Cálculo del coeficiente de transmisión térmica (Uf) Ventana y Puerta Corrediza M-Cinco (Lateral) Mediterránea RPT

Similar documents
Ventana y Puerta Corrediza M-Tres (Encuentro central), con Poliamida de 15 - Mediterránea RPT

Puerta de Rebatir M-Tres (Lateral), con Poliamida de 25

Paño Fijo M-Tres, con Poliamida de 15 Mediterránea RPT

Travesaño para Paño fijo y Puerta de Rebartir, con poliamida de 25

SIMULATION OF FRAME CAVITY HEAT TRANSFER USING BISCO v10w

Calculating the heat transfer coefficient of frame profiles with internal cavities

Customer: Ashton Industrial Sales Ltd. South Road, Harlow Essex CM20 2AR UNITED KINGDOM. Project/Customer: Profilex HM spacer

of PASSIVE Europa 92 door with 44mm & 48mm glazing for Zyle Fenster UAB J. Jasinskio 16a LT Lithuania

ISO INTERNATIONAL STANDARD

THERMAL SIMULATION REPORT. TCL2013-Origin-01 Prepared For:

of PASSIVE Europa 92 door with 44mm & 48mm glazing for Zyle Fenster UAB J. Jasinskio 16a LT Lithuania

Zeroth Law of Thermodynamics

ISO INTERNATIONAL STANDARD. Thermal performance of windows, doors and shutters Calculation of thermal transmittance Part 1: Simplified method

TREES Training for Renovated Energy Efficient Social housing

ISO INTERNATIONAL STANDARD. Thermal bridges in building construction Linear thermal transmittance Simplified methods and default values

Determination of installed thermal resistance into a roof of TRISO-SUPER 12 BOOST R

TRANSPARENT INNOVATIVE MATERIALS: ENERGETIC AND LIGHTING PERFORMANCES EVALUATION

METHOD OF IN-SITU MEASUREMENT OF THERMAL INSULATION PERFORMANCE OF BUILDING ELEMENTS USING INFRARED CAMERA

Determining of Thermal Conductivity Coefficient of Pressed Straw (Name of test)

Warm surfaces warm edges Insulated glass with thermally improved edge seal

Special pieces. Piezas especiales. Nanofantasy brown natural mosaico 5x5 (29,75 x 29,75 cm - 11,71 x 11,71 ) G-1708

45º CONGRESO ESPAÑOL DE ACÚSTICA 8º CONGRESO IBÉRICO DE ACÚSTICA EUROPEAN SYMPOSIUM ON SMART CITIES AND ENVIRONMENTAL ACOUSTICS

5. AN INTRODUCTION TO BUILDING PHYSICS

NFRC THERMAL PERFORMANCE TEST REPORT. Rendered to: C.R. LAURENCE CO., INC.

THERMAL ACTIONS. Milan Holický and Jana Marková. Czech Technical University in Prague, Czech Republic

CFD-SIMULATIONS OF TRANSPARENT COATED AND GAS-FILLED FACADE PANELS

Declarations of equivalence of Verosol sun screens. SilverScreen and EnviroScreen

Determination of thermal transmittance of window (test title)

CELLAR. Heat losses to the ground from buildings. Version 2.0 November 17, 2000

THERMAL TRANSMITTANCE EVALUATION OF CONCRETE HOLLOW BLOCKS

Window frame thermal performance simulation. Suitable methods according to climate and technology

The lumped heat capacity method applied to target heating

Report TAG3-UA-1212-E07 Testing of the transmission and the g-value of a polycarbonate multiwall panel AKYVER 16/7 IR Control Grey

AIR-INS inc. 1320, boul. Lionel-Boulet, Varennes (Quebec) J3X 1P7 Tél. : (450) Fax : (450)

Heat Tracing Basics. By: Homi R. Mullan 1

SIMULATED THERMAL PERFORMANCE OF TRIPLE VACUUM GLAZING. Yueping Fang, Trevor J. Hyde, Neil Hewitt

Numerical analysis of the thermal behaviour of a photovoltaic panel coupled with phase change material

LOW E SATINÉ 5500 LOW E

QIRT th International Conference on Quantitative InfraRed Thermography

a) Prepare a normal probability plot of the effects. Which effects seem active?

