CHEMISTRY 2b SUMMARY

Similar documents
for sodium ion (Na + )

C2 Chemistry. Key Recall Questions

Unit 4: Chemical Changes (Higher Content)

Atomic Structure. Same atomic number Different mass number

C2.1 Structure and bonding

4.4. Revision Checklist: Chemical Changes

Year 10 Chemistry TRIPLE Learning Cycle 4 Overview Can a knowledge of atomic structure allow us to predict how elements will react with eachother?

C2 Revision Pack (Please keep this pack with you)

4.4. Revision Checklist: Chemical Changes

4.4.1 Reactivity of metals Metal oxides The reactivity series. Key opportunities for skills development.

Rates. 2 How do you show that concentration affects rate (6)?

Atomic Structure. Same atomic number Different mass number

AQA Chemistry GCSE. Flashcards. Topic 4: Chemical Change.

5.4 Chemical changes Reactivity of metals Metal oxides The reactivity series. Key opportunities for skills development

Chemical measurements QuestionIT

Covalent (sharing of electron pairs) Ionic ( electrostatic attraction between oppositely charged ions)

Extracting metals QuestionIT

S4 CHEMISTRY SUMMARY NOTES

Write down everything that the word equation tells you about the reaction (Total 4 marks)

Electrodes are normally made out of inert (unreactive) materials. Graphite and platinum are common electrode materials.

Edexcel Chemistry Checklist

(a) Complete Figure 9 by placing one tick in each row to show whether the salt is soluble or insoluble. salt soluble insoluble.

3.4 Unit 2: Chemistry 2

In 1807 Davy did an electrolysis experiment to produce potassium. Davy first tried to electrolyse a solid potassium salt to produce potassium

Chemical reactions. C2- Topic 5

Additional Science. Chemistry CH2FP. (Jun15CH2FP01) General Certificate of Secondary Education Foundation Tier June 2015.

GraspIT AQA GCSE Chemical and Energy Changes

Atomic Structure. Same atomic number Different mass number

Section B: Some Essential Background Chemistry

Q1. The diagram shows the apparatus for an experiment. Hydrated copper sulphate crystals were heated. They became anhydrous copper sulphate.

Q1. The electrolysis of sodium chloride solution produces useful substances. (a) (i) Choose a word from the box to complete the sentence.

Metal + water -> metal hydroxide + hydrogen Metal + acid -> metal salt + hydrogen

C4 Quick Revision Questions

Additional Science Chemistry

All you need to know about Additional Science

Foundation Support Workbook AQA GCSE Combined Science Chemistry topics. Sunetra Berry

The electrolysis of sodium chloride solution produces useful substances. covalent ionic non-metallic

Atoms What subatomic particles make up the atom?

Personalised Learning Checklists AQA Chemistry Paper 1

Atoms, Elements, Atoms, Elements, Compounds and Mixtures. Compounds and Mixtures. Atoms and the Periodic Table. Atoms and the.

YEAR 10- Chemistry Term 1 plan

Year 10 Chemistry. Practice questions. Topics

Personalised Learning Checklists AQA Trilogy Chemistry Paper 1

(i) The atomic number of an atom is the number of... (ii) The mass number of an atom is the number of...

Electrolysis. Specification points. Year 11 Electrolysis

Globe Academy Science Department C2 and P2 GCSE Additional Science Homework Booklet Spring 1 Contents: Date Set. Feedback/ Marking.

Class X. Exercises solution

CHAPTER 8 CHEMICAL REACTIONS AND EQUATIONS

5 Energy from chemicals

AQA Chemistry Checklist

C2 REVISION CHAPTER 1 Structure & Bonding

6V d.c. supply. State the form of energy used to carry out the electrolysis. (1)

3 rd Year Revision. (from second year: Conservation of Mass Acids, Alkalis and Indicators)

ICSE Chemistry Model Paper-9

IGCSE Double Award Extended Coordinated Science

Year 10 Chemistry Exam June 2011 Multiple Choice. Section A Mulltiple Choice

GCSE Additional Science

Q1. As the world population increases there is a greater demand for fertilisers.

Website: Page 1. Page 14»Exercise» Page 15» Question 1:

Year 10 Chemistry Exam June 2011 Multiple Choice. Section A Multiple Choice

DOUBLE DISPLACEMENT REACTIONS. Double your pleasure, double your fun

IGCSE TEST_ (Ch. 2,3,4,5,6) Name... Date...

Chemical Reactions. Chemical changes are occurring around us all the time

Describe how the inter-conversion of solids, liquids and gases are achieved and recall names used for these inter-conversions

Draw one line from each solution to the ph value of the solution. Solution ph value of the solution

( ) Natural Sciences Department. Chemical Reactions

Chemical Reactions and Equations

Review Chemistry Paper 1

Representing Chemical Change

ICSE Board. Class X Chemistry. Board Paper Time: 1½ hrs Total Marks: 80

Q1. Methane and oxygen react together to produce carbon dioxide and water.

CHEMISTRY 135 REVISION OF NAMES, FORMULAE AND EQUATIONS

Complete and balance these equations to show the reactions during electrolysis. Na Na (2)

Chemistry Final Exam Sample Items

Science: Chemistry. Paper 2 Higher Tier [G1404] 2 hours.

