Topic 5: Discrete-Time Fourier Transform (DTFT)

Similar documents
Topic 5:Discrete-Time Fourier Transform (DTFT)

LECTURE 5 Guassian Wave Packet

Chapter 2 Linear Waveshaping: High-pass Circuits

Frequency Response. Lecture #12 Chapter 10. BME 310 Biomedical Computing - J.Schesser

Another Explanation of the Cosmological Redshift. April 6, 2010.

Lecture 26: Quadrature (90º) Hybrid.

Revision: August 21, E Main Suite D Pullman, WA (509) Voice and Fax

ELEC 372 LECTURE NOTES, WEEK 11 Dr. Amir G. Aghdam Concordia University

N J of oscillators in the three lowest quantum

Lecture 2: Discrete-Time Signals & Systems. Reza Mohammadkhani, Digital Signal Processing, 2015 University of Kurdistan eng.uok.ac.

Modern Physics. Unit 5: Schrödinger s Equation and the Hydrogen Atom Lecture 5.6: Energy Eigenvalues of Schrödinger s Equation for the Hydrogen Atom

10. The Discrete-Time Fourier Transform (DTFT)

Lecture 27: The 180º Hybrid.

More on FT. Lecture 10 4CT.5 3CT.3-5,7,8. BME 333 Biomedical Signals and Systems - J.Schesser

A Unified Theory of rf Plasma Heating. J.e. Sprott. July 1968

120~~60 o D 12~0 1500~30O, 15~30 150~30. ..,u 270,,,, ~"~"-4-~qno 240 2~o 300 v 240 ~70O 300

EEO 401 Digital Signal Processing Prof. Mark Fowler

Fourier Transforms and the Wave Equation. Key Mathematics: More Fourier transform theory, especially as applied to solving the wave equation.

DISCRETE TIME FOURIER TRANSFORM (DTFT)

COMPUTER GENERATED HOLOGRAMS Optical Sciences 627 W.J. Dallas (Monday, April 04, 2005, 8:35 AM) PART I: CHAPTER TWO COMB MATH.

Lecture 2a. Crystal Growth (cont d) ECE723

Introduction to Medical Imaging. Lecture 4: Fourier Theory = = ( ) 2sin(2 ) Introduction

Problem Set #2 Due: Friday April 20, 2018 at 5 PM.

2.161 Signal Processing: Continuous and Discrete Fall 2008

Review Problems 3. Four FIR Filter Types

EEO 401 Digital Signal Processing Prof. Mark Fowler

. This is made to keep the kinetic energy at outlet a minimum.

Continuous-Time Fourier Transform. Transform. Transform. Transform. Transform. Transform. Definition The CTFT of a continuoustime

ECE602 Exam 1 April 5, You must show ALL of your work for full credit.

Lecture 13: Discrete Time Fourier Transform (DTFT)

EE 224 Signals and Systems I Review 1/10

Sensors and Actuators Introduction to sensors

The Matrix Exponential

A Propagating Wave Packet Group Velocity Dispersion

Green functions of mass diffusion waves in porous media

Discrete-time Fourier transform (DTFT) representation of DT aperiodic signals Section The (DT) Fourier transform (or spectrum) of x[n] is

[ ] [ ] DFT: Discrete Fourier Transform ( ) ( ) ( ) ( ) Congruence (Integer modulo m) N-point signal

SOME PARAMETERS ON EQUITABLE COLORING OF PRISM AND CIRCULANT GRAPH.

The Matrix Exponential

Quasi-Classical States of the Simple Harmonic Oscillator

Math 34A. Final Review

Title: Vibrational structure of electronic transition

1 Isoparametric Concept

Linear-Phase FIR Transfer Functions. Functions. Functions. Functions. Functions. Functions. Let

Chap 2. Discrete-Time Signals and Systems

MATHEMATICS FOR MANAGEMENT BBMP1103

A Brief and Elementary Note on Redshift. May 26, 2010.

