000 0.10 90% 19 1.640 0.05 1000 0.08 90% 20 2.130 0.05 1000 0.07 90%

Airborne MERSI images(dunhuang)

InfraRed Atmospheric Sounder (IRAS) Channel Centre wavenumbe r (cm -1 ) Centre WaveLength (μm) Semi-power band width (cm -1 ) absorption Maximum Temperature (K) NEΔN (mw/m 2 -sr-cm -1 ) Detection Height (hpa) 1 2 3 4 5 6 7 669 680 690 703 716 733 749 14.95 14.71 14.49 14.22 13.97 13.84 13.35 3 10 12 16 16 16 16 CO 2 CO 2 CO 2 CO 2 CO 2 CO 2 /H 2 O CO 2 /H 2 O 8 802 12.47 30 Window 330 0.20 Surface 9 900 11.11 35 Window 330 0.15 Surface 10 1030 9.71 25 O 3 280 0.20 25 11 1345 7.43 50 H 2 O 330 0.23 800 12 13 14 15 16 17 1365 1533 2188 2210 2235 2245 7.33 6.52 4.57 4.52 4.47 4.45 40 55 23 23 23 23 H 2 O H 2 O N 2 O N 2 O CO 2 /N 2 O CO 2 /N 2 O 280 265 250 260 275 290 300 285 275 310 290 280 266 4.00 0.80 0.60 0.35 0.32 0.36 0.30 0.30 0.30 0.009 * 0.004 * 0.006 * 0.006 * 18 2388 4.19 25 CO 2 320 0.003 * Atmosphere 19 20 2515 2660 3.98 3.76 35 100 Window 340 340 0.003 * 0.002 30 60 100 400 600 800 900 700 500 1000 950 700 400 Surface 21 14500 0.69 1000 Window 100%A 0.10%A Cloud 22 11299 0.885 385 window 100%A 0.10%A Surface 23 10638 0.94 550 H 2 O 100%A 0.10%A Surface 24 10638 0.94 200 H 2 O 100%A 0.10%A Surface 25 8065 1.24 650 H 2 O 100%A 0.10%A Surface 26 6098 1.64 450 H 2 O 100%A 0.10%A surface

MicroWave Temperature Sounder(MWTS) Observation Angle ±48.3 Pixels/scan 15 Scanning step angle 6.9 Nadir view Resolution 50~75Km Channel Match accuracy Beam pointing error<0.1 Scan Time 16sec channel Centre Frequency (GHz) Absorpt ion Band width (MHz) NEΔT (k) Main beam Efficienc y(%) Dynamic Range (K) Calibration Accuracy (K) 1 50.30 Window 180 0.5 * >90 3-340 1.2 2 53.596±0.115 O 2 2 170 0.4 >90 3-340 1.2 3 54.94 O 2 400 0.4 >90 3-340 1.2 4 57.290 O 2 330 0.4 >90 3-340 1.2

MicroWave Humidity Sounder (MWHS) Observation Angle ±53.35 Swath Width ~2700 Km Pixel/scan 98 Nadir resolution ~15Km Channel Match accuracy Beam Pointing error<0.1 Scan Time 2.667sec Calibration Accuracy 1.5K Channel Centre Frequency (GHz) Absorbt ion Band width (MHz) NEΔT * (k) Main beam efficie ncy Dynamic Range(K) 1 150(V) Window 1000 0.9 95% ** 3-340 2 150(H) Window 1000 0.9 95% ** 3-340 3 183.31±1 H 2 O 500 1.1 95% 3-340 4 183.31±3 H 2 O 1000 0.9 95% 3-340 5 183.31±7 H 2 O 2000 0.9 95% 3-340

Airborne MWHS images(qinhai Lake)

[ 注 1]: 第一颗星无该通道 [ 注 2]: 第一颗星分别为 :0.6 1K 1K 1K 2K MWRI Instrument characteristics

