PM3 HYDRODYNAMICS OBJECTIVES

Similar documents
Fluid dynamics - Equation of. continuity and Bernoulli s principle.

FLUID FLOW IDEAL FLUID BERNOULLI'S PRINCIPLE

Fluid dynamics - viscosity and. turbulent flow

FLUID FLOW IDEAL FLUID EQUATION OF CONTINUITY

Fluids. Fluids in Motion or Fluid Dynamics

Fluid Dynamics. Equation of continuity Bernoulli s Equation Bernoulli s Application Viscosity Poiseuilles law Stokes law Reynolds Number

PROPERTIES OF BULK MATTER

LESSON Understanding. Bernoulli s principle. Bernoulli s principle. Activities to show Bernoulli s Principle

MECHANICAL PROPERTIES OF FLUIDS:

Recap: Static Fluids

MECHANICAL PROPERTIES OF FLUIDS

Physics 123 Unit #1 Review

f= flow rate (m 3 /s) A = cross-sectional area of the pipe (m 2 ) v= flow speed (m/s)

Lecture 27 (Walker: ) Fluid Dynamics Nov. 9, 2009

Chapter 14. Lecture 1 Fluid Mechanics. Dr. Armen Kocharian

Lecture 30 (Walker: ) Fluid Dynamics April 15, 2009

Reminder: HW #10 due Thursday, Dec 2, 11:59 p.m. (last HW that contributes to the final grade)

Fluid Mechanics Prof. T.I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture - 17 Laminar and Turbulent flows

Physics General Physics. Lecture 21 Fluids in Motion. Fall 2016 Semester Prof. Matthew Jones

Chapter -5(Section-1) Friction in Solids and Liquids

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS

Chapter 10 - Mechanical Properties of Fluids. The blood pressure in humans is greater at the feet than at the brain

Worksheet for Exploration 15.1: Blood Flow and the Continuity Equation

Chapter 14. Fluid Mechanics

Fluids II (Fluids in motion)

What s important: viscosity Poiseuille's law Stokes' law Demo: dissipation in flow through a tube

Contents. Microfluidics - Jens Ducrée Physics: Laminar and Turbulent Flow 1

Forces are impossible to see! We can only see the effects! Essentially forces are pushes or pulls.

Lecture-4. Flow Past Immersed Bodies

11.1 Mass Density. Fluids are materials that can flow, and they include both gases and liquids. The mass density of a liquid or gas is an

(Refer Slide Time: 2:14)

Physics 3 Summer 1990 Lab 7 - Hydrodynamics

Physics 207 Lecture 18

Aerodynamics at the Particle Level C. A. Crummer. Preface

Lecture 3 The energy equation

(3) BIOMECHANICS of LOCOMOTION through FLUIDS

Friction Factors and Drag Coefficients

the pitot static measurement equal to a constant C which is to take into account the effect of viscosity and so on.

Chapter 9. Solids and Fluids 9.3 DENSITY AND PRESSURE

Model Rocketry. The Science Behind the Fun

FLUID MECHANICS. Gaza. Chapter CHAPTER 44. Motion of Fluid Particles and Streams. Dr. Khalil Mahmoud ALASTAL

12-3 Bernoulli's Equation

For example an empty bucket weighs 2.0kg. After 7 seconds of collecting water the bucket weighs 8.0kg, then:

PHY121 Physics for the Life Sciences I

Chapter 10. Solids and Fluids

UNIT II CONVECTION HEAT TRANSFER

Atomic Motion and Interactions

10 - FLUID MECHANICS Page 1

Nicholas J. Giordano. Chapter 10 Fluids

10/9/2017 LET S PERFORM 4 EXPERIMENTS: UNIT 1 FLUID STATICS AND DYNAMICS CHAPTER 11 FLUIDS IN MOTION SNORING BERNOULLI'S PRINCIPLE

Chapter 15B - Fluids in Motion. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University

CHAPTER 6 Fluids Engineering. SKMM1922 Introduction of Mechanical Engineering

2 Navier-Stokes Equations

Page 1. Chapters 2, 3 (linear) 9 (rotational) Final Exam: Wednesday, May 11, 10:05 am - 12:05 pm, BASCOM 272

