Molecular Vibrations C. David Sherrill School of Chemistry and Biochemistry Georgia Institute of Technology

Similar documents
Hong Zhou, Guang-Xiang Liu,* Xiao-Feng Wang and Yan Wang * Supporting Information

MO Calculation for a Diatomic Molecule. /4 0 ) i=1 j>i (1/r ij )

Simulated Quantum Computation of Molecular. Energies

Chemistry 4681 Module: Electronic Structure of Small Molecules Background Handout

Computer Laboratory DFT and Frequencies

An Introduction to Quantum Chemistry and Potential Energy Surfaces. Benjamin G. Levine

2x (x 2 + y 2 + 1) 2 2y. (x 2 + y 2 + 1) 4. 4xy. (1, 1)(x 1) + (1, 1)(y + 1) (1, 1)(x 1)(y + 1) 81 x y y + 7.

Electric properties of molecules

The mechanism for singlet fission in pentacene and tetracene: from single exciton to two triplets

Performance of Hartree-Fock and Correlated Methods

Programming Project 2: Harmonic Vibrational Frequencies

A BODIPY-luminol chemiluminescent resonance energy-transfer (CRET) cassette for imaging of cellular superoxide. Electronic Supplementary Information

Chemistry 3502/4502. Final Exam Part I. May 14, 2005

Chemistry 4560/5560 Molecular Modeling Fall 2014

Molecular Simulation I

Gaussian: Basic Tutorial

EXAM INFORMATION. Radial Distribution Function: B is the normalization constant. d dx. p 2 Operator: Heisenberg Uncertainty Principle:

Q-Chem, Inc., 5001 Baum Blvd., Suite 690, Pittsburgh, PA 15213, USA

Supporting Information for Transition State Charge-Transfer Reveals Electrophilic, Ambiphilic, and Nucleophilic Carbon-Hydrogen Bond Activation

Practical Advice for Quantum Chemistry Computations. C. David Sherrill School of Chemistry and Biochemistry Georgia Institute of Technology

Quantum Chemical and Dynamical Tools for Solving Photochemical Problems

Introduction to Hartree-Fock Molecular Orbital Theory

Chemistry 3502/4502. Final Exam Part I. May 14, 2005

Beyond the Hartree-Fock Approximation: Configuration Interaction

Chemistry 416 Spectroscopy Fall Semester 1997 Dr. Rainer Glaser

Chemistry 334 Part 2: Computational Quantum Chemistry

Introduction to Electronic Structure Theory

Chemistry 431. NC State University. Lecture 17. Vibrational Spectroscopy

Chem 4502 Introduction to Quantum Mechanics and Spectroscopy 3 Credits Fall Semester 2014 Laura Gagliardi. Lecture 28, December 08, 2014

CHEM6085: Density Functional Theory Lecture 10

Vibrational Analysis in Gaussian

Introduction to Computational Chemistry

Lecture 10 Diatomic Vibration Spectra Harmonic Model

Adrian W. Lange and John M. Herbert Department of Chemistry, The Ohio State University, Columbus, OH February 3, 2009

I. CSFs Are Used to Express the Full N-Electron Wavefunction

DFT and beyond: Hands-on Tutorial Workshop Tutorial 1: Basics of Electronic Structure Theory

Computational Methods. Chem 561

This is a very succinct primer intended as supplementary material for an undergraduate course in physical chemistry.

AN INTRODUCTION TO QUANTUM CHEMISTRY. Mark S. Gordon Iowa State University

Jack Simons, Henry Eyring Scientist and Professor Chemistry Department University of Utah

EJL R Sβ. sum. General objective: Reduce the complexity of the analysis by exploiting symmetry. Garth J. Simpson

Coupled-Cluster Perturbative Triples for Bond Breaking

CHAPTER 8 REPORT ON HIGHER SHG EFFICIENCY IN BIS (CINNAMIC ACID): HEXAMINE COCRYSTAL

( R)Ψ el ( r;r) = E el ( R)Ψ el ( r;r)

NMR and IR spectra & vibrational analysis

Example: H 2 O (the car file)

Electronic structure theory: Fundamentals to frontiers. 1. Hartree-Fock theory

DFT calculations of NMR indirect spin spin coupling constants

Electron Correlation

Advanced Spectroscopy. Dr. P. Hunt Rm 167 (Chemistry) web-site:

IFM Chemistry Computational Chemistry 2010, 7.5 hp LAB2. Computer laboratory exercise 1 (LAB2): Quantum chemical calculations

LECTURE 3 DIRECT PRODUCTS AND SPECTROSCOPIC SELECTION RULES

Phonons and lattice dynamics

Molecular Symmetry 10/25/2018

( ) R kj. = y k y j. y A ( ) z A. y a. z a. Derivatives of the second order electrostatic tensor with respect to the translation of ( ) δ yβ.