Available online at ScienceDirect. Energy Procedia 78 (2015 )

THERMAL PERFORMANCE TEST REPORT

Vincent Barraud SOPREMA BASICS OF THERMAL INSULATION

Conduction Transfer Function vs Finite Difference: comparison in terms of accuracy, stability and computational time

SHANGHAI MYLCH WINDOWS & DOORS THERMAL PERFORMANCE TEST REPORT

Quality assurance for cookstoves testing centers: calculation of expanded uncertainty for WBT

Description of Benchmark Cases for Window and Shading Performance Calculation

Clase 05: Mechanical Supports

Publ. No. T Rev. a326 ENGLISH (EN) March 6,

Heat Removal of a Protection Chip after Surge Pulse Tom Graf Hochschule Luzern T&A Technikumstrasse 21 CH-6048 Horw Switzerland

GALILEO GALILEI (GG) DRL/DRD: DEL-23/24/33/35

Parametric Design Optimization of a CMOS-MEMS Infrared Thermopile for Biomedical Applications

Experimental measurement and numerical simulation of the thermal performance of a double glazing system with an interstitial Venetian blind

NFRC THERMAL TEST SUMMARY REPORT January 27, 1999 Test Specimen

Probabilistic Load Flow with Load Estimation Using Time Series Techniques and Neural Networks

SIMULATION TEST REPORT NCTL E0A0

Thermal bridges in building construction Linear thermal transmittance Simplified methods and default values

THERMAL TRANSMITTANCE OF MULTI-LAYER GLAZING WITH ULTRATHIN INTERNAL PARTITIONS. Agnieszka A. Lechowska 1, Jacek A. Schnotale 1

Content. Thermal insulation

Technical info (001042)

GRAVITOMAGNETISM AND ANGULAR MOMENTA OF BLACK-HOLES

LOW E SATINÉ 5500 LOW E

CHAPTER 8: Thermal Analysis

Appendix B. GENETIK+ Near-real time thermal model correlation using genetic algorithm. Guillaume Mas (CNES, France)

Some critical remarks about the radiative heat transfer in air frame cavities according to EN ISO

CERTIFICADO DE CALIBRACIÓN Certificate of Calibration

NFRC THERMAL TEST SUMMARY REPORT Expiration Date: 03/31/06

COVENANT UNIVERSITY NIGERIA TUTORIAL KIT OMEGA SEMESTER PROGRAMME: MECHANICAL ENGINEERING

ISO 7730 INTERNATIONAL STANDARD

EXPERIMENTAL VERIFICATION OF THE EUROPEAN METHODOLOGY FOR TESTING NOISE BARRIERS IN SITU: SOUND REFLECTION

NFRC THERMAL PERFORMANCE TEST REPORT. Rendered to: C.R. LAURENCE CO., INC.

Quantification of structure born sound using scanning laser velocimetry and BEM radiation calculations

Test Results: Results of the test period on 06/19/16 using the Equivalent CTS Method: Thermal transmittance at test conditions (U s ):

EN 10211:2007 validation of Therm 7.4. Therm 7.4 validation according to EN ISO 10211:2007

Electromagnetic transmittance in alternating material-metamaterial layered structures

NFRC THERMAL PERFORMANCE TEST REPORT. Rendered to: PARAMOUNT WINDOWS CORPORATION. SERIES/MODEL: 4000 TYPE: Fixed

THERMAL BRIDGE ASSESSMENTS Strachan P *, Nakhi A * and Sanders C # Glasgow G1 1XJ, Scotland. Kelvin Road, East Kilbride, G75 0RZ, Scotland

