Two matrices of the same size are added by adding their corresponding entries =.

Similar documents
Matrices and Linear Algebra

Matrix Algebra. Matrix Algebra. Chapter 8 - S&B

Elementary Row Operations on Matrices

Elementary maths for GMT

Chapter 2: Matrices and Linear Systems

Matrix Algebra 2.1 MATRIX OPERATIONS Pearson Education, Inc.

10. Linear Systems of ODEs, Matrix multiplication, superposition principle (parts of sections )

Matrix operations Linear Algebra with Computer Science Application

7.5 Operations with Matrices. Copyright Cengage Learning. All rights reserved.

ICS 6N Computational Linear Algebra Matrix Algebra

Matrix Arithmetic. j=1

A primer on matrices

Lecture 3: Matrix and Matrix Operations

Chapter 1 Matrices and Systems of Equations

Linear Algebra and Matrix Inversion

[ Here 21 is the dot product of (3, 1, 2, 5) with (2, 3, 1, 2), and 31 is the dot product of

Matrix & Linear Algebra

Chapter 2. Matrix Arithmetic. Chapter 2

CLASS 12 ALGEBRA OF MATRICES

MATRICES AND MATRIX OPERATIONS

Chapter 2 Notes, Linear Algebra 5e Lay

Section 5.5: Matrices and Matrix Operations

Linear Equations in Linear Algebra

Lecture 3 Linear Algebra Background

Matrix Algebra. Learning Objectives. Size of Matrix

Basic Concepts in Linear Algebra

Matrix Arithmetic. a 11 a. A + B = + a m1 a mn. + b. a 11 + b 11 a 1n + b 1n = a m1. b m1 b mn. and scalar multiplication for matrices via.

2.1 Matrices. 3 5 Solve for the variables in the following matrix equation.

Math 3191 Applied Linear Algebra

Review of Basic Concepts in Linear Algebra

Introduction to Matrix Algebra

DM559 Linear and Integer Programming. Lecture 3 Matrix Operations. Marco Chiarandini

Chapter 1: Systems of linear equations and matrices. Section 1.1: Introduction to systems of linear equations

Section 12.4 Algebra of Matrices

. a m1 a mn. a 1 a 2 a = a n

Exercise Set Suppose that A, B, C, D, and E are matrices with the following sizes: A B C D E

Fall Inverse of a matrix. Institute: UC San Diego. Authors: Alexander Knop

Matrix Algebra Determinant, Inverse matrix. Matrices. A. Fabretti. Mathematics 2 A.Y. 2015/2016. A. Fabretti Matrices

Topics. Vectors (column matrices): Vector addition and scalar multiplication The matrix of a linear function y Ax The elements of a matrix A : A ij

n n matrices The system of m linear equations in n variables x 1, x 2,..., x n can be written as a matrix equation by Ax = b, or in full

MATH2210 Notebook 2 Spring 2018

Evaluating Determinants by Row Reduction

Introduction. Vectors and Matrices. Vectors [1] Vectors [2]

Linear Algebra V = T = ( 4 3 ).

MTH 35, SPRING 2017 NIKOS APOSTOLAKIS

a11 a A = : a 21 a 22

Notes on vectors and matrices

Chapter 4 - MATRIX ALGEBRA. ... a 2j... a 2n. a i1 a i2... a ij... a in

We could express the left side as a sum of vectors and obtain the Vector Form of a Linear System: a 12 a x n. a m2

MAT 2037 LINEAR ALGEBRA I web:

Calculus II - Basic Matrix Operations

CS123 INTRODUCTION TO COMPUTER GRAPHICS. Linear Algebra 1/33

Kevin James. MTHSC 3110 Section 2.1 Matrix Operations

A FIRST COURSE IN LINEAR ALGEBRA. An Open Text by Ken Kuttler. Matrix Arithmetic

A primer on matrices

Math 4377/6308 Advanced Linear Algebra

Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition

Math 360 Linear Algebra Fall Class Notes. a a a a a a. a a a

Inverting Matrices. 1 Properties of Transpose. 2 Matrix Algebra. P. Danziger 3.2, 3.3

