Optimal rejection regions for testing multiple binary endpoints in small samples

Similar documents
Optimal exact tests for multiple binary endpoints

Reports of the Institute of Biostatistics

Multiple Sample Categorical Data

Familywise Error Rate Controlling Procedures for Discrete Data

Adaptive, graph based multiple testing procedures and a uniform improvement of Bonferroni type tests.

Type I error rate control in adaptive designs for confirmatory clinical trials with treatment selection at interim

Session 9 Power and sample size

Dose-response modeling with bivariate binary data under model uncertainty

Chapter 10. Chapter 10. Multinomial Experiments and. Multinomial Experiments and Contingency Tables. Contingency Tables.

A simulation study for comparing testing statistics in response-adaptive randomization

11-2 Multinomial Experiment

Probability and Applications

Superiority by a Margin Tests for One Proportion

Discrete Multivariate Statistics

Non-Inferiority Tests for the Ratio of Two Proportions in a Cluster- Randomized Design

ADJUSTED POWER ESTIMATES IN. Ji Zhang. Biostatistics and Research Data Systems. Merck Research Laboratories. Rahway, NJ

1 Statistical inference for a population mean

Approximate Test for Comparing Parameters of Several Inverse Hypergeometric Distributions

Lecture 21. December 19, Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Johns Hopkins University.

Sample size and power calculation using R and SAS proc power. Ho Kim GSPH, SNU

6 Sample Size Calculations

Statistics and Probability Letters. Using randomization tests to preserve type I error with response adaptive and covariate adaptive randomization


Group Sequential Designs: Theory, Computation and Optimisation

Comparing p s Dr. Don Edwards notes (slightly edited and augmented) The Odds for Success

PB HLTH 240A: Advanced Categorical Data Analysis Fall 2007

STAT Section 3.4: The Sign Test. The sign test, as we will typically use it, is a method for analyzing paired data.

Estimation in Flexible Adaptive Designs

Mathematical Notation Math Introduction to Applied Statistics

STAC51: Categorical data Analysis

Mixtures of multiple testing procedures for gatekeeping applications in clinical trials

Sequential Monitoring of Clinical Trials Session 4 - Bayesian Evaluation of Group Sequential Designs

Lecture 2: Categorical Variable. A nice book about categorical variable is An Introduction to Categorical Data Analysis authored by Alan Agresti

Two Correlated Proportions Non- Inferiority, Superiority, and Equivalence Tests

On Generalized Fixed Sequence Procedures for Controlling the FWER

STATISTICS ANCILLARY SYLLABUS. (W.E.F. the session ) Semester Paper Code Marks Credits Topic

Overrunning in Clinical Trials: a Methodological Review

Loglikelihood and Confidence Intervals

Repeated ordinal measurements: a generalised estimating equation approach

Testing Independence

Formulas and Tables by Mario F. Triola

Statistics for Managers Using Microsoft Excel (3 rd Edition)

Estimation and sample size calculations for correlated binary error rates of biometric identification devices

Marginal Screening and Post-Selection Inference

Adaptive Designs: Why, How and When?

Sociology 6Z03 Review II

PubH 7470: STATISTICS FOR TRANSLATIONAL & CLINICAL RESEARCH

Sample Size and Power I: Binary Outcomes. James Ware, PhD Harvard School of Public Health Boston, MA

Chapter 2. Review of basic Statistical methods 1 Distribution, conditional distribution and moments

Unit 9: Inferences for Proportions and Count Data

Lab #11. Variable B. Variable A Y a b a+b N c d c+d a+c b+d N = a+b+c+d

Bios 6649: Clinical Trials - Statistical Design and Monitoring

CHL 5225H Advanced Statistical Methods for Clinical Trials: Multiplicity

Stat 5101 Lecture Notes

Lecture 24. Ingo Ruczinski. November 24, Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Johns Hopkins University

Multiple Endpoints: A Review and New. Developments. Ajit C. Tamhane. (Joint work with Brent R. Logan) Department of IE/MS and Statistics