Evidence of Performance Thermal transmittance

MATE EXAMEN FINAL

Algebra I Aim: How do we determine the equation of a function from its graph? HW: "Vacations" Worksheet

Meteorologia 1. Meteorologia 1

DECLARATION OF PERFORMANCE No. 37/X-PIR/OBO

Increased thermal induced climatic load in insulated glass units

Extensions to the Finite Element Technique for the Magneto-Thermal Analysis of Aged Oil Cooled-Insulated Power Transformers

1 / 17. TÜV Rheinland (Shanghai) Co., Ltd Solar/ Fuelcell Technologies. Test Report

2.2 - Screening and ranking for optimal selection. Outline

CFD MODELLING AND ANALYTICAL CALCULATIONS OF THERMAL TRANSMITTANCE OF MULTI-LAYER GLAZING WITH ULTRATHIN INTERNAL GLASS PARTITIONS

WUFI Workshop NBI / SINTEF 2008 Radiation Effects On Exterior Surfaces

REVIEW OF REFLECTIVE INSULATION ESTIMATION METHODS James M Fricker 1 and David Yarbrough 2

HEAT2. A PC-program for heat transfer in two dimensions. Manual with brief theory and examples. HEAT2 version 4.0 and HEAT2W version 1.

CFD MODELLING OF CONVECTIVE HEAT TRANSFER FROM A WINDOW WITH ADJACENT VENETIAN BLINDS

NUMERICAL ANALYSIS OF HEAT STORAGE AND HEAT CONDUCTIVITY IN THE CONCRETE HOLLOW CORE DECK ELEMENT

Window energy rating systems

NFRC THERMAL PERFORMANCE TEST REPORT. Rendered to: NU VISTA WD, INC. SERIES/MODEL: Malibu 250 T TYPE: Fixed

MARYLAND. Fundamentals of heat transfer Radiative equilibrium Surface properties Non-ideal effects. Conduction Thermal system components

Effect of Surface Thermal Resistance on the Simulation Accuracy of the Condensation Risk Assessment for a High-Performance Window

Report No: NCTL NFRC THERMAL TEST SUMMARY REPORT Expiration Date: 12/14/15

THERMAL SIMULATION OF A CONCENTRATOR PIPE COMPOSED WITH NORMAL RADIATION DISTRIBUTION

Project: Underfloor and wall heating example

Application of G100/120 Thermal Imaging Camera in Energy Efficiency Measuring in Building Construction

Transcription:

Cálculo del coeficiente de transmisión térmica (Uf) Ventana y Puerta Corrediza M-Cinco (Lateral) Mediterránea RPT Cliente: Alcemar Cálculos realizados por Technoform BAUTEC Ibérica, s.l. Laia Cardona Tel: +34 93 238 64 38/ Fax: +34 93 415 40 37 Email: tb-es@technoform.es Fecha: 09.03.2006 Resultados Corredera cerco y hoja interior corta mediante BISCO según norma EN ISO 10077-2:2003 Uf = 5,95 W/m 2 K Corredera cerco y hoja interior corta mediante RADCON con Know-How TECHNOFORM Uf = 4,57 W/m 2 K En este informe se detemina el coeficiente de transmisión térmica (Uf) mediante dos métodos de cálculo diferentes: A) Aplicando la norma EN ISO 10077-2:2003, y usando el software BISCO de la empresa Physibel. 1

B) Aplicando un método própio, know-how de Technoform, dónde se usa el software RADCON - también propiedad de Physibel - y el valor final equivale aproximadamente al resultado en el test de cálculo de nuestra HOT-BOX (La diferencia es de un 5%) según norma ISO/FDIS 12567:2000. Contenido Dibujo sistema A) mediante BISCO según norma EN ISO 10077-2:2003 Input data BISCO Output data BISCO Cálculo del coeficiente de transmisión térmica (Uf) Isotermas Flujo de calor B) mediante RADCON con Know-How TECHNOFORM Input data RADCON Output data RADCON Cálculo del coeficiente de transmisión térmica (Uf) Dibujo sistema 2