Chem 442 Review for Exam 2. Exact separation of the Hamiltonian of a hydrogenic atom into center-of-mass (3D) and relative (3D) components.

P. W. Atkins and R. S. Friedman. Molecular Quantum Mechanics THIRD EDITION

QUANTUM CHEMISTRY PROJECT 3: PARTS B AND C

( ) + ( ) + ( ) = 0.00

Rotations and vibrations of polyatomic molecules

Before we start: Important setup of your Computer

The effect of substituents on electronic states ordering in meta-xylylene diradicals: Qualitative insights from quantitative studies

2 Electronic structure theory

Lecture 9. Hartree Fock Method and Koopman s Theorem

Born-Oppenheimer Approximation

Example questions for Molecular modelling (Level 4) Dr. Adrian Mulholland

Figure 1: Transition State, Saddle Point, Reaction Pathway

Chemistry 483 Lecture Topics Fall 2009

A One-Slide Summary of Quantum Mechanics

Chemistry 881 Lecture Topics Fall 2001

Application of Computational Chemistry Methods to the Prediction of Electronic Structure in Nickel Dithiolene Complexes

ARTICLES. Normal-mode analysis without the Hessian: A driven molecular-dynamics approach

13, Applications of molecular symmetry and group theory

Chem 442 Review of Spectroscopy

Demonstration of the Coupled Evolution Rules 163 APPENDIX F: DEMONSTRATION OF THE COUPLED EVOLUTION RULES

NWChem: Coupled Cluster Method (Tensor Contraction Engine)

A contribution to the understanding of the structure of xenon hexafluoride

Session 7 Overview: Part A I. Prediction of Vibrational Frequencies (IR) Part B III. Prediction of Electronic Transitions (UV-Vis) IV.

QUANTUM CHEMISTRY FOR TRANSITION METALS

Q-Chem 4.0: Expanding the Frontiers. Jing Kong Q-Chem Inc. Pittsburgh, PA

If the symmetry axes of a uniform symmetric body coincide with the coordinate axes, the products of inertia (Ixy etc.

THE VIBRATIONAL SPECTRUM OF A POLYATOMIC MOLECULE (Revised 4/7/2004)

5.61 Physical Chemistry Final Exam 12/16/09. MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Chemistry Chemistry Physical Chemistry

Basis Set for Molecular Orbital Theory

MOLECULAR SPECTROSCOPY

Lecture 5: More about one- Final words about the Hartree-Fock theory. First step above it by the Møller-Plesset perturbation theory.

Electron Correlation - Methods beyond Hartree-Fock

The Overhauser Instability

Appendix D Simulating Spectroscopic Bands Using Gaussian and PGopher

Principles of Molecular Spectroscopy

diradicals, and triradicals

QUANTUM CHEMISTRY WITH GAUSSIAN : A VERY BRIEF INTRODUCTION (PART 2)

5.80 Small-Molecule Spectroscopy and Dynamics

THE VIBRATIONAL SPECTRA OF A POLYATOMIC MOLECULE (Revised 3/27/2006)

CHEM3023: Spins, Atoms and Molecules

Computational Spectroscopy III. Spectroscopic Hamiltonians

Magic. The Lattice Boltzmann Method

Electron Correlation Methods

Population Analysis. Mulliken Population Analysis APPENDIX S

where, c is the speed of light, ν is the frequency in wave numbers (cm -1 ) and µ is the reduced mass (in amu) of A and B given by the equation: ma

Transcription:

Molecular Vibrations C. David Sherrill School of Chemistry and Biochemistry Georgia Institute of Technology

Why Estimate Molecular Vibrations? Simulation of vibrational spectrum (identification of molecules) Vibrational corrections to enthalpy (Small) vibrational corrections to polarizability and other properties Understanding of vibrational motion could assist dynamics experiments and mode-selective chemistry

