Microevolution (Ch 16) Test Bank

Similar documents
List the five conditions that can disturb genetic equilibrium in a population.(10)

Evolution of Populations

CH 16: Evolution of Population

UNIT V. Chapter 11 Evolution of Populations. Pre-AP Biology

Chapter 17: Population Genetics and Speciation

HBio Evolution 2 Practice test

NOTES CH 17 Evolution of. Populations

Section 15 3 Darwin Presents His Case

Population Genetics & Evolution

Chapter 16. Table of Contents. Section 1 Genetic Equilibrium. Section 2 Disruption of Genetic Equilibrium. Section 3 Formation of Species

Evolution. Before You Read. Read to Learn

NOTES Ch 17: Genes and. Variation

Biology 20 Evolution

STUDY GUIDE SECTION 16-1 Genetic Equilibrium

Evolution of Populations. Chapter 17

Ch. 16 Evolution of Populations

Gene Pool The combined genetic material for all the members of a population. (all the genes in a population)

Vocab. ! Evolution - change in a kind of organism over time; process by which modern organisms have descended from ancient organisms

19. When allele frequencies change as a result of the migration of a small subgroup of a population

chatper 17 Multiple Choice Identify the choice that best completes the statement or answers the question.

Speciation and Patterns of Evolution

REVIEW 6: EVOLUTION. 1. Define evolution: Was not the first to think of evolution, but he did figure out how it works (mostly).

EVOLUTION & SPECIATION

Theory a well supported testable explanation of phenomenon occurring in the natural world.

Microevolutionary changes show us how populations change over time. When do we know that distinctly new species have evolved?

Unit 9 - Evolution Practice Quiz

Chapter 22: Descent with Modification: A Darwinian View of Life

The Mechanisms of Evolution

Processes of Evolution

overproduction variation adaptation Natural Selection speciation adaptation Natural Selection speciation

Guided Notes: Evolution. is the change in traits through generations over! Occurs in, NOT individual organisms

Evolution and Natural Selection (16-18)

Charles Darwin ( ) Sailed around the world

The theory of evolution continues to be refined as scientists learn new information.

Processes of Evolution

Enduring Understanding: Change in the genetic makeup of a population over time is evolution Pearson Education, Inc.

It all depends on barriers that prevent members of two species from producing viable, fertile hybrids.

EVOLUTION. HISTORY: Ideas that shaped the current evolutionary theory. Evolution change in populations over time.

Evolution AP Biology

Microevolution Changing Allele Frequencies

NOTES CH 24: The Origin of Species

Reproduction and Evolution Practice Exam

WTHS Biology Keystone Exams

Biology 110 Survey of Biology. Quizzam

Name: Period Study Guide 17-1 and 17-2

Mechanisms of Evolution. Adaptations. Old Ideas about Evolution. Behavioral. Structural. Biochemical. Physiological

Evolution. Chapters 16 & 17

Chapter Review USING KEY TERMS UNDERSTANDING KEY IDEAS. Skills Worksheet. Multiple Choice

Biology 213 Summer 2004 Midterm III Choose the most correct answer and mark it on the scantron sheet. (2 pts each)

Evolution Test Review

Name Date Class CHAPTER 15. In your textbook, read about developing the theory of natural selection. For each statement below, write true or false.

Evolution Unit Practice Test

EVOLUTION change in populations over time

Evolution (Chapters 15 & 16)

The Theory of Evolution

EVOLUTION change in populations over time

Chapter 15 Evolution

Environmental Influences on Adaptation

Biology Chapter 15 Evolution Notes

Review of molecular biology

BIOLOGY. Monday 2 May 2016

Darwin s Observations & Conclusions The Struggle for Existence

THE THEORY OF EVOLUTION

Chapter 2 Section 1 discussed the effect of the environment on the phenotype of individuals light, population ratio, type of soil, temperature )

AP Biology Review Packet 5- Natural Selection and Evolution & Speciation and Phylogeny

The Origin of Species

Chapters 17, 19.2, & 16.4 EVOLUTION

Evolution Unit Ch in Miller & Levine Biology textbook

THE THEORY OF EVOLUTION

Introduction to Evolution

A) oldest on bottom layer, youngest on top. B) the type of environment it was

Name Date Class. Patterns of Evolution

The Origin of Species

Evolution - Unifying Theme of Biology Microevolution Chapters 13 &14

IV. Natural Selection

Unit 1: DNA & the Genome. 1.7: Evolution. 1.7 Evolution

name: Worksheets for Ch 14, 15, 16 Evolution

Perplexing Observations. Today: Thinking About Darwinian Evolution. We owe much of our understanding of EVOLUTION to CHARLES DARWIN.