Linear Algebra Tutorial for Math3315/CSE3365 Daniel R. Reynolds

Systems of Linear Equations and Matrices

Matrix Multiplication

Lecture Notes in Linear Algebra

Matrix Dimensions(orders)

Appendix C Vector and matrix algebra

Chapter 2. Ma 322 Fall Ma 322. Sept 23-27

MAC Module 2 Systems of Linear Equations and Matrices II. Learning Objectives. Upon completing this module, you should be able to :

CS100: DISCRETE STRUCTURES. Lecture 3 Matrices Ch 3 Pages:

Review of Linear Algebra

Prepared by: M. S. KumarSwamy, TGT(Maths) Page

CS 246 Review of Linear Algebra 01/17/19

4 Elementary matrices, continued

Matrices Gaussian elimination Determinants. Graphics 2009/2010, period 1. Lecture 4: matrices

is a 3 4 matrix. It has 3 rows and 4 columns. The first row is the horizontal row [ ]

CS123 INTRODUCTION TO COMPUTER GRAPHICS. Linear Algebra /34

7.6 The Inverse of a Square Matrix

1 Matrices and matrix algebra

Matrix Operations. Linear Combination Vector Algebra Angle Between Vectors Projections and Reflections Equality of matrices, Augmented Matrix

Systems of Linear Equations and Matrices

Graduate Mathematical Economics Lecture 1

4 Elementary matrices, continued

Kevin James. MTHSC 3110 Section 2.2 Inverses of Matrices

Mathematics 13: Lecture 10

INSTITIÚID TEICNEOLAÍOCHTA CHEATHARLACH INSTITUTE OF TECHNOLOGY CARLOW MATRICES

PH1105 Lecture Notes on Linear Algebra.

Jim Lambers MAT 610 Summer Session Lecture 1 Notes

Lemma 8: Suppose the N by N matrix A has the following block upper triangular form:

Phys 201. Matrices and Determinants

Matrices BUSINESS MATHEMATICS

Matrices: 2.1 Operations with Matrices

Linear Equations and Matrix

Matrix Arithmetic. (Multidimensional Math) Institute for Advanced Analytics. Shaina Race, PhD

Matrices and Determinants

Section Summary. Sequences. Recurrence Relations. Summations Special Integer Sequences (optional)

Math Bootcamp An p-dimensional vector is p numbers put together. Written as. x 1 x =. x p

3. Vector spaces 3.1 Linear dependence and independence 3.2 Basis and dimension. 5. Extreme points and basic feasible solutions

Elementary matrices, continued. To summarize, we have identified 3 types of row operations and their corresponding

Linear Algebra March 16, 2019

Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition

x n -2.5 Definition A list is a list of objects, where multiplicity is allowed, and order matters. For example, as lists

Transcription:

2 Matrix algebra 2.1 Addition and scalar multiplication Two matrices of the same size are added by adding their corresponding entries. For instance, 1 2 3 2 5 6 3 7 9 +. 4 0 9 4 1 3 0 1 6 Addition of two matrices that are not of the same size is undefined. A matrix is multiplied by a scalar (i.e., number) by multiplying each entry of the matrix by the scalar. For instance, 1 2 3 3 6 9 3. 4 0 9 12 0 27 2.2 Multiplication One could define multiplication of matrices the same way we defined addition (just multiply corresponding entries). However, we define multiplication a different way a way that is more relevant for linear algebra. We multiply two matrices by forming the various dot products between the rows of the first matrix and the columns of the second matrix (the rows of a matrix are its horizontal lists of numbers and the columns are its vertical lists of numbers). For example, 3 1 2 4 9 0 3 2 8 1 5 7 2 2 19 4 4 26 72 9 First, the product is defined only if the number of columns of the first matrix (here 2) is the same as the number of rows of the second matrix (also 2). Put another way, if the sizes are displayed as indicated ((# of rows) (# of cols)), then the inner numbers (blue) need to match. In this case, the resulting matrix has size given by the outer numbers (here 3 2). To compute, say, the entry in the 2nd row and 1st column of the resulting matrix, take the dot product of the 2nd row of the first matrix with the 1st column of the second matrix (( 2)(8)+(4)(5) 4). In general, the entry in the ith row and jth column of the resulting matrix is the dot product of the ith row of the first matrix with the jth column of the second matrix. (For these dot products to make sense, the vectors must have the same number of components and this is the case if and only if the inner numbers (blue) match.) 3 2. 1

