Fe II oxidation by molecular O 2 during HCl extraction

Similar documents
Steward Fall 08. Moles of atoms/ions in a substance. Number of atoms/ions in a substance. MgCl 2(aq) + 2 AgNO 3(aq) 2 AgCl (s) + Mg(NO 3 ) 2(aq)

Chem 130 Name Exam 2 October 11, Points Part I: Complete all of problems 1-9

Structure & properties of water

CHEM1109 Answers to Problem Sheet Isotonic solutions have the same osmotic pressure. The osmotic pressure, Π, is given by:

Name. Practice Test 2 Chemistry 111

Mag-Bind Soil DNA Kit. M preps M preps M preps

TYPES OF CHEMICAL REACTIONS

CHAPTER 4 TYPES OF CHEMICAL REACTIONS & SOLUTION STOICHIOMETRY

CHEM 1413 Chapter 4 Homework Questions TEXTBOOK HOMEWORK

Mole: base unit for an amount of substance A mole contains Avogadro s number (N A ) of particles (atoms, molecules, ions, formula units )

Oxidation States. 1. Redox potential Oxic vs. anoxic Simple electrochemical cell Redox potential in nature

CHEM 12 Unit 3 Review package (solubility)

INTRODUCTION TO SOLUBILITY UNIT 3A SOLUBILITY THEORY. There are three classes of compounds which can form ionic solutions:

Chemistry 5 Fall 2001 Stoichiometry Problem Set. Name:

Solubility Rules See also Table 4.1 in text and Appendix G in Lab Manual

Quantitative Chemistry. AQA Chemistry topic 3

Chemistry. Approximate Timeline. Students are expected to keep up with class work when absent.

Chemical Equilibrium. Many reactions are, i.e. they can occur in either direction. A + B AB or AB A + B

Supporting Information

BCIT Winter Chem Exam #2

Chemical Equilibrium

c. K 2 CO 3 d. (NH 4 ) 2 SO 4 Answer c

CHEM 10123/10125, Exam 3

11/3/09. Aqueous Solubility of Compounds. Aqueous Solubility of Ionic Compounds. Aqueous Solubility of Ionic Compounds

For Research Use Only

Chem 115 POGIL Worksheet - Week #6 Oxidation Numbers, Redox Reactions, Solution Concentration, and Titrations

1. Forming a Precipitate 2. Solubility Product Constant (One Source of Ions)

CHM 152 Lab 5: Qualitative Analysis updated May, 2011

CONCENTRATION UNITS 0.800? concentration? What is the molar concentration of mercury? solution contain? 0.150? CHANGING CONCENTRATION UNITS

Redox transformation of arsenic. by Fe(II)-activated goethite (α-feooh)

A-level CHEMISTRY 7405/1. Paper 1: Inorganic and Physical Chemistry. SPECIMEN MATERIAL v1.2

UNIT II - REVIEW EQUILIBRIA. Part I - Multiple Choice. 1. In which of the following does the entropy decrease?

2. In each of the following pairs of reactions, which would have the faster reaction rate?

Chapter 4 Reactions in Aqueous Solution

Modified Adams Assay for Phenolics in Wine

Chapter 9 Practice Worksheet: Reactions in Aqueous Solutions

Example 15.1 Identifying Brønsted Lowry Acids and Bases and Their Conjugates

19.4 Neutralization Reactions > Chapter 19 Acids, Bases, and Salts Neutralization Reactions

Ch 4-5 Practice Problems - KEY

15.0 g Fe O 2 mol Fe 55.8 g mol Fe = g

Please take a seat in Row Seat according to the following map

A student wanted to make 11.0 g of copper chloride

Unit 3 Chemistry - Volumetric Analysis

2. A bottle of a concentrated aqueous sulfuric acid is labeled 98.0 wt % H 2 SO 4 (Molecular weight is g/mol) has a concentration of 18.0 M.

Third Hour Exam 5.111

Solubility & Net Ionic review

UNIT III: SOLUBILITY EQUILIBRIUM YEAR END REVIEW (Chemistry 12)

Exam 2 Chem 311 Fall 2002 You must do (1 or 2), (3 or 4), (5 or 6), (7 or 8), and one other problem!!! All problems are worth 20 points

Supporting Information

Supporting Information

1) What is the volume of a tank that can hold Kg of methanol whose density is 0.788g/cm 3?