The Transfer Function. The Transfer Function. The Transfer Function. The Transfer Function. The Transfer Function. The Transfer Function

Lyapunov Stability Stability of Equilibrium Points

Slide 1. Slide 2. Slide 3 DIGITAL SIGNAL PROCESSING CLASSIFICATION OF SIGNALS

Types of Communication

Signals and Systems Profs. Byron Yu and Pulkit Grover Fall Midterm 2 Solutions

5 Transform Analysis of LTI Systems

EECE 301 Signals & Systems Prof. Mark Fowler

2. Background Material

6. Negative Feedback in Single- Transistor Circuits

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES

Recitation 06. n total = P total V/RT = (0.425 atm * 10.5 L) / ( L atm mol -1 K -1 * 338 K) = mol

Image Filtering: Noise Removal, Sharpening, Deblurring. Yao Wang Polytechnic University, Brooklyn, NY11201

EECE 301 Signals & Systems Prof. Mark Fowler

OPTICAL OSCILLATOR STRENGTHS FOR THE ELECTRON QUANTUM TRANSITIONS IN ELLIPTIC NANOTUBES

Chapter 33 Gauss s Law

Thermodynamics Partial Outline of Topics

ECE 2100 Circuit Analysis

2F1120 Spektrala transformer för Media Solutions to Steiglitz, Chapter 1

Effect of sampling on frequency domain analysis

ECE-314 Fall 2012 Review Questions for Midterm Examination II

Part a: Writing the nodal equations and solving for v o gives the magnitude and phase response: tan ( 0.25 )

FUNDAMENTAL AND SECOND HARMONIC AMPLITUDES IN A COLLISIONAL MAGNETOACTIVE PLASMA UDC B. M. Jovanović, B. Živković

Announce. ECE 2026 Summer LECTURE OBJECTIVES READING. LECTURE #3 Complex View of Sinusoids May 21, Complex Number Review

MAGNETIC MONOPOLE THEORY

We can see from the graph above that the intersection is, i.e., [ ).

Types of Transfer Functions. Types of Transfer Functions. Types of Transfer Functions. Ideal Filters. Ideal Filters

Einstein Equations for Tetrad Fields

Computational modeling techniques

Signals and Systems View Point

Differentiation Applications 1: Related Rates

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA

Capturing. Fig. 1: Transform. transform. of two time. series. series of the. Fig. 2:

Even/Odd Mode Analysis of the Wilkinson Divider

[ ] 1+ lim G( s) 1+ s + s G s s G s Kacc SYSTEM PERFORMANCE. Since. Lecture 10: Steady-state Errors. Steady-state Errors. Then

Cryptographically Strong de Bruijn Sequences with Large Periods

Types of Transfer Functions. Types of Transfer Functions. Ideal Filters. Ideal Filters. Ideal Filters

Cosmology. Outline. Relativity and Astrophysics Lecture 17 Terry Herter. Redshift (again) The Expanding Universe Applying Hubble s Law

5. B To determine all the holes and asymptotes of the equation: y = bdc dced f gbd

The failure of the classical mechanics

ESE 531: Digital Signal Processing

Lecture 17: Free Energy of Multi-phase Solutions at Equilibrium

EE243 Advanced Electromagnetic Theory Lec # 23 Scattering and Diffraction. Reading: Jackson Chapter , lite

Coulomb s Law Worksheet Solutions

BORH S DERIVATION OF BALMER-RYDBERG FORMULA THROUGH QUANTUM MECHANICS

4. (5a + b) 7 & x 1 = (3x 1)log 10 4 = log (M1) [4] d = 3 [4] T 2 = 5 + = 16 or or 16.

Revision: August 19, E Main Suite D Pullman, WA (509) Voice and Fax

3 Finite Element Parametric Geometry

INTEGRATION BY PARTS

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES. 1. Statement of results

arxiv: v2 [math.co] 30 Oct 2018

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J.

DSP-First, 2/e. LECTURE # CH2-3 Complex Exponentials & Complex Numbers TLH MODIFIED. Aug , JH McClellan & RW Schafer

Preparation work for A2 Mathematics [2017]

Transcription:

ELEC36: Signals And Systms Tpic 5: Discrt-Tim Furir Transfrm (DTFT) Dr. Aishy Amr Cncrdia Univrsity Elctrical and Cmputr Enginring DT Furir Transfrm Ovrviw f Furir mthds DT Furir Transfrm f Pridic Signals Prprtis f DT Furir Transfrm Rlatins amng Furir Mthds Summary Appndix: Transitin frm DT Furir Sris t DT Furir Transfrm Figurs and xampls in ths curs slids ar takn frm th fllwing surcs: A. Oppnhim, A.S. Willsky and S.H. Nawab, Signals and Systms, 2nd Editin, Prntic-Hall, 997 M.J. Rbrts, Signals and Systms, McGraw Hill, 2004 J. McClllan, R. Schafr, M. Ydr, Signal Prcssing First, Prntic Hall, 2003