A) mediante BISCO según norma EN ISO 10077-2:2003 Input data BISCO Col. Name Type CEN-rule Coupled lambda eps t h [W/mK] [-] [ C] [W/m²K] 8 aluminium MATERIAL 160.000 24 aluminium MATERIAL 160.000 28 insulation MATERIAL 0.035 44 polyamid reinf. MATERIAL 0.300 60 EPDM MATERIAL 0.250 67 PVC flexible MATERIAL 0.140 119 temp. sensor 1 MATERIAL 160.000 135 temp. sensor 2 MATERIAL 160.000 151 temp. sensor 3 MATERIAL 160.000 167 temp. sensor 4 MATERIAL 160.000 170 exterior BC_SIMPL HE 0.0 25.00 174 interior (norma BC_SIMPL HI_NORML 20.0 7.70 214 cavity (CEN) EQUIMAT CEN_VF_I NO 0.107 215 cavity (CEN) EQUIMAT CEN_VF_I NO 0.122 216 cavity (CEN) EQUIMAT CEN_VF_I NO 0.139 217 cavity (CEN) EQUIMAT CEN_VF_I NO 0.098 218 cavity (CEN) EQUIMAT CEN_VF_I NO 0.065 219 cavity (CEN) EQUIMAT CEN_VF_I NO 0.053 220 cavity (CEN) EQUIMAT CEN_VF_I NO 0.128 221 cavity (CEN) EQUIMAT CEN_VF_I NO 0.050 222 cavity (CEN) EQUIMAT CEN_VF_I NO 0.042 223 cavity (CEN) EQUIMAT CEN_VF_I NO 0.115 224 cavity (CEN) EQUIMAT CEN_VF_I NO 0.041 3

225 cavity (CEN) EQUIMAT CEN_VF_I NO 0.113 240 cavity (CEN) EQUIMAT CEN_VF_E NO 0.098 242 cavity (CEN) EQUIMAT CEN_VF_E NO 0.094 247 cavity <7x7 mm2 MATERIAL 0.046 250 cavity <4x4 mm2 MATERIAL 0.037 251 cavity <3x3 mm2 MATERIAL 0.034 252 cavity <2x2 mm2 MATERIAL 0.031 253 cavity <1x1 mm2 MATERIAL 0.028 Col. q ta hc qc tr C1 C2 C3 [W/m²] [ C] [W/m²K] [W/m] [ C] [-] [-] [-] 8 24 28 44 60 67 119 135 151 167 170 0 174 0 214 0.025 0.73 0.333333 215 0.025 0.73 0.333333 216 0.025 0.73 0.333333 217 0.025 0.73 0.333333 218 0.025 0.73 0.333333 219 0.025 0.73 0.333333 220 0.025 0.73 0.333333 221 0.025 0.73 0.333333 222 0.025 0.73 0.333333 223 0.025 0.73 0.333333 224 0.025 0.73 0.333333 225 0.025 0.73 0.333333 240 0.025 0.73 0.333333 242 0.025 0.73 0.333333 247 250 251 252 253 Calculation parameters Contour approximation margin (triangulation) = 0 pixels Iteration cycles = 5 Recalculation of CEN values (before each iteration cycle) Maximum number of iterations (per iteration cycle) = 10000 Maximum temperature difference = 0.0001 C Max. heat flow divergence for total object = 0.001 % Max. heat flow divergence for any node = 1 % Output data BISCO Col. Name Type tmin tmax ta flow in flow out [ C] [ C] [ C] [W/m] [W/m] 8 aluminium MATERIAL 0.26 12.91 24 aluminium MATERIAL 0.31 12.87 28 insulation MATERIAL 1.10 16.35 4