Chemistry 12 January 2000 Provincial Examination

Empirical formula C 4 H 6 O

EXPERIMENT: LIMITING REAGENT. NOTE: Students should have moles of reactants in DATASHEET converted into masses in grams prior to the lab period.

H H H H H O H O. Role of Water. Role of Water. Chapter 4. Chemical Reactions in Aqueous Solution H 2 H H H 2 O. Role of H 2 O(l) as solvent.

CHEMISTRY 12 UNIT II EQUILIBRIUM D Learning Goals

BCIT Winter Chem Final Exam

Class XI Chapter 1 Some Basic Concepts of Chemistry Chemistry

5.111 Principles of Chemical Science

a) This reaction is (circle one): ENDOTHERMIC/EXOTHERMIC b) provide the correct chemical names for the given chemical formulas:

Acids, Bases and Titrations Chapter 4 M. Shozi CHEM110 / 2014


Chapter 4 Chemical Quantities and Aqueous Reactions

Page III-4b-1 / Chapter Four Part II Lecture Notes. Chemistry 221 Professor Michael Russell MAR. Ba(NO3)2(aq)? soluble. BaCl2(aq)?

Chapter 9. Calculations from Chemical Equations. to patients Introduction to General, Organic, and Biochemistry 10e throughout the

Chapter 4 Solution Stoichiometry. Dr. Sapna Gupta

5 Formulae, equations and amounts of substance Answers to Exam practice questions

Page 1. Exam 2 Review Summer A 2002 MULTIPLE CHOICE. 1. Consider the following reaction: CaCO (s) + HCl(aq) CaCl (aq) + CO (g) + H O(l)

Nitric Oxide Assay Kit

Compounds in Aqueous Solution

QUESTIONS: Equilibria AS & AS

CaCO 3(s) + 2HCl (aq) CaCl 2(aq) + H 2 O (l) + CO 2(g) mole mass 100g 2(36.5g) 111g 18g 44g

SIC CONCEPTS TS OF CHEMISTRY. Unit. I. Multiple Choice Questions (Type-I)

CHEM 316/318. Molecule(s) of the day

Name AP CHEM / / Collected Essays Chapter 17

PROVINCIAL EXAMINATION MINISTRY OF EDUCATION CHEMISTRY 12 GENERAL INSTRUCTIONS

Reaction Stoichiometry and Solution Concentration Q1. FeS(S) + 2HCl(aq) FeCl2(S) + H2S(g) Q2. C6H10(g) + O2(g) CO2(g) + H2O(g) Q3.

**The partially (-) oxygen pulls apart and surrounds the (+) cation. The partially (+) hydrogen pulls apart and surrounds the (-) anion.

Chapter 19 Solubility and Complex Ion Equilibria

State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical

2 EQUILIBRIUM 2.1 WHAT IS EQUILIBRIUM? 2.2 WHEN IS A SYSTEM AT EQUILIBRIUM? 2.3 THE EQUILIBRIUM CONSTANT

Unit-8 Equilibrium. Rate of reaction: Consider the following chemical reactions:

1. What is the sum of all coefficients when the following equation is balanced using the smallest possible whole numbers? D.

Chemistry 12 Review Sheet on Unit 3 Solubility of Ionic Substances

Honors Chemistry Unit 4 Exam Study Guide Solutions, Equilibrium & Reaction Rates

Chemistry 112, Spring 2006 Prof. Metz Final Exam Name Each question is worth 4 points, unless otherwise noted

CHEMpossible. 101 Exam 2 Review

Stresses Applied to Chemical Equilibrium

Nitric Oxide Synthase Assay Kit

Chapter 4: Types of Chemical Reactions and Solution Stoichiometry

Chemistry 12 June 2003 Provincial Examination

EXPERIMENT 7 Precipitation and Complex Formation

QuickZyme Total Protein Assay (to be used with acid hydrolyzates)

Announcements. 1.) The X-mas exam date has been finalized for December 17 th 9 am 12:00 pm. Room to be announced.