Solar Backscatter Ultraviolet Sounder (SBUS) Earth Mode:12 channels in 250~340nm for retrieving O 3 vertical profile. channel Central wavelength(nm) bandpass (FWHM)(nm) 1 252.00±0.05 1+0.2,-0 2 273.62±0.05 1+0.2,-0 3 283.10±0.05 1+0.2,-0 4 287.70±0.05 1+0.2,-0 5 292.29±0.05 1+0.2,-0 6 297.59±0.05 1+0.2,-0 7 301.97±0.05 1+0.2,-0 8 305.87±0.05 1+0.2,-0 9 312.57±0.05 1+0.2,-0 10 317.56±0.05 1+0.2,-0 11 331.26±0.05 1+0.2,-0 12 339.89±0.05 1+0.2,-0 Cloud Cover Radiometer 379.00±1.00 3+0.3 sweep solar mode:consecutive scanning for measuring solar irradiance in 160~400nm, step length:0.21nm; Discrete solar mode: discrete scanning for measuring solar irradiances of 12 channels.

1.Spectral properties Total Ozone Unit (TOU) channel Central wavelength(nm) bandpass(fwhm)(nm) 1 308.68±0.15 1+0.3,-0 2 312.59±0.15 1+0.3,-0 3 317.61±0.15 1+0.3,-0 4 322.40±0.15 1+0.3,-0 5 331.31±0.15 1+0.3,-0 6 360.11±0.25 1+0.3,-0 2.Dynamic range:10 4 3.Noise: 0.0014μw/cm 2 sr nm(s/n=1) 4. cross-track scanning mode :perpendicular to the orbital plane in 3.6- degree steps from 54 degrees on one side of spacecraft nadir to 54 degrees on the other side, for a total of 31 samples. 5.scanning cycle time:8.16s 6.Relative radiometric calibration accuray:radiance irradiance: 2%; wavelength calibration accuray: 0.03nm 7.Diffuser BRDF calibration accuray: 3% 8. 量化等级 :12 bits(with 3 gain ranges) 9. Stray light :<10-3 10. Spatial resolution (nadir ground size) :~50Km(altitude:836Km) 11. Diffuser calibration mode and wavelength calibration mode are performed in-orbit and data are received by ground station

Requirements for the Characteristics of the Earth s s Radiation Budget instruments Characteristics for narrow FOV/scanning channels I. For solar radiation measurement 1. Dynamic Range:100~2000W/m 2 2. Waveband:0.2~50μm 3. Sensitivity:0.2Wm -2 4. Accuracy:0.5% 5. long-term stability in 2 years:<0.02% 6. Quantization level:16bit channel 0.2~>3.8μm 0.2~50μm FOV 2 2 2 2 Scanning range ±50 ±50 Dynamic range 0~370Wm -2 Sr -1 0~500Wm -2 Sr -1 accuracy * 1% 0.8% sensitivity 0.4Wm -2 Sr -1 0.4Wm -2 Sr -1 Long-term stability in 2 yaers ** <1% <1% Characteristics for wide FOV/non-scanning channels II. For Earth s radiation measurement This instrument Consists of two groups of channels,which use wide FOV/non-scanning and narrow FOV/scanning observation mode respectively. For wide FOV channels,the sample cycle for earth observation is 0.5s. For narrow FOV channels,one scan cycle consists of 151 sampling channel 0.2~>3.8μm 0.2~50μm FOV 120 120 Dynamic range 0~370Wm -2 Sr -1 0~500Wm -2 Sr -1 accuracy * 1% 0.8% sensitivity 0.4Wm -2 Sr -1 0.4Wm -2 Sr -1 Long-term stability in 2 yaers ** <1% <1%

FY3 Ground Station:Global data receiving ability Global data receiving within 2-3 hours

FY Project's Nine (9) Specific Science Themes Nature Hazard Water Resources Land & Ocean Ecosystem uman Health Energy Agriculture & Desertificati on Weather forcast Climate change Biodivers ity