What is Evolution? Evolution Unit Vocabulary. Answer: Evidence of Evolution. What is a Gene Pool? Change over time.

Population Genetics and Speciation

Study of similarities and differences in body plans of major groups Puzzling patterns:

TOPIC 10.3 GENE POOL & SPECIATION

mrna Codon Table Mutant Dinosaur Name: Period:

How Species Form. 4.3 How Species Form. Reproductive Isolation

Progressive Science Initiative. Click to go to website:

1. T/F: Genetic variation leads to evolution. 2. What is genetic equilibrium? 3. What is speciation? How does it occur?

UON, CAS, DBSC, General Biology II (BIOL102) Dr. Mustafa. A. Mansi. The Origin of Species

Unit 7 Evolution STUDY GUIDE\

1 Errors in mitosis and meiosis can result in chromosomal abnormalities.

Evolution, Natural Selection. Pressures

VERY SIMPLY PUT-- Evolution is. change in a species over time.

15 Evolution. Before You Read. Read to Learn

5/31/2012. Speciation and macroevolution - Chapter

What is Evolution? Study of how things change over time

1. Natural selection can only occur if there is variation among members of the same species. WHY?

THE HISTORY OF THE THEORY. Darwin presented that happens and offered an of how it happens. Theory a broad that has been and

Evolution. Changes over Time

Quazi accurate photo history

Unit 8: EVOLUTION NOTES

Chapter 7. Evolution and the Fossil Record

Transcription:

Microevolution (Ch 16) Test Bank Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Which of the following statements describes what all members of a population share? a. They are temporally isolated from one another. b. They are geographically isolated from one another. c. They are members of the same species. d. They have identical genes. 2. Which statement about gene pools is typically true? a. They contain two or more alleles for each gene. b. They contain only dominant alleles. c. They belong to two or more interbreeding species. d. The relative frequencies of the alleles never change. 3. If an allele makes up one fourth of a population s alleles for a given trait, its relative frequency is a. 100 percent. c. 25 percent. b. 75 percent. d. 4 percent. 4. In many kinds of organisms, most heritable differences are due to a. mutations during gamete formation. b. chemicals in the environment. c. gene shuffling during gamete formation. d. the effects of radiation. 5. Gene shuffling includes the independent movement of chromosomes during meiosis as well as a. mutations from radiation. b. changes in the frequencies of alleles. c. crossing-over. d. mutations from chemicals. 6. A single-gene trait that has two alleles and that shows a simple dominant-recessive pattern will result in a. one phenotype. c. four phenotypes. b. two phenotypes. d. millions of phenotypes. 7. When individuals at only one end of a bell-shaped curve of phenotype frequencies have high fitness, the result is a. directional selection. c. disruptive selection. b. stabilizing selection. d. genetic drift. 8. When individuals with an average form of a trait have the highest fitness, the result is a. not predictable. c. directional selection. b. disruptive selection. d. stabilizing selection. 9. Genetic drift tends to occur in populations that a. are very large. b. are small. c. are formed from new species. d. have unchanging allele frequencies. 10. The type of genetic drift that follows the colonization of a new habitat by a small group of individuals is called a. the Hardy-Weinberg principle. c. directional selection. b. the founder effect. d. stabilizing selection. 11. The genetic equilibrium of a population can be disturbed by each of the following EXCEPT