44 polyamid reinf. MATERIAL 0.34 12.82 60 EPDM MATERIAL 1.76 13.93 67 PVC flexible MATERIAL 0.22 8.51 119 temp. sensor 1 MATERIAL 8.79 8.79 135 temp. sensor 2 MATERIAL 8.51 8.51 151 temp. sensor 3 MATERIAL 12.86 12.87 167 temp. sensor 4 MATERIAL 12.89 12.89 170 exterior BC_SIMPL 0.21 8.52 0.00 22.44 174 interior (norma BC_SIMPL 8.51 16.35 22.44 0.00 214 cavity (CEN) EQUIMAT 8.45 8.73 215 cavity (CEN) EQUIMAT 0.37 8.45 216 cavity (CEN) EQUIMAT 8.35 8.81 217 cavity (CEN) EQUIMAT 0.35 8.41 218 cavity (CEN) EQUIMAT 0.31 0.37 219 cavity (CEN) EQUIMAT 12.72 12.87 220 cavity (CEN) EQUIMAT 2.63 12.79 221 cavity (CEN) EQUIMAT 2.55 2.73 222 cavity (CEN) EQUIMAT 12.80 12.85 223 cavity (CEN) EQUIMAT 2.60 12.81 224 cavity (CEN) EQUIMAT 2.56 2.62 225 cavity (CEN) EQUIMAT 2.50 12.91 240 cavity (CEN) EQUIMAT 8.72 10.69 242 cavity (CEN) EQUIMAT 0.21 0.37 247 cavity <7x7 mm2 MATERIAL 0.27 8.52 250 cavity <4x4 mm2 MATERIAL 0.28 13.30 251 cavity <3x3 mm2 MATERIAL 1.92 13.63 252 cavity <2x2 mm2 MATERIAL 2.48 12.95 253 cavity <1x1 mm2 MATERIAL 0.34 12.82 5

Cálculo del coeficiente de transmisión térmica (Uf) THERMAL TRANSMITTANCE ACCORDING TO pren 10077-2 Theory The thermal transmittance of a frame according to PrEN 10077-2: U f = L 2D l U f p * l p and L 2 D = q l, tot θ with: U f : thermal transmittance of the window frame [W/m 2 K] U p : thermal transmittance of the flanking panel [W/m 2 K] l p : projected width of the flanking panel [m] l f : projected width of the window frame [m] L 2D : two-dimensional coupling coefficient [W/mK] q l,tot : total heat flow through the window frame and the flanking panel [W/m] θ : temperature difference between inside (θi) and outside (θe) [K] Calculation Item: q l,tot input data: = 22,440 W/m R se = 0,04 m 2 K/W θ e = 0,0 o C R si = 0,13 m 2 K/W θ i = 20,0 o C d i = 0,0190 m λ i = 0,035 W/m*K U p = l p = 1,403 W/m 2 K 0,190 m calculation results: L 2D = 1,12 W/mK l f = 0,1437 m U f = 5,95 W/m 2 K input data using the Physibel Software BISCO q l,tot : alphanumeric output BISKO heat losses per boundary condition θ : input data, surface boundary conditions: inside temperature minus outside temperature U p : calculation, using the following formula: U p 1 = + h e d i + λ i 1 h i 1 with: h e / h i d i λ i ext./int. surface heat transfer coeff. [W/m 2 K] thickness of layer i [m] thermal conductivity of layer i [W/mK] l p / l f : input data: dimensions of the item PHYSIBEL Heirweg 21 B-9990 Maldegem Belgium tel +32 50 711432 fax +32 50 717842 6