Unit 9: Inferences for Proportions and Count Data

TESTS FOR EQUIVALENCE BASED ON ODDS RATIO FOR MATCHED-PAIR DESIGN

MARGINAL HOMOGENEITY MODEL FOR ORDERED CATEGORIES WITH OPEN ENDS IN SQUARE CONTINGENCY TABLES

Sample size determination for logistic regression: A simulation study

High-Throughput Sequencing Course

Two-stage Adaptive Randomization for Delayed Response in Clinical Trials

Sequential/Adaptive Benchmarking

Multiple testing: Intro & FWER 1

Review of Statistics 101

Statistics for Managers Using Microsoft Excel/SPSS Chapter 4 Basic Probability And Discrete Probability Distributions

Stat 5102 Final Exam May 14, 2015

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A.

arxiv: v1 [stat.me] 23 May 2017

Mathematical Notation Math Introduction to Applied Statistics

n y π y (1 π) n y +ylogπ +(n y)log(1 π).

Session 3 The proportional odds model and the Mann-Whitney test

PROBABILITY AND STOCHASTIC PROCESSES A Friendly Introduction for Electrical and Computer Engineers

Finding Critical Values with Prefixed Early. Stopping Boundaries and Controlled Type I. Error for A Two-Stage Adaptive Design

Ling 289 Contingency Table Statistics

Mantel-Haenszel Test Statistics. for Correlated Binary Data. Department of Statistics, North Carolina State University. Raleigh, NC

Chapter 2: Describing Contingency Tables - I

Some Properties of the Randomized Play the Winner Rule

STAT 705: Analysis of Contingency Tables

Performance of Bayesian methods in non-inferiority tests based on relative risk and odds ratio for dichotomous data

Statistics in medicine

Interim Monitoring of Clinical Trials: Decision Theory, Dynamic Programming. and Optimal Stopping

Statistics 3858 : Contingency Tables

Statistics - Lecture 04

Tests for the Odds Ratio of Two Proportions in a 2x2 Cross-Over Design

PRINCIPLES OF STATISTICAL INFERENCE

AP Statistics Cumulative AP Exam Study Guide

Duke University. Duke Biostatistics and Bioinformatics (B&B) Working Paper Series. Randomized Phase II Clinical Trials using Fisher s Exact Test

Bootstrap Procedures for Testing Homogeneity Hypotheses

Looking at the Other Side of Bonferroni

Formulas and Tables. for Elementary Statistics, Tenth Edition, by Mario F. Triola Copyright 2006 Pearson Education, Inc. ˆp E p ˆp E Proportion

Lecture 01: Introduction

LISA Short Course Series Generalized Linear Models (GLMs) & Categorical Data Analysis (CDA) in R. Liang (Sally) Shan Nov. 4, 2014

Weierstraß-Institut. für Angewandte Analysis und Stochastik. Leibniz-Institut im Forschungsverbund Berlin e. V. Preprint ISSN

Measures of Association and Variance Estimation

An Approximate Test for Homogeneity of Correlated Correlation Coefficients

Lecture 25. Ingo Ruczinski. November 24, Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Johns Hopkins University

Testing Goodness Of Fit Of The Geometric Distribution: An Application To Human Fecundability Data

Testing Non-Linear Ordinal Responses in L2 K Tables

e author and the promoter give permission to consult this master dissertation and to copy it or parts of it for personal use. Each other use falls

Transcription:

Optimal rejection regions for testing multiple binary endpoints in small samples Robin Ristl and Martin Posch Section for Medical Statistics, Center of Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna Köln, June 1

Possible aims of a study with multiple endpoints (1) Show effect in all endpoints Reject all H i Endpoints are co-primary () Reject the global null-hypothesis of no effect in any EP Need not involve conclusions on individual EPs () Identify efficacious endpoints Reject some H i Multiple testing problem (4) Show non-inferiority for some EP and superiority for at least one EP Might be considered as minimal condition for an improved treatment

What is the problem with small sample sizes? Asymptotic distibution may not reflect true distributions with sufficient accuracy Low precision of nuisance parameter estimates Limited model complexity/risk of overfitting Low power