a. nonrandom mating. b. movement into and out of the population. c. a large population size. d. mutations. 12. The allele frequencies of a population are more likely to remain unchanged if a. the population size is reduced. b. frequent movement into and out of the population occurs. c. all mating is random. d. the mutation rate increases. 13. What situation might develop in a population having some plants whose flowers open at midday and other plants whose flowers open late in the day? a. behavioral isolation c. temporal isolation b. geographic isolation d. genetic drift 14. The Galápagos finch species are an excellent example of a. speciation. c. stabilizing selection. b. genetic equilibrium. d. selection on single-gene traits. 15. What did Peter and Rosemary Grant learn about mate choice in the Galápagos finches? a. Phenotype plays no role in mate choice. b. Genotype plays no role in mate choice. c. Finches prefer mates with smaller beaks than their own. d. Finches prefer mates with beaks similar in size to their own. 16. The combined genetic information of all members of a particular population is the population s a. relative frequency. c. genotype. b. phenotype. d. gene pool. 17. A change in a sequence of DNA is called a a. recombination. c. single-gene trait. b. polygenic trait. d. mutation. 18. The two main sources of genetic variation are a. genotypes and phenotypes. b. gene shuffling and mutations. c. single-gene traits and polygenic traits. d. directional selection and disruptive selection. 19. An example of a single-gene trait is a. a widow s peak in humans. b. the weight of human infants at birth. c. height in humans. d. beak size in the Galápagos finches. 20. The number of phenotypes produced for a given trait depends upon a. the number of genes that control the trait. b. which form of the trait is dominant. c. the relative frequencies of the various alleles. d. whether or not natural selection is at work. 21. The distribution of phenotypes for a typical polygenic trait can often be expressed as a. a bar graph. c. Mendelian ratios. b. a bell-shaped curve. d. allele frequencies. 22. Natural selection acts directly on a. alleles. c. phenotypes. b. genes. d. mutations.

23. Which of the following is NOT a way in which natural selection affects the distribution of phenotypes? a. directional selection c. disruptive selection b. stabilizing selection d. chance events 24. In genetic drift, allele frequencies change because of a. mutations. c. natural selection. b. chance. d. genetic equilibrium. 25. Which of the following events do biologists consider a random change? a. directional selection c. disruptive selection b. speciation d. genetic drift 26. The situation in which allele frequencies of a population remain constant is called a. evolution. c. genetic equilibrium. b. genetic drift. d. natural selection. 27. One of the conditions required to maintain genetic equilibrium is a. natural selection. b. mutations. c. nonrandom mating. d. no movement into or out of the population. 28. The separation of populations by barriers such as rivers, mountains, or bodies of water is called a. temporal isolation. c. behavioral isolation. b. geographic isolation. d. genetic equilibrium. 29. A factor that is necessary for the formation of a new species is a. reproduction at different times. b. geographic barriers. c. different mating behaviors. d. reproductive isolation. 30. Which is the first step that occurred in the speciation of the Galápagos finches? a. establishment of genetic equilibrium c. ecological competition b. behavioral isolation d. arrival of the founding population Completion Complete each sentence or statement. 31. Crossing-over can occur during the meiotic divisions that produce cells called. 32. A polygenic trait can have many possible genotypes and. 33. When the phenotypes of polygenic traits are represented by a bell-shaped curve, the of individuals close together on the curve is not very different. 34. When a population is NOT evolving, it is in a situation called. 35. In the Galápagos finches that Rosemary and Peter Grant studied, a pattern of natural selection called selection favored individuals with larger, heavier beaks during a drought. 36. A gene pool typically contains two or more for each gene. 37. Inheritable traits can be classified as either traits or polygenic traits. 38. For traits, natural selection can affect the distribution of phenotypes in three ways. 39. According to the principle, allele frequencies in a population will remain constant unless one or more of five specific factors cause those frequencies to change.