DT Furir Transfrm (Nt: a Furir transfrm is uniqu, i.., n tw sam signals in tim giv th sam functin in frquncy) Th DT Furir Sris is a gd analysis tl fr systms with pridic xcitatin but cannt rprsnt an apridic DT signal fr all tim Th DT Furir Transfrm can rprsnt an apridic discrt-tim signal fr all tim Its dvlpmnt fllws xactly th sam as that f th Furir transfrm fr cntinuus-tim apridic signals 2

DT Furir Transfrm Lt x[n] b th apridic DT signal W cnstruct a pridic signal x[n] fr which x[n] is n prid x[n] is cmprisd f infinit numbr f rplicas f x[n] Each rplica is cntrd at an intgr multipl f N N is th prid f x[n] Cnsidr th fllwing figur which illustrats an xampl f x[n] and th cnstructin f Clarly, x[n] is dfind btwn N and N 2 Cnsquntly, N has t b chsn such that N > N + N 2 + s that adjacnt rplicas d nt vrlap Clarly, as w lt 3 as dsird

DT Furir Transfrm Lt us nw xamin th FS rprsntatin f Sinc x[n] is dfind btwn N and N 2 a k in th abv xprssin simplifis t 4 ω = 2π/N

DT Furir Transfrm Nw dfining th functin W can s that th cfficints a k ar rlatd t X( jω ) as whr ω 0 = 2π/N is th spacing f th sampls in th frquncy dmain Thrfr 5 As N incrass ω 0 dcrass, and as N th abv quatin bcms an intgral

DT Furir Transfrm On imprtant bsrvatin hr is that th functin X( jω ) is pridic in ω with prid 2π Thrfr, as N, (Nt: th functin jω is pridic with N=2π) This lads us t th DT-FT pair f quatins 6

7 DT Furir Transfrm: Frms = + = + = π ω ω π ω ω π ω π 2 2 2 ) ( 2 ] [ DT P CT Invrs DT Furir Transfrm : ] [ ) ( P CT DT DT Furir Transfrm : d X n x n x X n j j n n j j

DT Furir Transfrm: Exampls 8

DT Furir Transfrm: Exampl 9

Outlin DT Furir Transfrm Ovrviw f Furir mthds DT Furir Transfrm f Pridic Signals Prprtis f DT Furir Transfrm Rlatins amng Furir Mthds DTFT: Summary Appndix: Transitin frm DT Furir Sris t DT Furir Transfrm 0

Ovrviw f Furir Analysis Mthds: Typs f signals

Ovrviw f Furir Analysis Mthds: Typs f signals 2

Ovrviw f Furir Analysis Mthds: Cntinuus-Valu and Cntinuus-Tim Signals All cntinuus signals ar CT but nt all CT signals ar cntinuus 3

Ovrviw f Furir Analysis Mthds 4 Cntinuus in Tim Apridic in Frquncy Discrt in Tim Pridic in Frquncy Pridic in Tim Discrt in Frquncy CT Furir Sris : jkω0t ak = x( t) dt T 0 CT Invrs Furir Sris : x( t) = X[ k] = T a k k = N n= 0 k = 0 jkω t DT Furir Sris x[ n] 0 jω kn CT - P Invrs DT Furir Sris N jω0kn x[ n] = X[ k] N 0 DT - P N T DT DT CT - P DT - P DT - P N N T DT - P N Apridic in Tim Cntinuus in Frquncy CT Furir Transfrm : X ( jω) = x( t) = DT Furir Transfrm : X ( jω x[ n] = ) = n= Invrs DT Furir Transfrm : 2 π 2 π x[ n] X ( jω jωt Invrs CT Furir Transfrm : 2π x( t) X ( jω) jωn ) dt jωt jωn dω dω CT CT DT CT + P CT CT CT + P 2π 2π DT

Outlin DT Furir Transfrm Ovrviw f Furir mthds DT Furir Transfrm f Pridic Signals Prprtis f DT Furir Transfrm Rlatins amng Furir Mthds DTFT: Summary Appndix: Transitin frm DT Furir Sris t DT Furir Transfrm 5