If there is nothing pushing on an object, it will not move. If there is nothing pushing on an object, it will not stop. The List:

Introduction to Fluid Flow

Stevens High School AP Physics II Work for Not-school

Chapter 9 Fluids. Pressure

FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering)

Applied Fluid Mechanics

Fluid flow Pressure Bernoulli Principle Surface Tension

Fluid Mechanics. du dy

equation 4.1 INTRODUCTION

φ(r, θ, t) = a 2 U(t) cos θ. (7.1)

Chapter 15. m. The symbolic equation for mass density is: ρ= m V. Table of Densities

Fluid Mechanics Prof. T. I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay

Forces. Unit 2. Why are forces important? In this Unit, you will learn: Key words. Previously PHYSICS 219

Principles of Convection

piston control surface

STEP Support Programme. Mechanics STEP Questions

SRI LANKAN PHYSICS OLYMPIAD COMPETITION 2007

CHAPTER 13. Liquids FLUIDS FLUIDS. Gases. Density! Bulk modulus! Compressibility. To begin with... some important definitions...

Bernoulli s Equation

University Physics 226N/231N Old Dominion University. Ch 12: Finish Fluid Mechanics Exam Review

An-Najah National University Civil Engineering Department. Fluid Mechanics. Chapter 1. General Introduction

Chapter 9. Solids and Fluids. States of Matter. Solid. Liquid. Gas

Summary Fluids. Density (r), pressure (p),

Chapter 9. Solids and Fluids

3 Fluids and Motion. Critical Thinking

Announcements. The continuity equation Since the fluid is incompressible, the fluid flows faster in the narrow portions of the pipe.

Physics 220: Classical Mechanics

MOMENTUM PRINCIPLE. Review: Last time, we derived the Reynolds Transport Theorem: Chapter 6. where B is any extensive property (proportional to mass),

Conservation of Momentum using Control Volumes

Physic 602 Conservation of Momentum. (Read objectives on screen.)

Chapter 4 DYNAMICS OF FLUID FLOW

Fluid Mechanics. Chapter 12. PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman

PART 1B EXPERIMENTAL ENGINEERING. SUBJECT: FLUID MECHANICS & HEAT TRANSFER LOCATION: HYDRAULICS LAB (Gnd Floor Inglis Bldg) BOUNDARY LAYERS AND DRAG

Preparing for Six Flags Physics Concepts

MOTION OF BODIES IN FLUIDS

SPC Aerodynamics Course Assignment Due Date Monday 28 May 2018 at 11:30

Performance. 5. More Aerodynamic Considerations

Introductory Physics PHYS101

LECTURE 10: Newton's laws of motion

150A Review Session 2/13/2014 Fluid Statics. Pressure acts in all directions, normal to the surrounding surfaces

Class 11 Physics NCERT Exemplar Solutions Motion in a Straight Line

Lecture 18: Reflection and Impedance

Chapter 9. Solids and Fluids

cos(θ)sin(θ) Alternative Exercise Correct Correct θ = 0 skiladæmi 10 Part A Part B Part C Due: 11:59pm on Wednesday, November 11, 2015

APPLIED FLUID DYNAMICS HANDBOOK

Transcription:

26 PM3 HYDRODYNAMICS Some fish are minnows Some are whales. People like dimples. Fish like scales. Some fish are slim, And some are round. They don't get cold, They don't get drowned But every fish wife Fears for her fish. What we call mermaids and they call merfish. Aims OBJECTIVES In this chapter you will look at the behaviour of fluids in motion and the explanation of that behaviour both in terms of forces, energy and the continuity of the fluid. The distinction between smooth and turbulent flow is investigated. Minimum Learning Goals When you have finished studying this chapter you should be able to do all of the following. 1. Explain, interpret and use the terms: thrust force, lift force, streamline, turbulence. 2. (i) Explain why the description of mutual forces between a moving fluid and a stationary object is identical to that for a stationary fluid and a moving object. (ii) Draw a diagram showing the origin of thrust and lift forces in such situations. (iii) Explain why it is preferable in discussing liquid flow, to consider the liquid as a continuous substance rather than individual molecules. 3. Describe how energy is dissipated in turbulent motion. 4. (i) Recall the definition of Reynolds number R = vlr h and state how L is determined in different situations. (ii) Recall that it is experimentally found that turbulent flow occurs if R 2000. (iii) Do simple calculations and interpretations involving Reynolds number. 5. (i) Explain how, for streamline motion in a tube (or channel) of variable cross-section, the flow speed depends on the cross-sectional area. (Equation of continuity.) (ii) (iii) Give a quantitative description of the branching effect at pipe junctions. Explain why flow speed must increase where streamlines are crowded together. 6. (i) Use an energy argument to explain why, for constricted streamline flow, the fluid pressure decreases as the flow speed increases. (Bernoulli's Principle.) (ii) Describe and explain the following phenomena : the venturi effect, the chimney effect, the working of an atomiser.