CHEMICAL EQUATIONS WHAT BALANCING AN EQUATION MEANS

Chapter 6: Chemical Bonding

Identify the reaction type, predict the products, and balance the equations. If it is a special decomposition or synthesis, identify which kind.

C2 REVISION CHAPTER 1 STRUCTURES & BONDING

AQA Chemistry (Combined Science) Specification Checklists. Name: Teacher:

Dissolving. Dissolving

The topics in this unit are:

Types of Chemical Reactions

Part 01 - Notes: Reactions & Classification

CHAPTER 11: CHEMICAL REACTIONS. Mrs. Brayfield

(b) Calculate the concentration of the hydrochloric acid in mol/dm 3. Calculate the number of moles of hydrochloric acid reacting.

Chapter 11. Symbols used in equations indicates a reversible reaction (More later) heat. Chemical Reactions

Choose the answer that best completes each statement.

National 4/5 Chemistry

Answers for UNIT ONE NAT 5 Flash Cards

Same theme covered in Combined but extra content Extra parts atomic symbols (first 20, Group 1 and Group 7)

Chemical Reactions BASICS

H 2 SO 4. HCl. HNO 3 nitric acid. TOPIC: Acids and Bases. e.g. HCl! H + + Cl - sulphuric acid. hydrochloric acid

EXPERIMENTS. Testing products of combustion: Reducing Copper(III) Oxide to Copper. Page 4

Elements and Reactivity Revision Notes

5. What is the name of the compound PbO? 6. What is the name of HCl(aq)?

Chemical Reactions. Writing chemical reactions Types of chemical reactions Reactions in aqueous solutions. (ionic equations and solubility rules)

Q1. The chart shows the processes involved in the manufacture of nitric acid from ammonia.

Transcription:

CHEMISTRY 2b SUMMARY Items in ITALLICS are HIGHER TIER NLY C2.4.1 RATES F REACTIN Speeding up, or slowing down, chemical reactions is important in everyday life and in industry The rate of a chemical reaction can be found by measuring the amount of product formed or the amount of reactant used. You should be able to: interpret graphs showing the amount of product formed (or reactant used up) with time, in terms of the rate of reaction. The speed (rate) of a chemical reaction increases: if the temperature increases; if the concentration of dissolved reactants increases; if solid reactants are in smaller pieces (greater surface area); if a catalyst is used; if the pressure of gases increases. Collision theory: For a reaction to take place the reacting particles must collide with each other. Kinetic theory tells us that the particles are always moving around. To increase the rate of reaction we must increase the number of collisions. Activation energy: Not all collisions result in a reaction, only those with sufficient energy. This is because energy is required for the reaction to occur and not all collisions provide sufficient energy. This energy is called the activation energy. Increasing the energy of the collisions will increase the number of collisions with sufficient energy and hence the rate of reaction. Effect of concentration: Increased concentration increases the rate of reaction. Increasing the concentration means there are more particles and so more collisions. This also explains why the rate of reaction is fastest at the start - as the reaction proceeds the particles are used up and so the concentration decreases. Effect of temperature Increased temperature increases the rate. The particles move faster as they are heated and this has two effects:- a) they are travelling faster, will go further in a given time, and so be involved in more collisions. b) when they do collide the increased speed means they have more energy and are therefore more likely to be successful (exceed the activation energy). Effect of pressure Increasing the pressure of reacting gases also increases the frequency of collisions and so increases the rate of reaction. (it pushes the particles closer together)

Effect of a catalyst A catalyst increases the rate of a chemical reaction but it is not used up during the reaction. It can be used over and over again to speed up the conversion of reactants to products. Different reactions need different catalysts - some work better than others. Increasing the rates of chemical reactions is important in industry because it helps to reduce costs. Lots of industrial reactions use catalysts. Effect of surface area With solids the reaction occurs on the surface. Increasing the surface area (breaking the solid up) gives more places for the reaction to occur and so it is faster. C2.5.1 ENERGY IN REACTINS Chemical reactions involve energy. This is most noticeable when a fuel burns - the energy is given off as heat. Whenever chemical reactions occur, energy is usually transferred to or from the surroundings. If there is a rise in temperature (it feels hot) energy is being given out. This is an exothermic reaction. e.g. combustion, neutralisation and many oxidation reactions. This is used in things like hand warmers and self heating cans. If there is a fall in temperature (it feels cold) energy is being taken in. This is an endothermic reaction. Examples are thermal decompositions and sports injury cold packs. If a reversible reaction is exothermic in one direction it is endothermic in the other. The same amount of energy is transferred in each case. For example if you heat blue copper sulphate it turns white and gives off water. If you add water to white copper sulphate it turns blue and gives off heat. C2.6.1 Neutralisation and making salts You Should Be Able to: suggest a method to make a named soluble salt. 1) By mixing an acid and alkali and using an indicator to show when they are neutral (all the acid and alkali reacted). You have to measure the quantities accurately and then mix the exact amount of acid and alkali without the indicator (a burette is useful). You can then crystallise the salt by evaporating the water. 2) Acid plus base (insoluble) e.g. copper oxide. Since the base is insoluble, excess can be added (to make sure all the acid is used) and then filtered. The solution can be crystallised by evaporation. An example of this is adding black copper oxide to sulphuric acid. Copper sulphate (a blue solution) is made. CPPER XIDE + SULPHURIC ACID CPPPER SULPHATE + WATER Cu S 4 CuS 4