Furir Transfrm f Pridic DT Signals Cnsidr th cntinuus tim signal This signal is pridic Furthrmr, th Furir sris rprsntatin f this signal is just an impuls f wight n cntrd at ω= ω 0 Nw cnsidr this signal It is als pridic and thr is n impuls pr prid Hwvr, th sparatin btwn adjacnt impulss is 2π, which agrs with th prprtis f DT Furir Transfrm In particular, th DT Furir Transfrm fr this signal is 6

Furir Transfrm f Pridic DT Signals: Exampl Th signal can b xprssd as W can immdiatly writ Or quivalntly whr X( jω ) is pridic in ω with prid 2π 7

Outlin DT Furir Transfrm Ovrviw f Furir mthds DT Furir Transfrm f Pridic Signals Prprtis f DT Furir Transfrm Rlatins amng Furir Mthds DTFT: Summary Appndix: Transitin frm DT Furir Sris t DT Furir Transfrm 8

Prprtis f th DT Furir Transfrm Nt: th functin jω is pridic with N=2π 9

Prprtis f th DT Furir Transfrm 20

Prprtis f th DT Furir Transfrm 2

Prprtis f th DT Furir Transfrm 22

Prprtis f th DT Furir Transfrm 23

Prprtis f th DT Furir Transfrm 24

Prprtis f th DT Furir Transfrm 25

Prprtis f th DT Furir Transfrm 26

Prprtis f th DT Furir Transfrm 27

Prprtis f th DT Furir Transfrm 28

Prprtis f th DT Furir Transfrm 29

Prprtis f th DT Furir Transfrm 30

Prprtis f th DT Furir Transfrm 3

Prprtis f th DT Furir Transfrm 32

Prprtis f th DT Furir Transfrm: Exampl 33

Prprtis f th DT Furir Transfrm 34

Prprtis f th DT Furir Transfrm: Diffrnc quatin DT LTI Systms ar charactrizd by Linar Cnstant- Cfficint Diffrnc Equatins A gnral linar cnstant-cfficint diffrnc quatin fr an LTI systm with input x[n] and utput y[n] is f th frm Nw applying th Furir transfrm t bth sids f th abv quatin, w hav 35 But w knw that th input and th utput ar rlatd t ach thr thrugh th impuls rspns f th systm, dntd by h[n], i..,

Prprtis f th DT Furir Transfrm : Diffrnc quatin Applying th cnvlutin prprty if n is givn a diffrnc quatin crrspnding t sm systm, th Furir transfrm f th impuls rspns f th systm can fund dirctly frm th diffrnc quatin by applying th Furir transfrm Furir transfrm f th impuls rspns = Frquncy rspns Invrs Furir transfrm f th frquncy rspns = Impuls rspns 36

Prprtis f th DT Furir Transfrm: Exampl With a <, cnsidr th causal LTI systm that us charactrizd by th diffrnc quatin Frm th discussin, it is asy t s that th frquncy rspns f th systm is Frm tabls (r by applying invrs Furir transfrm), n can asily find that 37

Outlin DT Furir Transfrm Ovrviw f Furir mthds DT Furir Transfrm f Pridic Signals Prprtis f DT Furir Transfrm Rlatins amng Furir Mthds DTFT: Summary Appndix: Transitin frm DT Furir Sris t DT Furir Transfrm 38

Rlatins Amng Furir Mthds 39 Cntinuus in Tim Apridic in Frquncy Discrt in Tim Pridic in Frquncy Pridic in Tim Discrt in Frquncy CT Furir Sris : jkω0t ak = x( t) dt T 0 CT Invrs Furir Sris : x( t) = X[ k] = T a k k = N n= 0 k = 0 jkω t DT Furir Sris x[ n] 0 jω kn CT - P Invrs DT Furir Sris N jω0kn x[ n] = X[ k] N 0 DT - P N T DT DT CT - P DT - P DT - P N N T DT - P N Apridic in Tim Cntinuus in Frquncy CT Furir Transfrm : X ( jω) = x( t) = DT Furir Transfrm : X ( jω x[ n] = ) = n= Invrs DT Furir Transfrm : 2 π 2 π x[ n] X ( jω jωt Invrs CT Furir Transfrm : 2π x( t) X ( jω) jωn ) dt jωt jωn dω dω CT CT DT CT + P CT CT CT + P 2π 2π DT