PM3: Hydrodynamics 27 PRE-LECTURE Recall the following background information from earlier chapters, particularly chapters FE3, FE4 and FE5. (i) All fluids (liquids and gases) exert a pressure on the walls of any container which contains them - pressure being defined as force per unit area. This same pressure is exerted by each part of the fluid on neighbouring parts. The kinetic theory is a school of thought which seeks to understand how this pressure arises through the collision of individual molecules of the fluid with the walls and with each other. We will not in fact pursue kinetic theory any further - but concentrate on experimentally observable laws concerning fluid pressure and its effects. (ii) The simply established laws concerning fluid pressure are these: (a) The pressure at any point in a fluid is the same in all directions (Pascal's Principle). (b) The pressure within a fluid can vary from point to point; in a fluid at rest the pressure varies with vertical height according to the law. p = constant + rgh. It will be the concern of this lecture to establish how the pressure varies inside a fluid which is in motion. (iii) In general, mechanical forces can be classified as either dissipative or conservative forces, according to whether or not they result in the dissipation of energy (usually as conversion into thermal energy). Typically forces such as electromagnetic or gravitational are conservative and frictional forces are dissipative. Workers in hydrodynamics (or aerodynamics) try to classify pressures and fluid forces similarly. However since the origin of these effects has a more complicated microscopic explanation, this classification is not always so straightforward. The basic criterion employed is whether or not the equation of conservation of mechanical energy is obeyed. 3-1 THRUST AND LIFT FORCES LECTURE The study of hydrodynamics involves the study of the interaction of fluids and solid bodies. Three apparently different kinds of interaction can be distinguished: (a) (b) and (c) moving fluids with stationary objects stationary fluids with moving objects moving fluids with moving objects From work you have done already you can understand in a general way where the forces of interaction come from. (a) A moving fluid exerts a force on a stationary object because each molecule of the fluid, on bouncing, is accelerated by the solid. The solid exerts a force on the fluid. Before collision After collision Force exerted on molecule Figure 3.1 Collision of fluid molecules with a solid surface

PM3: Hydrodynamics 28 and, by the fact that forces occur in pairs, the fluid exerts an equal and oppositely directed force on the solid. Force exerted on solid Figure 3.2 Force exerted by fluid molecules on solid surface Wind direction WING RESULTANT LIFT FORCE Deflected air stream Figure 3.3 Lift force exerted by horizontal wind on an inclined wing Examples: Hovering birds, gliders, kites. (b) A moving solid exerts a force on a stationary fluid by exactly the same mechanism, by giving a velocity to (i.e. accelerating) each molecule of the fluid. Example : Fish tails. Tail Motion of tail Wake direction RESULTANT THRUST FORCE Pivot Figure 3.4 Thrust force on flipping fish tail (This example is in fact too complicated to worry about too much for now; suffice it to say that the backward and forward motion of the tail results in an average forward thrust.) From all this we want to draw two simple conclusions: (1) This way of analysing things is too simplistic. Yet the main conclusion is correct: if you want to move up through a fluid, you must push the fluid down; if you want to move forward, you must push the fluid backwards. (2) The physics of what happens is the same whether it is the fluid or the solid or both which is moving. Application Aeronautical engineers can predict how an aeroplane will behave in flight by observing it at rest in a wind tunnel (or even in a water tank).