2 MATRIX ALGEBRA 2 2.2.1 Example Compute the following product (if defined): 1 2 8 3 5 6 0 4 1 7 Solution The first matrix has size 2 2 and the second matrix has size 3 2. Since the inner numbers (blue) do not match, the product is undefined. 2.2.2 Example Compute the following product (if defined): [ 1 2 5. 3 4 6] Solution The first matrix has size 2 2 and the second matrix has size 2 1, so the product is defined and the resulting matrix has size given by the outside numbers 2 1: [ 1 2 5 3 4 6] (The middle step can be skipped.) (1)(5)+( 2)(6) ( 3)(5)+(4)(6) 7. 9 2.2.3 Example Compute the following product (if defined): 1 3 2 4 1 2 0. 1 5 Solution The first matrix has size 1 3 and the second matrix has size 3 2, so the product is defined and the resulting matrix has size given by the outside numbers 1 2: 1 3 2 4 1 2 0 [ 8 11 ]. 1 5 Matrix multiplication allows us to write a system of linear equations as a single matrix equation. For example, the system 2x 1 +3x 2 4 x 1 5x 2 1 can be written [ 2 3 x1 4 1 5 x 2 1] (*)

2 MATRIX ALGEBRA 3 or, using letters, where A Ax b, [ 2 3 x1 4, x, b. 1 5 x 2 1] This can be checked by multiplying the two matrices on the left of (*) to get [ 2x1 +3x 2 4. x 1 5x 2 1] Saying that these two 2 1 matrices are equal is the same as saying that their entries are equal, which is what the original system says. 2.2.4 Example Write the following system as a matrix equation: 5x 1 3x 2 + x 3 4 x 1 +7x 2 9x 3 6. Solution The corresponding matrix equation is 5 3 1 x 1 [ x 1 7 9 2 4. 6] x 3 The identity matrix I n n of size n n is given by I 1 1 [ 1 ] 1 0, I 2 2, I 0 1 3 3 1 0 0 0 1 0, 0 0 1 and so forth. If A is an n n matrix and I is the identity matrix of the same size, then IA A and AI A, so I is a multiplicative identity (it acts like the number 1). For instance, if A 1 2 3 4 5 6, 7 8 9 then IA 1 0 0 0 1 0 1 2 3 4 5 6 1 2 3 4 5 6 A, 0 0 1 7 8 9 7 8 9 as the reader can check. Similarly, AI A.

2 MATRIX ALGEBRA 4 2.3 Algebraic properties Addition and multiplication of matrices satisfy several of the same properties that addition and multiplication of numbers satisfy. We list these properties here as well as some properties involving scalar multiplication. Theorem. The following properties hold for any matrices A, B, and C and any scalars α and β (when the expressions are defined): (a) A+B B+A, (b) (A+B)+C A+(B+C), (c) (AB)C A(BC), (d) A(B+C) AB+AC, (e) (A+B)C AC+BC, (f) α(a+b) αa+αb, (g) (α+β)a αa+βa, (h) (αβ)a α(βa), (i) α(ab) (αa)b and also α(ab) A(αB), Because of these properties, matrices can be regarded as generalized numbers. However, there is one main property of number multiplication that does not hold for matrices in general, namely, the commutative property. In other words, it is possible to have matrices A and B for which AB BA, as the following example shows. 2.3.1 Example Compute AB and BA, where 1 0 0 1 A, B 0 0 0 0 and conclude that AB BA. Solution We have and so AB BA. 1 0 0 1 AB 0 0 0 0 BA 0 1 1 0 0 0 0 0 0 1 0 0 0 0, 0 0