Small Vibrations in Classical Mechanics The classic reference is Wilson, Decius, and Cross, Molecular Vibrations (Dover, New York, 1980). Cheap book, makes a good reference. Let us focus on purely classical systems at first; all the results carry over to quantum mechanics. For small vibrations, the motion of atom α away from its equilibrium value may be described by x α, y α, z α, with kinetic energy T = 1 2 N M α α=1 ( d xα dt ) 2 + ( d yα dt ) 2 + ( d zα dt ) 2

If we switch to mass-weighted coordinates, such as q 1 = M1 x 1, q 2 = M 1 y 1, q 3 = M 1 z 1, q 4 = M 2 x 2, etc., then the kinetic energy operator becomes simpler since the mass factors are now absorbed 3N T = 1 2 i=1 V = V 0 + q 2 i 3N i=1 ( V q i ) 0q i + 1 2 3N i=1 ( 2 V q i q j ) 0 q i q j + (1) Remember that at equilibrium, ( V/ q i ) 0 = 0; we can also set V 0 = 0. Also abbreviate ( 2 V/ q i q j ) 0 as just f ij.

Newton s Equations of Motion We can rewrite Newton s equations of motion as or d dt T q j + V q j = 0 j = 1,2,,3N q j + 3N i=1 f ij q i = 0 A possible solution to this equation is q i = a i cos ( λt+φ ) where the angular frequency is λ; this is just k/m in harmonic oscillator the m has been absorbed by the massweighted coordinate system used here!

Substitute the last expression into the differential equations to get 3N i=1 (f ij δ ij λ)a i = 0 j = 1,2,,3N or in matrix notation, just F a = λ a. This is an eigenvalue equation! We have a solution to this system of 3N linear equations only if λ has special values obtainable from the secular determinant f 11 λ f 12 f 13 f 1,3N f 21 f 22 λ f 23 f 2,3N... f 3N,1 f 3N,2 f 3N,3 f 3N,3N λ.. = 0

Normal Modes of Vibration The matrix eigenvalue equation is equivalent to matrix diagonalization which is equivalent to solving the secular determinant for each λ (N of them). Once we have the eigenvalues λ k we can get the corresponding eigenvectors a k, giving the motion of each atom for the given eigenvalue λ k : ) q ik = a ik cos ( λ k t+φ k. The eigenvectors a k are the normal modes of vibration. For each normal mode, all the atoms move with the same frequency and phase, but with different amplitudes.

Normal Coordinates We can define a new set of coordinates using the normal modes. This gives us the normal coordinates Q k = 3N i=1 a ik q i k = 1,2,,3N Since the eigenvectors of a real, symmetric matrix (F) are orthogonal, T and V become diagonal (no cross terms): 3N T = 1 2 k=1 3N Q 2 k V = 1 2 k=1 λ k Q 2 k The Hamiltonian is separable in this representation!

Polyatomic Molecules What happens for quantum mechanics, and for polyatomic molecules? Use Harmonic Oscillator model. 3N-6 frequencies (3N-5 for linear molecules); the rest are translations and rotations with zero frequency In normal mode coordinates, Hamiltonian is separable: wavefunction is a product and energy is a sum. Total vibrational energy is iω i h(v i +1/2) Minimum energy (due to uncertainty principle) is zero point vibrational energy (ZPVE or ZPE), where v i = 0 for all i. ZPVE = 2 h 1 iω i

How Would We Get Harmonic Frequencies for a Molecule? Easy just diagonalize the second derivative matrix F, called the Hessian. The frequencies ω i are the square roots of the eigenvalues, λ i. Where do we get F? Recall f ij = ( 2 V/ q i q j ) Potential energy V is just E e (B.O. approximation!): Need E 2 e/ q i q j. Compute second derivative of E e in terms of of Cartesian displacements (x α, y α, z α, call them q i ) and it s easy to transform to mass-weighted coordinates, using

F = M 1/2 F M 1/2. How do we get 2 E e / x α y β, etc? Need second derivative of electronic energy vs nuclear coordinates. Can compute analytically (using formula) or numerically from finite differences of energies or gradients: 2 [( ) ( ) ] E e Ee Ee / x x α y β y β α. xα =x α0 + x α y β xα =x α0 x α