CHEM 101 Fall 09 Final Exam (a)

AP Chemistry Honors Unit Chemistry #4 2 Unit 3. Types of Chemical Reactions & Solution Stoichiometry

Chemical Reactions. Burlingame High School Chemistry 1

EXPERIMENT 4 THE EFFECT OF CONCENTRATION CHANGES ON EQUILIBRIUM SYSTEMS

Chapter Outline. Ch 8: Aqueous Solutions: Chemistry of the Hydrosphere. H 2 S + Cu 2+ CuS(s) + 2H + (Fe, Ni, Mn also) HS O 2 HSO 4

Graphene Oxide: Stable Carbon Framework for Functionalization Siegfried Eigler,* a Stefan Grimm, a Ferdinand Hof, a Andreas Hirsch a

Transcription:

Accessory publication Fe II oxidation by molecular O 2 during HCl extraction Katharina Porsch A,B Andreas Kappler A,C A Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, Sigwartstrasse 10, D-72076 Tuebingen, Germany. B Present address: Helmholtz Centre for Environmental Research UFZ, Department of Bioenergy, Permoserstrasse 15, D-04318 Leipzig, Germany. C Corresponding author. Email: andreas.kappler@uni-tuebingen.de Table A1. Selected properties of Waldenbuch (Wabu) and Schoenbuch forest (Sbu) soils XRF, X-ray fluorescence analysis; wt% refers to 105 C dried soil Soil ph (0.01 M CaCl 2 ) Water content A Total organic carbon CaCO 3 equivalents B XRF B 6 M HCl extraction A 6 M HCl extraction A (wt%) (wt%) (wt%) (wt%) (wt%) (µmol g 1 wet soil) Wabu 7.1 C 40 4.1 B 1.5 2.2 2.0 258.3 Sbu 7.0 B 49 3.5 A 12.0 2.6 1.8 214.8 A Determined in triplicates or more. B Determined in duplicates. C Determined as single measurement. Soil analysis Before soil analysis, large particles (e.g. stones, roots) were removed either by hand with tweezers (Waldenbuch (Wabu) soil) or by sieving (2-mm sieve, Schoenbuch forest (Sbu) soil). The soil was stored in plastic bags at 4 C in the dark until further use. The soil water content was determined and calculated after standard protocols by drying the soil at 105 C until the soil weight was constant. [1] The ph was measured 24 h after addition of 25 ml of 0.01 M CaCl 2 solution to 10 g of soil after standard protocols. [1] Total organic carbon content was determined from finely ground 105 C dried soil with a CN analyser (Vario EL, Elementar Analysensysteme GmbH, Hanau, Germany) after carbonate removal with HCl. The content of CaCO 3 equivalents was quantified by mixing finely ground 105 C dried soil with 1 M HCl and determining the consumed HCl by titration with 1-M NaOH. The total Fe (Fe tot ) content was determined by 6 M HCl extraction and by X-ray fluorescence analysis (XRF). Fe tot was extracted from 1.0 g of field moist soil with 50 ml of 6 M HCl in closed 120-mL serum bottles at 70 C in a water bath for 24 h. The soil acid mixture was cooled for 15 min at room temperature. After short mixing, 1.8 ml of the suspension was centrifuged (Centrifuge 5417C, Eppendorf AG, Hamburg, Germany) for 15 min at 20817g at 25 C. Fe tot was quantified in the supernatant by the ferrozine Page 1 of 5