2 MATRIX ALGEBRA 5 2.4 Matrix transpose The transpose of the matrix A 1 2 3 4 5 6 is the matrix A T 1 4 2 5. 3 6 In general, the transpose of an m n matrix A (written A T ) is the n m matrix obtained by writing the rows of A as columns. The transpose of a matrix A can be visualized as the reflection of A through the 45 line starting from the first entry of the matrix and sloping downward to the right. 2.4.1 Example Find the transposes of the following matrices: A 1 2 6 2 3 5, B 5 0 7 1. 8 Solution Writing rows as columns, we get 1 3 0 A T, B 2 5 7 T [ 6 2 5 1 8 ]. There are many uses for the transpose of a matrix, but the first we encounter is simply a notational convenience: Instead of writing 6 2 B 5 1, 8 which takes up a lot of vertical space, we will often write B [6, 2,5,1,8] T (commas inserted for clarity), which is more compact and says the same thing. A matrix A is symmetric if A T A (i.e., if the transpose is the same as the

2 MATRIX ALGEBRA 6 original matrix). For instance, the matrix A 1 4 5 4 2 6 5 6 3 is symmetric. 2 Exercises 2 1 Let A 5 1 2, B 2 1 8 6, C 3 0 4 0 3 7 4 2 0, D [ 1 9 3 ]. 9 3 Compute each of the following (or, if the expression is undefined, say so): (a) B+C (b) 4A (c) AB (d) BA (e) BD (f) DC 2 2 Verify that the equation A(B+C) AB+AC holds for the matrices 3 0 2 A, B 6 2, C 5 1. 1 5 1 4 7

2 MATRIX ALGEBRA 7 2 3 An elementary matrix is a matrix obtained by applying to an identity matrix (see Section 2.2) a single elementary row operation (type I, II, or III). For instance, the elementary matrix of size 3 3 corresponding to the row operation add 3 times row one to row two is 1 0 0 3 1 0 0 0 1 since this is what we get when we do the following: 1 0 0 0 1 0 3 0 0 1 (a) Find the elementary matrices of size 3 3 corresponding to each of the following row operations(i) interchange rows one and two, (ii) multiply row three by 5, (iii) add 2 times row three to row two. (b) Compute the products EA for each elementary matrix E found in part (a), where A 1 2 3 4 5 6. 7 8 9 (c) Use your findings in part (b) to make a conjecture beginning with If E is an elementary matrix corresponding to a particular row operation, then for any matrix A (for which EA is defined) the matrix EA is... 2 4 We have seen that the identity matrix I acts as a multiplicative identity (so it is a generalization of the number 1). For a given matrix A, it sometimes happens that there exists a matrix A 1 such that A 1 A I, so that A 1 acts as a multiplicative inverse of A (just like with numbers, where a 1 a 1). Let a b A c d and put D ad bc. Show that if D 0, then A 1 A I, where A 1 d b 1 D. c a (We need D 0 in order for the fraction 1 D to make sense.)

2 MATRIX ALGEBRA 8 2 5 (a) Write the following system as a matrix equation, that is, in the form Ax b: 3x 1 +4x 2 4 x 1 2x 2 2. (b) Use the formula for A 1 found in Exercise2 4 to solvethe system. (Hint: Solve Ax b for x just like you would solve ax b for x.) 2 6 Find the transposes of the following matrices: 6 2 1 5 (a) A, 4 9 1 0 (b) B [ 2 9 3 4 6 ], (c) C 1 8 2 8 7 0. 2 0 3 2 7 Next fall s adult a 1 and juvenile j 1 quail populations in Conecuh National Forest depend on this fall s adult a 0 and juvenile j 0 populations according to the following equations (see Exercise 1 7): a 1 0.2a 0 +0.4j 0 j 1 1.6a 0 +1.4j 0. (a) Write this system as a matrix equation, that is, in the form p 1 Ap 0, where p i [a i,j i ] T ( quail population matrix corresponding to year i). (b) Express the quail populations (adult and juvenile) two years from this fall in terms of this fall s populations by finding a matrix B such that p 2 Bp 0. (Hint: Use part (a) and the fact that p 2 Ap 1.) (c) Find the quail populations two years from this fall assuming that this fall there are 300 adults and 800 juveniles. (Hint: Use part (b).)