Analytic Hessian Better than Numerical Analytic Hessian might cost 10-30x cost of energy; analytic gradient costs maybe 1.5-2x. Can need gradients from many displaced geometries up to 6N (+ and - for each of 3N coordinates) unless reduced by point group symmetry Numerical Hessian contains numerical errors (divide small number by small number) (Can land on wrong solution if displacement drops symmetry)

Availability of Analytic Derivatives Method Gradient Hessian HF, DFT Y Y CI Y N CCSD, CCSD(T) Y S MP2 Y S CASSCF Y S CIS Y Y EOM-CCSD S N TD-DFT S N S = available in some packages; Y = widely available

Approximate Average Errors in Harmonic Frequencies (Using polarized double and triple zeta basis sets) Method Error HF 11% CISD 4-6% CCSD 1-4% CCSD(T) 1-3% Anharmonicity accounts for another 2-3% difference from experimental fundamental frequencies. Many workers employ scaling factors for each level of theory to better predict fundamental frequencies.

100 Spectra of SiC2H2 isomers: DZP CCSD(T) Silapropadienylidene Silacyclopropyne Experiment 80 60 Intensity 40 20 0 0 500 1000 1500 2000 2500 Frequency (1/cm)

Scaling ZPVE s In an enlightening paper, Grev, Janssen, and Schaefer[J. Chem. Phys. 95, 5128 (1991)] showed that using scaled fundamental frequencies to estimate the ZPVE is not necessarily better than using unscaled frequencies. The reason is anharmonicity. If ZPVE s use scaling, they should have a different scaling factor than the individual frequencies. G(v) = ( ω r v r + 1 ) ( χ rs v r + 1 )( v s + 1 ) +, r 2 2 2 + r s harm = G(0) ZPVE harm = 1 4 fund = G(0) ZPVE fund = 3 4 r r χ rr + 1 4 χ rr 1 4 r>s r>s χ rs. χ rs.

Characterization of Stationary Points A stationary point is a geometry q for which the gradient E e ( q)/ q i for all coordinates q i : can be a (global or local) PES minimum, transition state, or higher order saddle point The Hessian Index is the number of negative force constants (corresponding to imaginary vibrational frequencies, often printed as negative frequencies) For a minimum, verify that there are no imaginary frequencies For a transition state, verify there is exactly one unique imaginary frequency