PM3: Hydrodynamics 29 3-2 STREAM LINES AND TURBULENCE The preceding analysis is obviously too simplistic as can be seen from a very easy observation. When a stream of (gently) flowing fluid is diverted by the presence of a wall, the particles of fluid do not all bounce off the wall, most bounce off other fluid particles. Demonstration Glycerine solution flowing in a flow tank. Figure 3.5 Streamlines for fluid flowing past a solid obstacle Since the stream is diverted (accelerated) the wall must be exerting a force on the fluid, and the fluid on the wall. The origin of this force must be that the fluid molecules bounce off one another, causing those next to the wall to bounce off it more violently. That means the fluid pressure must increase near the corner. More of this later. Whatever the means whereby force is exerted on the wall, it is clear that for some parts of their motion particles of the fluid do not travel in straight lines but in curved paths. It turns out that it is more helpful in describing fluid flow to think of the fluid as a continuous substance rather than to concentrate on the motion of individual molecules. Particles of this continuous fluid can be considered to travel along these smooth continuous paths which are given the name streamlines. These stream lines can of course be curved or straight, depending on the flow of the fluid. This continuous substance can be regarded as being made up of bundles or tubes of streamlines. The tubes have elastic properties: (a) A tensile strength, which means that the parts of the fluid along a particular streamline stick together and do not separate from one another, (b) zero shear modulus, which means that each streamline moves independently of any other. Streamline motion is not the only possible kind of fluid motion. When the motion becomes too violent, eddies and vortices occur. The motion becomes turbulent. Demonstrations Wakes of boats Liquid tank demonstration. Turbulence is important because it is a means whereby energy gets dissipated. When a body is moved through a stationary fluid in streamline motion some kinetic energy is given to the fluid, but only temporarily. When the body has passed, the fluid is still again; no net energy has been given to it. But when turbulence is established, a net amount of kinetic energy is left in the fluid after the body has passed. Application This is very important in aeronautical engineering. Air turbulence means increased fuel consumption in aircraft, and many cunning and intricate devices are used to reduce turbulence. The shape of a body will, to some extent, decide whether it will move through a fluid in streamline or turbulent motion. Demonstration Shapes of marine animals, specially shaped corks.

3-3 REYNOLDS NUMBER PM3: Hydrodynamics 30 What factors determine whether a fluid will flow in streamlined or in turbulent motion? You could guess some of these more or less easily. (i) Speed of flow - faster flow gets turbulent more easily. (ii) Stickiness of fluid - thick, sticky liquids like glycerine become turbulent less easily than thin liquids like water. [Just what physical quantity is involved here is not obvious. It is called the kinematic viscosity and we cannot say anything about it till next lecture. The symbol for it is h/r (see post lecture).] (iii) A more unexpected result which turns up is that the size of the system is important. For water flowing at the same speed through narrow pipes, the flow becomes turbulent more easily in the tube of larger radius. More thorough experimental investigation will collect all these results thus. We define for any system a number R, called the Reynolds number R vlr h where v is a typical flow speed of the fluid, L is a typical length scale and h/r the kinematic viscosity of the fluid. Then it is found experimentally that if this number is not too large (smaller than about 2000) the motion will be streamline; whereas if R 2000 then turbulence can set in. There is no theoretical explanation of this value of 2000, it is just found to be the case. 3-4 THE EQUATION OF CONTINUITY For fluids which are flowing in streamlined motion, what laws do they obey? Firstly there is the so called equation of continuity: for an incompressible fluid moving in streamline motion in a tube of variable cross-section, the flow speed at any point in inversely proportional to the cross sectional area 1 Speed µ area. The reason behind this is very easy to grasp. If you want a more rigorous statement, see the post-lecture material. One sees many applications of this. Four examples follow. Demonstrations (i) In flowing rivers, when going from deep to shallow, the flow speed increases (often becoming turbulent). (ii) In the circulatory system of the blood there is a branching effect. When a fluid flows past a Y-junction made up of pipes of the same diameter, the total crosssectional area after the branch is twice that before the branch, so the flow speed must fall to half. High Speed Low Speed Figure 3.6 Y-junction with pipes of same diameter Conversely, if it is important to keep the flow speed up, the pipes after the branch must have half the cross-sectional area of those before.