40. For new species to evolve, populations must be isolated from each other. Short Answer 41. Would a trait that has only two distinct phenotypes more likely be a single-gene trait or a polygenic trait? How do you know? 42. Is an allele for a trait that has no effect on a species fitness affected by natural selection? Explain. 43. List the five conditions necessary to maintain genetic equilibrium in a population. 44. Why might a geographic barrier such as a large river cause the formation of a new species of small rodents but not a new species of birds? 45. How does the work of Peter and Rosemary Grant in the Galápagos relate to the work of Charles Darwin? 46. Are the members of a population necessarily the same species? Explain. 47. What are the two main sources of genetic variation? Which of them is more common? 48. Explain how stabilizing selection would affect a graph of the distribution of phenotypes for a trait. 49. Why might genetic drift occur if a small number of individuals colonized a new habitat? 50. What are three mechanisms for reproductive isolation? Which mechanism isolates two populations of similar frogs with different mating calls? Modified True/False Indicate whether the sentence or statement is true or false. If false, change the identified word or phrase to make the sentence or statement true. 51. Because all members of a population can interbreed, biologists often study their genes as a single group. 52. In a gene pool, as the relative frequency of one allele for a trait increases, the relative frequencies of other alleles for that trait decrease. 53. Most inheritable differences are due to mutations that occur during the production of gametes. 54. Mutations do not always affect an organism s genotype its physical, behavioral, and biochemical characteristics. 55. A polygenic trait is controlled by one gene. 56. On a graph, the distribution of phenotypes for a single-gene trait tends to form a bell-shaped curve. 57. Natural selection on single-gene traits can lead to changes in allele frequencies. 58. In a population of snakes with a range of body lengths, if the longest individuals have the highest fitness, disruptive selection is likely to occur. 59. In small populations, an allele can become more or less common simply by chance.

60. Genetic drift may occur when a small group of individuals colonize a new habitat. 61. When mutations introduce new alleles into a population, genetic variation is disrupted. 62. In a population of birds, if females prefer males with long tails, the population violates the condition of directional selection described by the Hardy-Weinberg principle. 63. In the type of reproductive isolation called behavioral isolation, two populations are separated by barriers such as rivers or mountains. 64. Two populations that have overlapping ranges can remain reproductively isolated through behavioral isolation or temporal isolation from each other. 65. The first step of the speciation of the Galápagos finches likely was the arrival of founders from South America. Other USING SCIENCE SKILLS Figure 16 1 66. Interpreting Graphics According to Graph A in Figure 16-1, what has occurred? 67. Interpreting Graphics According to Graph B in Figure 16-1, what has occurred? 68. Interpreting Graphics According to Graph C in Figure 16-1, what has occurred? 69. Inferring Which of the three graphs in Figure 16-1 might show a population of birds that specialize in different types of food? Explain. 70. Inferring What factor or condition might have led to the change shown in Graph A of Figure 16-1? USING SCIENCE SKILLS

Figure 16 2 71. Interpreting Graphics Describe the information about frog species that is shown in Figure 16-2. 72. Interpreting Graphics According to Figure 16-2, there is a brief period during which frog mating nearly stops. When does this occur? 73. Inferring Based on Figure 16-2, what mechanism appears to keep bullfrogs reproductively isolated? Would that mechanism necessarily be the only isolating mechanism? Explain. 74. Inferring Peeper frogs and leopard frogs do not interbreed even when they share a habitat. Use the information in Figure 16-2 to determine what mechanism probably keeps the two species reproductively isolated. 75.Predicting Frog mating does not occur in cold weather. Assume that the mating times shown in Figure 16-2 are for frogs in the northern part of the United States. How might these curves change for frogs in the southern part of the United States? Explain.

Figure 16 3 76. Applying Concepts Explain what speciation means using examples from Figure 16 3. 77. Designing Experiments Suppose that researchers suspected that two groups shown in Figure 16 3 were actually a single species. How might the researchers test that hypothesis? 78. Applying Concepts Darwin found the bird species in Figure 16 3 on one or more of the Galápagos Islands. How might the island geography have affected the evolution of these species? 79. Formulating Hypotheses Examine Figure 16 3 and observe the large ground finch and medium ground finch. Assume that the diagram shows the average type of beak for each group. If these species were formed from a single type of natural selection, which type is it most likely to be? Explain. 80. Interpreting Graphics Competition for resources plays a key role in natural selection. Describe one way that competition for food might have influenced the evolution of the large tree finch.