Printed by David Sherrill Dec 15, 00 14:54 h2o.freq.out Page 1/5 *************************************************************** Running Q Chem cicero.chemistry.gatech.edu on Fri Dec 15 14:51:29 EST 2000. Version: /usr/local/qchem.6.3.00/bin/qchem /usr/local/qchem.6.3.00/exe/progman.exe *************************************************************** Welcome to Q Chem A Quantum Leap Into The Future Of Chemistry J. Kong, C. A. White, A. I. Krylov, C. D. Sherrill, R. D. Adamson, T. R. Furlani, M. S. Lee, A. M. Lee, S. R. Gwaltney, T. R. Adams, H. Dachsel, W. M. Zhang, P. P. Korambath, C. Ochsenfeld, A. T. B. Gilbert, G. S. Kedziora, D. R. Maurice, N. Nair, Y. Shao, N. A. Besley, P. E. Maslen, J. P. Dombroski, J. Baker, E. F. C. Byrd, T. Van Voorhis, M. Oumi, S. Hirata, C. P. Hsu, N. Ishikawa, J. Florian, A. Warshel, B. G. Johnson, P. M. W. Gill, M. Head Gordon, J. A. Pople, Q Chem, Version 2.0, Q Chem, Inc., Export, PA (2000). Intel x86 Linux Version ====================================================================== User input: ====================================================================== $comment Water $end $molecule 0 1 O H1 O OH H2 O OH H1 HOH OH = 0.989276 HOH = 100.0198 $end $rem JOBTYPE FREQ EXCHANGE HF CORRELATION NONE BASIS STO 3G SCF_FINAL_PRINT 2 Energies plus MOS $end ====================================================================== Processing $rem in the input. # Entering fldman.exe on Fri Dec 15 14:51:30 2000 # Standard Nuclear Orientation (Angstroms) I Atom X Y Z 1 O 0.000000 0.000000 0.127153 2 H 0.757939 0.000000 0.508611 3 H 0.757939 0.000000 0.508611 Molecular Point Group C2v NOp = 4 Largest Abelian Subgroup C2v NOp = 4 Nuclear Repulsion Energy = 8.9077080996 hartrees h2o.freq.out Dec 15, 00 14:54 Page 2/5 There are 5 alpha and 5 beta electrons Requested basis set is STO 3G There are 4 shells and 7 basis functions A cutoff of 1.0D 10 yielded 10 shell pairs There are 34 function pairs # Entering gesman.exe on Fri Dec 15 14:51:30 2000 # Smallest overlap matrix eigenvalue = 3.63E 01 Multipole matrices computed through 2nd order Guess from superposition of atomic densities Warning: Energy on first SCF cycle will be non variational # Entering scfman.exe on Fri Dec 15 14:51:30 2000 # A restricted Hartree Fock SCF calculation will be performed using Pulay DIIS extrapolation SCF converges when DIIS error is below 1.0E 08 Cycle Energy DIIS Error 1 74.6061773729 4.01E 01 000000 2 74.9233301871 6.78E 02 000000 3 74.9653425178 8.77E 03 000000 4 74.9658786194 1.57E 03 000000 5 74.9659011332 2.76E 05 000000 6 74.9659011457 1.08E 05 000000 7 74.9659011480 7.89E 08 000000 8 74.9659011480 2.72E 08 000000 9 74.9659011480 1.03E 08 000000 10 74.9659011480 3.60E 10 000000 Convergence criterion met SCF time: CPU 0.08 s wall 0.00 s Final Alpha MO Eigenvalues 1 2 3 4 5 6 1 20.2515674 1.2576205 0.5939092 0.4597630 0.3926280 0.5819312 7 1 0.6928062 Final Alpha MO Coefficients 1 2 3 4 5 6 1 0.9942161 0.2337592 0.0000000 0.1040490 0.0000000 0.1258359 2 0.0258496 0.8443968 0.0000000 0.5382402 0.0000000 0.8203442 3 0.0000000 0.0000000 0.6127098 0.0000000 0.0000000 0.0000000 4 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 5 0.0041658 0.1228911 0.0000000 0.7558818 0.0000000 0.7635987 6 0.0055852 0.1556051 0.4492190 0.2950597 0.0000000 0.7692443 7 0.0055852 0.1556051 0.4492190 0.2950597 0.0000000 0.7692443 7 1 0.0000000 2 0.0000000 3 0.9598513 4 0.0000000 5 0.0000000 6 0.8147663 7 0.8147663 Final Alpha density matrix. 1 2 3 4 5 6 1 1.0539352 0.2276888 0.0000000 0.0000000 0.0540635 0.0112263 2 0.2276888 1.0033767 0.0000000 0.0000000 0.3029695 0.0275650 3 0.0000000 0.0000000 0.3754133 0.0000000 0.0000000 0.2752409 4 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 5 0.0540635 0.3029695 0.0000000 0.0000000 0.5864768 0.2421295 6 0.0112263 0.0275650 0.2752409 0.0000000 0.2421295 0.3131021 7 0.0112263 0.0275650 0.2752409 0.0000000 0.2421295 0.0904933 7 Monday April 23, 2001 h2o.freq.out 1/1