assay [2] as described by Hegler et al. [3] and the concentration was corrected by the water content of the soil. The Fe tot content of finely ground 105 C dried soil was also quantified by XRF (Bruker AXS S4 Pioneer X-ray spectrometer, Bruker AXS GmbH, Karlsruhe, Germany). The two soils were chosen for this experiment because they contained extractable Fe tot concentrations in the wt% range and extractable Fe II (Fig. 1b). Table A2. Overview of experiments determining the influence of different factors on the oxidation of Fe II present in soils, FeCl 2 solution, and Oxic means that O 2 was present in solution and headspace (from air), anoxic means that no O 2 was present in solution and headspace Factor tested Acid O 2 conditions Incubation Temperature Fe II phase Figures and tables time HCl 1 6 M HCl oxic 24 h 70 C Soil FeCl 2, Fig. 1c, Table 1 concentration Time 6 M HCl oxic 1 24 h 70 C Soil Fig. 1a,b 1 6 M HCl oxic 2.5 60 min 70 C FeCl 2, Temperature 1 6 M HCl oxic 2 weeks Room FeCl 2, temperature H + 3 M H 2 SO 4 oxic 24 h 70 C FeCl 2, concentration Cl 1 M HCl + oxic 24 h 70 C FeCl 2, concentration 2 M NaCl O 2 6 M HCl anoxic 24 h 70 C Soil FeCl 2, Fig. 2a,b Fig. 2c,d Table 1 Table 1 Fig. 1c, Table 1 Fig. A1. Experimental set-up to follow Fe II oxidation (i) at 70 C during the first 60 min of incubation (Fig. 2a,b) and (ii) at room temperature for several days in those samples with the shortest incubation time at 70 C (Fig. 2c,d), both under oxic conditions. Experimental procedure FeCl 2 and were first incubated in oxic 1 6 M HCl (FeCl 2 ) or oxic 4 6 M HCl () for a certain time period at 70 C under oxic conditions (air) (Fig. 2a,b). For each time point and each Fe HCl mixture, a separate set of two parallels was incubated. After incubation 2 ml of sample were Page 2 of 5

taken, from which 100 µl were immediately diluted 1:10 with 1 M HCl to stop Fe II oxidation, and Fe II and Fe tot were quantified by the ferrozine assay [2] as described by Hegler et al. [3] The remaining 1.9 ml of the samples with the shortest incubation time at 70 C were further incubated in 2 ml plastic cups at room temperature under oxic conditions (air) in the dark. For FeCl 2 in 1 6 M HCl, the shortest incubation time was always 2.5 min. Magnetite needed more time to dissolve in HCl, therefore the shortest incubation time in 4 M HCl was 15 min and in 5 6 M HCl it was 5 min. During the incubation at room temperature, sub-samples of the Fe HCl mixtures were taken at several time points and Fe II and Fe tot were quantified by the ferrozine assay. Geochemical equilibrium calculation The geochemical speciation in HCl FeCl 2 solutions was calculated using the REACT module of The Geochemist s Workbench 6.0 package (RockWare Inc., Golden, CO, USA) and the thermo database. According to the manual, the calculation of the activity coefficients by this method is not especially accurate at ionic strength > 0.5 mol kg 1. [4,5] We are aware that therefore these calculations cannot be used for an absolute quantitative analysis of the geochemical species at the conditions used in our study (ionic strength > 0.5 mol kg 1 ). The influence of different HCl concentrations at different temperatures were calculated by using the following input data: 0.01 M FeCl 2, 1 M H +, 1 M Cl with water as solvent at 25 and 70 C respectively. The ph was decreased in 10 steps to ph 1. The Cl concentration was used as charge balance and therefore increased in the same way as the H + concentration. To determine the influence of different NaCl concentrations in 1 M HCl at 70 C, the following input data were used: 0.01 M FeCl 2, 1 M H +, 0.01 M Na +, 1.01 M Cl with water as solvent. The activity of Na + was increased in 10 steps to 6 mol kg 1 with Cl as charge balance. Fig. A2. Eh-pH diagram for Fe III /Fe II, O 2, H 2 and O 2 /O 2 calculated with concentrations of 1 M for all compounds at 25 C. For simplicity, Fe(OH) 3 was used as approximation for the Fe III species present. Page 3 of 5