Isotermas 7

Flujo de calor 8

B) mediante RADCON con Know-How TECHNOFORM Input data RADCON Col. Name Type CEN-rule Coupled lambda eps t h [W/mK] [-] [ C] [W/m²K] 8 aluminium MATERIAL 160.000 0.90 24 aluminium epsil MATERIAL 160.000 0.30 28 insulation MATERIAL 0.035 0.90 44 polyamid reinf. MATERIAL 0.300 0.90 60 EPDM MATERIAL 0.250 0.90 67 PVC flexible MATERIAL 0.140 0.90 119 temp. sensor 1 MATERIAL 160.000 0.90 135 temp. sensor 2 MATERIAL 160.000 0.90 151 temp. sensor 3 MATERIAL 160.000 0.90 156 insulation far MATERIAL 0.035 0.90 167 temp. sensor 4 MATERIAL 160.000 0.90 170 exterior BC_SKY NIHIL 174 interior 1 BC_SKY NIHIL 182 interior 2 BC_SKY NIHIL 190 interior 3 BC_SKY NIHIL 214 cavity BC_FREE CEN_VF_I NO 215 cavity BC_FREE CEN_VF_I NO 216 cavity BC_FREE CEN_VF_I NO 217 cavity BC_FREE CEN_VF_I NO 218 cavity EQUIMAT CEN_VF_I NO 0.064 0.90 219 cavity EQUIMAT CEN_VF_I NO 0.053 0.90 220 cavity EQUIMAT CEN_VF_I NO 0.118 0.90 221 cavity EQUIMAT CEN_VF_I NO 0.050 0.90 222 cavity EQUIMAT CEN_VF_I NO 0.043 0.90 223 cavity EQUIMAT CEN_VF_I NO 0.105 0.90 224 cavity EQUIMAT CEN_VF_I NO 0.040 0.90 225 cavity EQUIMAT CEN_VF_I NO 0.104 0.90 240 cavity EQUIMAT CEN_VF_E NO 0.098 0.90 242 cavity EQUIMAT CEN_VF_E NO 0.092 0.90 247 cavity <7x7 mm2 MATERIAL 0.046 0.90 250 cavity <4x4 mm2 MATERIAL 0.037 0.90 251 cavity <3x3 mm2 MATERIAL 0.034 0.90 252 cavity <2x2 mm2 MATERIAL 0.031 0.90 253 cavity <1x1 mm2 MATERIAL 0.028 0.90 Col. q ta hc qc tr C1 C2 C3 [W/m²] [ C] [W/m²K] [W/m] [ C] [-] [-] [-] 8 24 28 44 60 67 119 135 151 156 167 170 0 0.0 12.00 0.0 174 0 20.0 2.50 20.0 182 0 20.0 2.88 20.0 190 0 20.0 3.22 20.0 9

214 0 1.59 0 0.0249 0.58 0.25 215 0 1.95 0 0.0245 0.58 0.25 216 0 1.17 0 0.0249 0.58 0.25 217 0 2.07 0 0.0245 0.58 0.25 218 0.0242 0.58 0.25 219 0.0252 0.58 0.25 220 0.0248 0.58 0.333333 221 0.0244 0.58 0.25 222 0.0252 0.58 0.25 223 0.0248 0.58 0.333333 224 0.0244 0.58 0.25 225 0.0248 0.58 0.333333 240 0.025 0.58 0.25 242 0.0242 0.58 0.25 247 250 251 252 253 Calculation parameters Contour approximation margin (triangulation) = 0 pixels Iteration cycles = 5 Nonlinear radiation Recalculation of CEN values (before each iteration cycle) Smallest accepted viewfactor = 0.001 Number of visibility rays between radiative surfaces = 100 Black radiation heat transfer coeff. (linear radiation) = 5.25 W/m²K Maximum number of iterations (per iteration cycle) = 10000 Maximum temperature difference = 0.0001 C Max. heat flow divergence for total object = 0.001 % Max. heat flow divergence for any node = 1 % 10