Printed by David Sherrill Dec 15, 00 14:54 Page 3/5 1 0.0112263 2 0.0275650 3 0.2752409 4 0.0000000 5 0.2421295 6 0.0904933 7 0.3131021 # Entering anlman.exe on Fri Dec 15 14:51:30 2000 # Analysis of SCF Wavefunction Orbital Energies (a.u.) and Symmetries Alpha MOs, Restricted Occupied 20.252 1.258 0.594 0.460 0.393 1 A1 2 A1 1 B1 3 A1 1 B2 Virtual 0.582 0.693 4 A1 2 B1 Beta MOs, Restricted Occupied 20.252 1.258 0.594 0.460 0.393 1 A1 2 A1 1 B1 3 A1 1 B2 Virtual 0.582 0.693 4 A1 2 B1 Mulliken Net Atomic Charges Atom Charge (a.u.) 1 O 0.330636 2 H 0.165318 3 H 0.165318 Sum of atomic charges = 0.000000 h2o.freq.out Cartesian Multipole Moments Charge (ESU x 10^10) 0.0000 Dipole Moment (Debye) X 0.0000 Y 0.0000 Z 1.7094 Tot 1.7094 Quadrupole Moments (Debye Ang) XX 4.4859 XY 0.0000 YY 6.1256 XZ 0.0000 YZ 0.0000 ZZ 5.3331 Octapole Moments (Debye Ang^2) XXX 0.0000 XXY 0.0000 XYY 0.0000 YYY 0.0000 XXZ 0.5313 XYZ 0.0000 YYZ 0.0191 XZZ 0.0000 YZZ 0.0000 ZZZ 0.1747 Hexadecapole Moments (Debye Ang^3) XXXX 6.7321 XXXY 0.0000 XXYY 1.8081 XYYY 0.0000 YYYY 3.2652 XXXZ 0.0000 XXYZ 0.0000 XYYZ 0.0000 YYYZ 0.0000 XXZZ 1.7388 XYZZ 0.0000 YYZZ 1.4596 XZZZ 0.0000 YZZZ 0.0000 ZZZZ 5.2191 Dec 15, 00 14:54 Page 4/5 # Entering drvman.exe on Fri Dec 15 14:51:30 2000 # Calculating MO derivatives via CPHF 1 10 2 0.009892 0.007094 2 12 0 0.000000 0.000000 Roots Converged Calculating analytic Hessian of the SCF energy Polarizability Matrix (a.u.) 1 2 3 1 5.5054487 0.0000000 0.0000000 2 0.0000000 0.0400454 0.0000000 3 0.0000000 0.0000000 2.5654448 Direct stationary perturbation theory relativistic correction: rels = 0.031221304489 relv = 0.096844180832 rel2e = 0.023322614724 E_rel = 0.042300261619 h2o.freq.out Hessian of the SCF Energy 1 2 3 4 5 6 1 0.8044023 0.0000000 0.0000000 0.4022012 0.0000000 0.3374251 2 0.0000000 0.0001352 0.0000000 0.0000000 0.0000676 0.0000000 3 0.0000000 0.0000000 0.6352335 0.2165519 0.0000000 0.3176168 4 0.4022012 0.0000000 0.2165519 0.4391751 0.0000000 0.2769885 5 0.0000000 0.0000676 0.0000000 0.0000000 0.0000838 0.0000000 6 0.3374251 0.0000000 0.3176168 0.2769885 0.0000000 0.3002754 7 0.4022012 0.0000000 0.2165519 0.0369740 0.0000000 0.0604366 8 0.0000000 0.0000676 0.0000000 0.0000000 0.0000162 0.0000000 9 0.3374251 0.0000000 0.3176168 0.0604366 0.0000000 0.0173414 7 8 9 1 0.4022012 0.0000000 0.3374251 2 0.0000000 0.0000676 0.0000000 3 0.2165519 0.0000000 0.3176168 4 0.0369740 0.0000000 0.0604366 5 0.0000000 0.0000162 0.0000000 6 0.0604366 0.0000000 0.0173414 7 0.4391751 0.0000000 0.2769885 8 0.0000000 0.0000838 0.0000000 9 0.2769885 0.0000000 0.3002754 Gradient time: CPU 0.59 s wall 1.00 s # Entering vibman.exe on Fri Dec 15 14:51:31 2000 # ********************************************************************** ** ** ** VIBRATIONAL ANALYSIS ** ** ** ** ** ** VIBRATIONAL FREQUENCIES (CM** 1) AND NORMAL MODES ** ** INFRARED INTENSITIES (KM/MOL) ** ** ** ********************************************************************** Frequency: 2169.95 4141.60 4392.63 IR Active: YES YES YES IR Intens: 7.245 44.303 29.972 Raman Active: YES YES YES X Y Z X Y Z X Y Z O 0.000 0.000 0.069 0.000 0.000 0.052 0.068 0.000 0.000 H 0.448 0.000 0.545 0.570 0.000 0.416 0.540 0.000 0.453 H 0.448 0.000 0.545 0.570 0.000 0.416 0.540 0.000 0.453 STANDARD THERMODYNAMIC QUANTITIES AT 298.18 K AND 1.00 ATM This Molecule has 0 Imaginary Frequencies Monday April 23, 2001 h2o.freq.out 1/1