1.Weather 1.Atmosphere Temperature profile 1000-10hPa 2.Atmosphere humidity profile 1000-300hPa 3. geopotential height 1000-10hPa 4.Atmosphere stability index 5.OLR 6.Aerosol above sea 7.Preciple water content 8.Total water vapor content 9.Cloud mask 9.Cloud top temperature 10.Cloud optical depth 11.Cloud classification 12.Cloud amount(cloud total amount, High cloud amount) 13.mirage 14.precipation 15.Convective system strength estimation 16.Microwave surface emissivity 17.Polar area wind vector 18.Ice and water route depth index

50 2&3 climate change 1.Cloud amount(cloud total amount, High cloud amount) 2.Snow cover 3.SWE 4.OLR 5.SST 6.Vegetation distribution and change detection 7.land-atmosphere system net radiation 8.Total water vapor content 9.precipatation 10.aerosol 11.Soil moisture 12.Drought monitoring 13.Cloud water content 14. Ice and water route depth index Clouud Amount Cloud Optical Thickness 66 64 62 60 58 56 54 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 Year 5.0 4.5 4.0 3.5 3.0 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 Year 70 40 30 Cloud Water path 65 60 55 20 80 90 100 110 120 130 50 45 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 Year

4 Agriculture and Ecosystem 1. Landcover 2.Vegetation index 3.LAI 4.FPAR 5.NPP 6.LST 7.Soil moisture 8.Albedo 9.Snow cover 10.Surface emissivity

5 Atmospheric components 1.aerosol 2.sandstorm 3.Total Ozone content 4.Ozone profile 5. Greenhouse gases

6 Weather modification Cloud mask cloud total amount, High cloud amount fog Cloud top temperature Cloud optical depth precipitation

7.spaceweather proton ion electron Electric potential radiation dose Radiation Fluxe high energy ion

8 Thunder Severe convective system satellite monitoring image Cloud Phase Deep convective index Cloud Top Temperature Thunderstorms V-type Storm Top Temp. - 83 C Large Ice Particles left:yellow-high cloud,blue-thin cirrus,wheat-middle cloud,green-low cloud

3.Future Plan of FenYun meteorological satellite Project Polar-orbit series FY 1A 1B 1C 1D FY 3A 3B 3C 3H The first Generation The new generation Geostationary series FY 2A 2B 2C 2D 2E FY 4

Roadmap of FenYun satellite 2011FY-3AM1 2012FY-2G 2012FY-3PM1 2013FY-4A (TEST) 2010FY-2F 2013FY-3RM (TEST) 2009FY-3B (TEST) 2014FY-3AM2 2008FY-2E 2006FY-2D Science Target: Global all weather, multispectral 3D detection 2015FY-4EAST1 2015FY-3PM2 2007FY-3A (TEST) 2016FY-4WEST1 2017FY-4MS (TEST) 2020 FY-4MS 2019FY-3RM2 2018FY-3PM3 2016FY-3RM1 2017FY-3AM3 2020 FY-4WEST2 2019 FY-4EAST2

China Rainradar Measurement (RM) Plan The main objectives of RM satellite: 1. Consist a Global observation constellation system with FY3-2 AM and PM satellites, as well as GPM satellite; 2. Improve the severe convective system monitoring ability in china together with GPM satellite; 3. Provide 3D precipitation structure over both ocean and land; 4. Improve the sensitivity and accuracy of precipitation measurement over china and arrounding area;

Orbit and attitude 1).orbit parameters ⑴orbit type:low earth-orbiting (LEO) non-sunsynchronous satellites ⑵Orbit altitude:450km ⑶orbit angle:65 ⑹Eccentricity: 0.0001 2).satellite attitude ⑴attitude control type:three-axis Stabilize ⑵pointing control accuracy: 0.2 ⑶measurement accuracy: 0.03 ⑷Attitude Control Stability: 2.5 10-3 /s

The core instrument-pr Detection Frequencies Ku Ka Antenna type Active Phased Array Active Phased Array Polarization VV or HH VV or HH Range reso 250 m 250 m/500 m Horizontal Reso 5 km (at nadir) 5 km (at nadir) sensitivity 17dBZ(0.5mm/h) 11dBZ(0.2mm/h) Detection accuracy within ±1 db within ±1 db

Stop Here