Output data RADCON Col. Name Type tmin tmax ta flow in flow out [ C] [ C] [ C] [W/m] [W/m] 8 aluminium MATERIAL 0.62 13.03 24 aluminium epsil MATERIAL 0.67 12.98 28 insulation MATERIAL 1.68 16.30 44 polyamid reinf. MATERIAL 0.70 12.95 60 EPDM MATERIAL 2.73 13.81 67 PVC flexible MATERIAL 0.66 8.81 119 temp. sensor 1 MATERIAL 9.08 9.08 135 temp. sensor 2 MATERIAL 8.82 8.82 151 temp. sensor 3 MATERIAL 12.97 12.97 156 insulation far MATERIAL 1.68 16.40 167 temp. sensor 4 MATERIAL 13.02 13.02 170 exterior BC_SKY 0.49 8.81 0.10 18.32 174 interior 1 BC_SKY 13.77 16.40 5.12 0.00 182 interior 2 BC_SKY 12.90 13.77 5.36 0.00 190 interior 3 BC_SKY 8.81 12.90 7.73 0.00 214 cavity BC_FREE 8.78 9.03 8.90 0.01 0.01 215 cavity BC_FREE 0.73 8.79 4.67 0.54 0.54 216 cavity BC_FREE 8.71 9.09 8.91 0.02 0.02 217 cavity BC_FREE 0.72 8.75 4.61 0.85 0.85 218 cavity EQUIMAT 0.67 0.73 219 cavity EQUIMAT 12.83 12.98 220 cavity EQUIMAT 3.65 12.92 221 cavity EQUIMAT 3.59 3.75 222 cavity EQUIMAT 12.92 12.98 223 cavity EQUIMAT 3.62 12.94 224 cavity EQUIMAT 3.59 3.64 225 cavity EQUIMAT 3.53 13.03 240 cavity EQUIMAT 9.02 10.98 242 cavity EQUIMAT 0.49 0.73 247 cavity <7x7 mm2 MATERIAL 0.67 8.83 250 cavity <4x4 mm2 MATERIAL 0.65 13.30 251 cavity <3x3 mm2 MATERIAL 2.90 13.63 252 cavity <2x2 mm2 MATERIAL 3.49 13.08 253 cavity <1x1 mm2 MATERIAL 0.70 12.95 11

Cálculo del coeficiente de transmisión térmica (Uf) THERMAL TRANSMITTANCE ACCORDING TO pren 10077-2 Theory The thermal transmittance of a frame according to PrEN 10077-2: U f = L 2D l U f p * l p and L 2 D = q l, tot θ with: U f : thermal transmittance of the window frame [W/m 2 K] U p : thermal transmittance of the flanking panel [W/m 2 K] l p : projected width of the flanking panel [m] l f : projected width of the window frame [m] L 2D : two-dimensional coupling coefficient [W/mK] q l,tot : total heat flow through the window frame and the flanking panel [W/m] θ : temperature difference between inside (θi) and outside (θe) [K] Calculation Item: q l,tot input data: = 18,320 W/m R se = 0,06 m 2 K/W θ e = 0,0 o C R si = 0,13 m 2 K/W θ i = 20,0 o C d i = 0,0190 m λ i = 0,035 W/m*K U p = l p = 1,365 W/m 2 K 0,190 m calculation results: L 2D = 0,92 W/mK l f = 0,1437 m U f = 4,57 W/m 2 K input data using the Physibel Software BISCO q l,tot : alphanumeric output BISKO heat losses per boundary condition θ : input data, surface boundary conditions: inside temperature minus outside temperature U p : calculation, using the following formula: U p 1 = + h e d i + λ i 1 h i 1 with: h e / h i d i λ i ext./int. surface heat transfer coeff. [W/m 2 K] thickness of layer i [m] thermal conductivity of layer i [W/mK] l p / l f : input data: dimensions of the item PHYSIBEL Heirweg 21 B-9990 Maldegem Belgium tel +32 50 711432 fax +32 50 717842 12