Free energy calculations During the oxidation of Fe II by O 2 four electrons are transferred, which is thermodynamically favourable under standard conditions (ph = 0, 25 C): 4 Fe 2+ + O 2(aq) + 4 H + 4 Fe 3+ + 2 H 2 O (ΔG 0 = 178 kj mol 1 ) (A1) Weiss suggested that the electrons are transferred in four one-electron steps. [6] The first electron transfer step leads to the formation of an O 2 radical and is thermodynamically unfavourable under standard conditions: Fe 2+ + O 2(aq) Fe 3+ + O 2 (aq) (ΔG 0 = +90 kj mol 1 ) (A2) As the free energy depends on the concentration of the compounds involved in a reaction and on temperature, we calculated the free energy of both reactions (A1 and A2) for our experimental conditions to determine if the reactions were thermodynamically favourable in our experimental systems. The free energy at the beginning of the experiment was calculated by ΔG = n F ΔE (A3) with n being the numbers of transferred electrons (here n = 4 and 1 respectively); F, the Faraday constant; and ΔE, the redox potential of the reaction under experimental conditions. ΔE was calculated for the four electron transfer reaction according to ΔE = ΔE (2.303 R T/n F) log([fe 3+ ] 4 /[Fe 2+ ] 4 [O 2(aq) ] [H + ] 4 ) (A4) and for the first single electron transfer step according to ΔE = ΔE (2.303 R T/n F) log([fe 3+ ] [O 2 (aq) ]/[Fe 2+ ] [O 2(aq) ]) (A5) with ΔE being the redox potential of the reaction under standard conditions (0.46 V for reaction A4, and 0.93 V for reaction A5 calculated based on the ΔG 0 values given in Stumm and Morgan [7] ); R, the universal gas constant; T, temperature (K); and n and F are as given above. According to our experimental conditions, the temperature was set to 298.15 K (25 C) or 343.15 K (70 C), the H + concentration to 1 or 6 M, and the Fe 2+ concentration to 10 mm. The Fe 3+ concentration was assumed to be very small in the beginning of the reaction and therefore set to 1 µm. At 25 C 8 mg L 1 (0.25 mm) O 2 can dissolve in water and at 70 C 4 mg L 1 (0.125 mm). The high salt concentration of 6 M HCl, which leads to a smaller dissolved O 2 concentration was not considered. Similarly as for the Fe 3+ concentration, also the O 2 (aq) concentration was assumed to be very low in the beginning of the experiment and therefore set to be four orders of magnitudes lower than the O 2(aq) concentration applied. The results of the free energy calculations for the different experimental set-ups are given in Table A3. Page 4 of 5

Table A3. Free energy of the four-electron transfer step (reaction A1) and the first oneelectron transfer step (reaction A2) during Fe 2+ oxidation by dissolved molecular O 2 ΔG was calculated using reactions A3, A4 and A5 for following conditions: 10 mm Fe 2+, 1-µM Fe 3+, 250-µM O 2(aq) and 25-nM O 2 (aq) at 25 C, 125 µm O 2(aq) and 12.5-nM O 2 (aq) at 70 C. Please note: the first one-electron transfer step (reaction A2) is independent of the H + concentration Four-electron transfer step ΔG (kj mol 1 ) First one-electron transfer step ΔG (kj mol 1 ) 25 C, 1 M H + 248 +44 25 C, 6 M H + 266 +44 70 C, 1 M H + 257 +37 70 C, 6 M H + 277 +37 References [1] H.-P. Blume, B. Deller, R. Leschber, A. Paetz, B.-M. Wilke, Handbuch der Bodenuntersuchung: Terminologie, Verfahrensvorschriften und Datenblätter Physikalische, chemische, biologische Untersuchungsverfahren Gesetzliche Regelwerke 2000 (Wiley-VCH: Weinheim). [2] L. L. Stookey, Ferrozine a new spectrophotometric reagent for iron. Anal. Chem. 1970, 42, 779. doi:10.1021/ac60289a016 [3] F. Hegler, N. R. Posth, J. Jiang, A. Kappler, Physiology of phototrophic iron(ii)-oxidizing bacteria: Implications for modern and ancient environments. FEMS Microbiol. Ecol. 2008, 66, 250. doi:10.1111/j.1574-6941.2008.00592.x [4] C. M. Bethke, The Geochemist's Workbench Release 6.0: Reaction Modeling Guide 2006 (RockWare, Inc.: Golden, CO, USA). [5] C. M. Bethke, The Geochemist's Workbench Release 6.0: GWB Essentials Guide 2006 (RockWare, Inc.: Golden, CO, USA). [6] J. Weiss, Electron transition process in the mechanism of oxidation and reduction reactions in solutions. Naturwissenschaften 1935, 23, 64. doi:10.1007/bf01497021 [7] W. Stumm, J. J. Morgan, Aquatic chemistry: Chemical equilibria and rates in natural waters 1996 (Wiley: New York). Page 5 of 5