PM3: Hydrodynamics 31 Same Speed High Speed Figure 3.7 Y-junction with pipes of half the original cross-section (Note: blood will clot if its speed falls too low.) Most gases behave like incompressible fluids provided their flow speed is less than the speed of sound. The bulk modulus of a gas, while lower than that of a solid, is still large enough for the equation of continuity to describe its motion. Demonstrations Air conditioning systems must also be built with consideration for the branch effect. Also the tube structure of the respiratory system is remarkably similar to that of the circulatory system. In complicated patterns of streamline flow, the stream lines effectively define flow tubes. So the equation of continuity says that where streamlines crowd together the flow speed must increase. Streamlines close together: speed high Aerofoil Streamlines spread out: speed low Fig 3.8 Streamline pattern around an aerofoil

PM3: Hydrodynamics 32 3-5 BERNOULLI'S PRINCIPLE Demonstration An interesting effect which is easy to show is that, for a fluid (e.g. air) flowing through a pipe with a constriction in it, the fluid pressure is lowest at the constriction. In terms of the equation of continuity, the fluid pressure falls as the flow speed increases. The reason is easy to understand. The fluid has different speeds and hence different kinetic energies at different parts of the tube. The changes in energy must result from work being done on the fluid and the only forces in the tube that might do work on the fluid are the driving forces associated with changes in pressure from place to place. lower speed lower kinetic energy higher pressure higher speed higher kinetic energy lower pressure Figure 3.9 Application of Bernoulli's Principle lower speed lower kinetic energy higher pressure The units of pressure, N.m -2, might be rewritten as J.m -3 ; that is, pressure is dimensionally equivalent to work/volume. Since the fluid is driven from regions of high pressure to those of low pressure and thus increases its kinetic energy, we can write kinetic energy/volume + work/volume is constant, l i.e. 2 rv2 + p = constant. In cases where the flow is not horizontal, we should add in the gravitational potential energy/volume l also: 2 rv2 + p + rgh = constant. This is known as Bernoulli's equation. For the very simple cases it says what we had before - the fluid pressure is lowest where the flow speed is highest. Demonstrations The venturi effect: a fast jet of air emerging from a small nozzle will have a lower pressure than the surrounding atmospheric pressure. You can support a weight this way: Nozzle Air low pressure high pressure Figure 3.10 Example of the Venturi Effect The chimney effect: just the venturi effect being used to suck material up. [Note in most automobiles, petrol is sucked into the carburettor in this way.]

PM3: Hydrodynamics 33 Atomiser: This same effect makes atomisers and spray guns work. Nozzle: low pressure High pressure (Atmospheric) Figure 3.11 An "Atomiser" It is most important that the free surface of the liquid should be open to the atmosphere, else the high pressure outside the container and the low pressure inside will result in the container being crushed. {Fly sprays always have a small air hole.] A spinning ball or cylinder moving through a fluid experiences a sideways force. There is a high pressure on one side (so a big force) and low pressure (small force) on the other. The ball experiences a net sideways thrust. This is one of the ways players can get cricket or ping pong balls to swerve. Demonstration Spinning cylinder. 3-6 MORE ON REYNOLDS NUMBER POST-LECTURE There are several points to note about the definition of the Reynolds Number. (a) It is not a precise physical quantity. The quantities L and v are only typical values of size and speed. It is often not possible even to say which length you are talking about. For a body moving through a fluid it might be either length or breadth or thickness - or any other dimension you might think of. For a fluid flowing through a channel or a tube, it turns out that it is the diameter of the tube which enters. It is not until you learn more about the Reynolds Number that you can really hazard an intelligent guess at which one you should use. This imprecision in its definition reflects the fact that the basic physical law is itself rather vague - indeed it can often only be stated as we did: "The flow of fluid in a system is more likely to be turbulent if the system is large, than if it is small". It is not surprising then that the magic number of 2000 is also only rough. b) The "stickiness" index, the kinematic viscosity, is given the strange symbol h/r for the following reason. There are many ways in which this "stickiness" or viscosity manifests itself. Basically, how fast the fluid flows determines one measure of stickiness known as the coefficient of viscosity (h) - see next lecture. How easily the fluid becomes turbulent is related to this but to the density (r) as well - or if you like, it defines a different measure of stickiness. It is pointless to say any more at this stage, except to give units. h is measured in units of Pa.s; to give you a feeling for what numbers occur, for water h ~ 10-3 Pa.s. (c) The Reynolds number is a dimensionless number as you can see from its definition: [R] = [m.s-1 ][m][kg.m -3 ] [Pa.s] This will be understood when you come to see where the Reynolds Number comes from. It is a ratio of two quantities - essentially a scaling number.