Rlatins Amng Furir Mthds 40

4 CT Furir Transfrm - CT Furir Sris

42 CT Furir Transfrm - CT Furir Sris

43 CT Furir Transfrm - DT Furir Transfrm

44 CT Furir Transfrm - DT Furir Transfrm

45 DT Furir Sris - DT Furir Transfrm

46 DT Furir Sris - DT Furir Transfrm

Outlin DT Furir Transfrm Ovrviw f Furir mthds DT Furir Transfrm f Pridic Signals Prprtis f DT Furir Transfrm Rlatins amng Furir Mthds DTFT: Summary Appndix: Transitin frm DT Furir Sris t DT Furir Transfrm 47

DTFT: Summary DT Furir Transfrm rprsnts a discrt tim apridic signal as a sum f infinitly many cmplx xpnntials, with th frquncy varying cntinuusly in (-π, π) DTFT is pridic nly nd t dtrmin it fr 48

DTFT: Summary Knw hw t calculat th DTFT f simpl functins Knw th gmtric sum: Knw Furir transfrms f spcial functins,.g. δ[n], xpnntial Knw hw t calculat th invrs transfrm f ratinal functins using partial fractin xpansin Prprtis f DT Furir transfrm Linarity, Tim-shift, Frquncy-shift, 49

50 DT-FT Summary: a quiz A discrt-tim LTI systm has impuls rspns Find th utput y[n] du t input (Suggstin: wrk with and using th cnvlutin prprty) Slutin This can b slvd using cnvlutin f h[n] and x[n]. Hwvr, th pint was t us th cnvlutin in tim multiplicatin in frquncy prprty. Thrfr, It can b radily shwn that Thrfr, ] [ 2 ] [ n u n h n = ] [ 7 ] [ n u n x n = ) ( ) ( ) ( ] [ ]* [ ] [ ω ω ω j j j X H Y n x n h n y = = ( ), ) ( ] [ ] [ < = = a a M n u a n m j j n ω ω ω ω ω ω j j j j X H = = 7 ) ( and 2 ) (

5 DT-FT Summary: a quiz Expliting th cnvlutin in tim multiplicatin in frquncy prprty givs: Using partial fractin xpansin mthd f finding invrs Furir transfrm givs: Thrfr, sinc a Furir transfrm is uniqu, (i.. n tw sam signals in tim giv th sam functin in frquncy) and sinc It can b sn that a Furir transfrm f th typ shuld crrspnd t a signal. Thrfr, th invrs Furir transfrm f is th invrs transfrm f is Thus th cmplt utput ) 2 )( 7 ( ) ( ω ω ω j j j Y = + = ω ω j j Y 7 5 2 / ) ( jω 2 7 /5 ( ) ω ω j j n a M n u a n m = = ) ( ] [ ] [ a jω a n u[n] jω 7 2/5 ] [ 7 5 2 n u n jω 2 7 /5 ] [ 2 5 7 n u n + = ] [ 7 5 2 ] [ n u n y n ] [ 2 5 7 n u n

Outlin DT Furir Transfrm Ovrviw f Furir mthds DT Furir Transfrm f Pridic Signals Prprtis f DT Furir Transfrm Rlatins amng Furir Mthds DTFT: Summary Appndix: Transitin frm DT Furir Sris t DT Furir Transfrm 52

Transitin: DT Furir Sris t DT Furir Transfrm DT Puls Train Signal 53 This DT pridic rctangular-wav signal is analgus t th CT pridic rctangularwav signal usd t illustrat th transitin frm th CT Furir Sris t th CT Furir Transfrm

Transitin: DT Furir Sris t DT Furir Transfrm DTFS f DT Puls Train As th prid f th rctangular wav incrass, th prid f th DT Furir Sris incrass and th amplitud f th DT Furir Sris dcrass 54

Transitin: DT Furir Sris t DT Furir Transfrm Nrmalizd DT Furir Sris f DT Puls Train By multiplying th DT Furir Sris by its prid and pltting vrsus instad f k, th amplitud f th DT Furir Sris stays th sam as th prid incrass and th prid f th nrmalizd DT Furir Sris stays at n 55

Transitin: DT Furir Sris t DT Furir Transfrm Th nrmalizd DT Furir Sris apprachs this limit as th DT prid apprachs infinity 56