3) Acid plus metal needs care as some metals are too reactive (and some not reactive enough). Excess metal is used and then filtered. A salt and Hydrogen gas (squeaky pop test) are produced. MAGNESIUM + HYDRCHLRIC ACID MAGNESIUM CHLRIDE + HYDRGEN Mg + 2HCL MgCl 2 Precipitation reactions to make insoluble salts Insoluble salts can be made by precipitation reactions. Two solutions are mixed and if one of the products is insoluble it will form a precipitate. This technique can be used to remove unwanted ions from waste or drinking water as the ions, once trapped as a solid, can be filtered and removed. You Should Be Able to: name the substances needed to make a named insoluble salt. (i.e. what you would need to mix to make Lead Iodide) Worth Remembering: all nitrates, sodium and potassium salts are soluble C2.6.2 Acids and bases Metal oxides and hydroxides are bases (the opposite of acids). Alkalis are soluble bases Salts are compounds and can be made by reacting acids and bases This reaction is called neutralisation. ACID + ALKALI (BASE) NEUTRAL SALT SLUTIN + WATER The particular salt produced in any reaction between an alkali and an acid depends on: the metal in the alkali or base; the acid used. Neutralising hydrochloric acid produces chlorides. Neutralising nitric acid produces nitrates. Neutralising sulphuric acid produces sulphates. e.g. SDIUM HYDRXIDE + HYDRCHLRIC ACID SDIUM CHLRIDE + WATER NaH + HCl NaH CPPER XIDE + SULPHURIC ACID CPPER SULPHATE + WATER Cu S 4 CuS 4 PTASSIUM HYDRXIDE + NITRIC ACID PTASSIUM NITRATE + WATER KH + HN 3 KN 3 Although it is not a metal, ammonia also dissolves in water to form an alkali solution. This can be neutralised with an acid to produce an ammonium salt. Ammonium salts are important as fertilisers. e.g. AMMNIUM HYDRXIDE + NITRIC ACID AMMNIUM NITRATE + WATER NH 4 H + HN 3 NH 4 N 3

What makes an acid an acid? Hydrogen ions H + (aq) make solutions acidic Hydroxide ions H - make solutions alkaline (aq) (aq) is a state symbol - it means aqueous or dissolved in water. ther state symbols are (s) for solid; (l) for liquid; and (g) for gas. Neutralisation reactions can be summarised as follows: The hydrogen ions react with hydroxide ions to produce water. H + (aq) + H - (aq) H 2 (l) The ph scale is a measure of the acidity or alkalinity of a solution. 0-6 is acid; 7 is neutral; 8 14 is alkali C2.7.1 ELECTRLYSIS Electrolysis will only work if the substance is made of ions (charged particles). The ionic substance must be melted or dissolved in water so the ions are free to move. Passing an electric current through ionic substances that are molten or in solution breaks them down into elements. This process is called electrolysis (it is sort of reversing bonding). The substance that is broken down is called the electrolyte. During electrolysis, positively charged ions (metal ions) move to the negative electrode, and negatively charged ions (non metals) move to the positive electrode. In molten solutions there is only one set of ions (e.g. sodium and chloride ions in sodium chloride) so they are the ions attracted and released as atoms. In solutions there are Hydrogen (H + ) and Hydroxide (H - ) ions as well from the water. The product formed depends on the reactivity of the elements. At the positive electrode: get oxygen released unless a halogen (Gp 7) is present. At the negative electrode: get hydrogen unless there is an unreactive metal. (usually silver or copper but see the reactivity series on the back of the periodic table) At the negative electrode, positively charged ions gain electrons (reduction). At the positive electrode negatively charged ions lose electrons. (oxidation). Note: xidation and reduction does not just involve oxygen. Reactions at the electrodes can be shown as ionic half equations e.g. At the positive electrode: 2Cl - Cl 2 + 2e - or 2Cl - - 2e - Cl 2 At the negative electrode: 2Na + + 2e - 2Na You may be expected to complete or balance these.

The electrolysis of sodium chloride solution (brine) is an important industrial process. Chlorine gas is formed at the positive electrode and hydrogen gas at the negative electrode. A solution of sodium hydroxide is also formed. These are important reagents for the chemical industry. E.g. Sodium hydroxide is used to make soap; Chlorine to make bleach and plastics; Aluminium is made by the electrolysis of a molten mixture of aluminium oxide and cryolite. (cryolite lowers the melting point and so saves energy). Aluminium forms at the negative electrode and oxygen at the positive one. The positive electrode is made of carbon which reacts with the oxygen to produce carbon dioxide. Electrolysis is used to electroplate items, often copper or silver plating. The item to be plated is used as the negative electrode and so the positive metal ions are attracted to it and stick.