PM3: Hydrodynamics 34 Q3.1: Work out the Reynolds Number for the following flow systems, and say in which ones you might expect there to be a lot of energy dissipated through turbulence. (i) A Sydney Harbour ferry (ii) Household plumbing pipes (iii) The circulatory system. [Take an average sort of figure for the flow speed of blood to be 0.2 m.s -1 the diameter of the largest blood vessel, the aorta, to be ~ 10 mm; and guess that the viscosity of blood probably is not very different from that of water.] (iv) Spermatozoa swimming. [They are typically about 10 µm in length with speeds of about 10-5 m.s -1.] 3-7 CONTINUITY A careful derivation of the equation of continuity goes like this. Consider a fluid flowing through an irregular tube like this Speed = v 1 Speed = v 2 B A Area = A Area = A 2 1 Figure 3.12 Figure for derivation of Equation of Continuity The volume of fluid flowing past A in a very small time t = A 1 v 1 Dt. So the mass which flows past A is r 1 A 1 v 1 Dt. Similarly the mass of fluid flowing past B in time t is r 2 A 2 v 2 t. Now, when the flow is steady all the material which goes past A must go past B in the same time (or else it will continually piling up somewhere) so r 1 A 1 v 1 Dt. = r 2 A 2 v 2 Dt. r 1 A 1 v 1 = r 2 A 2 v 2 Then if the fluid is incompressible, its density does not change, so which is the result stated earlier. A 1 v 1 = A 2 v 2 Notice that for the final statement to be true, incompressibility is important. But notice also that if the fluid is approximately incompressible, i.e. if its density never changes by very much, then the equation of continuity, as we quoted it, is approximately true. The quantity appearing in this equation, Av, measures the volume of the fluid which flows past any point of the tube divided by time. It is given the name volume rate of flow, and is usually denoted by the symbol q. See, for example, Poiseuille's law on page 43. Q3.2 From observations you have made, either from the TV screen or in the real world, draw in the stream lines for a liquid flowing in streamline motion through a drain with a corner in it.

PM3: Hydrodynamics 35 Figure 3.13 A drain with a corner in it! Use continuity to decide where the flow speeds up, and when it slows down. You cannot apply this to water flowing around a bend in the river. A Reynolds number calculation shows that the situation is quite different. 3-8 BERNOULLI'S EQUATION If you really want a more careful derivation of Bernoulli's equation, you can look it up in another book. It goes along the same lines as the proof of the equation of continuity. Just remember that, because you are using the equation of conservation of energy, it is important that there should be no energy dissipation through turbulence. Bernoulli's equation only really applies when the motion is strictly streamline. Nonetheless, provided there is not too much turbulence, the law will approximately apply. Certainly, in all of the experiments we did on screen the flow must have been pretty turbulent, yet they all showed the characteristic effect of pressure drop. Q 3.3 Medical textbooks often quote Bernoulli's equation simply as p + rgh = constant implying that the kinetic energy term ( l 2 rv2 ) is not important but the gravitational potential energy term is. Use the average speed for blood flow quoted above and a typical human blood pressure of 10 4 Pa to explain why this is so. Q 3.4 In section 2 above, you analysed streamlined flow round a corner. Using the result of that analysis show how the pressure changes as the liquid goes round the corner. Can you reconcile this with the kind of simple minded diagrams drawn for the lift force on wings drawn in figure 3.3 above? Q 3.5 When you are in the dentist's chair, the dentist uses a device based on the venturi effect to suck saliva out of your mouth. Discuss.