Testing binary endpoints H : p 1 = p or equivalently H : OR = 1 p 1, p proportions in treatment and placebo group n sample size per group Large sample sizes: Asymptotic z-test Under H, Z = ˆp n T ˆp C d N(, 1) ˆp(1 ˆp ) Uses central limit theorem and consistent estimate for p Small sample sizes: Under H, n ˆp 1, n ˆp Binom(n, p ) Can find the exact distribution of ˆp 1 ˆp for given p Difficulty: p is unkown Conditional test Table row margins are a sufficient statistic for p Conditional on the margins the data do not depend on p

Fisher s Exact Test Null hypothesis H : Odds ratio 1 Test statistic T is the number of successes in the treatment group Conditional on margins, T has hypergeometric distribution under H The test may be quite conservative (due to discreteness) Example Data Null distribution of T Trt Ctrl Sum k P(T=k) Succ. 1 4. Fail 4 6 1.1 Sum.476 Observed T =.1 4. Rejection region p-value =.619

Multiple Fisher Tests Consider two endpoints, A and B Four possible outcomes: No success, Success A only, Success B only, Success for A and B Global null-hypothesis: H : OR A 1 and OR B 1 Simple approach: Two marginal Fisher tests at level α/ May be very conservative Example Data Marginal Table EP A Marginal Table EP B Trt Ctrl Sum Trt Ctrl Sum Trt Ctrl Sum AB 9 Succ. 11 16 Succ. 1 6 16 A Fail 4 1 14 Fail 9 14 B Sum 1 1 Sum 1 1 Fail 7 11 T A = 11 T B = 1 Sum 1 1 p =. >.1 p =.16 >.1

Idea: Use conditional joint distribution of the test statistics Fixed sample size per group n, m X Mult(n, p X1, p X, p X, p X4 ), Y Mult(m, p Y1, p Y, p Y, p Y4 ) X, Y independent. Trt Ctrl Sum AB x 1 y 1 a A x y b B x y c Fail x 4 y 4 d Sum n m N P(X 1 = x 1, X = x, X = x, X 4 = x 4 X 1 + Y 1 = a, X + Y = b, X + Y = c, X 4 + Y 4 = d) ( ) xi 4 1 pxi i=1 x i!y i! p Yi Use this to find conditional joint distribution of the test statistics T A = x 1 + x, T B = x 1 + x Consider the point null-hypothesis H : p xi = p yi, i = 1,..., 4 Or any alternative specified through p Xi /p Yi, i = 1,..., 4

Conditional joint distribution under H Joint distribution of T A and T B Probabilities in %, rounded to 1 decimal digit. Entries "" are small but positive..4. 1..1..1 1...4 1 1 14 1 1.1.1.1.1.4 11..7.9.6..1. 1.4 1.. 1..6.1 1. T B 9.1..7 1.. 4.1 6.4 6.4.4. 6.4..9.7.1.1.1. 7.1.9. 6.4 4.1 1...1 6.1.6 1.. 1..4 1..1..6.9.7.. 4.1.1.1.1.4 1 1 4 6 7 9 1 11 1 1 14 1 T A

Under alternative of specific success probabilities Succ. probs. for EP A and B: Treatment.7,.4, control.,., correlation between endpoints..1.6.6 1 7.4 1. 1.6 4.6. 1 1 14 1.1..4..9 1.1.6 1.7.4 1.. 6. 11.4. 7. 1..1 1. 1.1.9.6.4 1.6 6.9..7 T B 9..1 1.1.7.7. 7.4.. 4.1.9.. 1. 7.1..7..4. 6.1.1.1. 4 1 1 4 6 7 9 1 11 1 1 14 1 T A

Definition of valid rejection regions A valid rejection region R N N must satisfy (i) Under H, P((T A, T B ) R) α (ii) If (t 1, t ) R then A = {(s 1, s ) N N : s 1 t 1, t } R A R Condition (i) ensures level α control. Condition (ii) prevents implausible results and ensures larger power for larger effects. Reject H if (T A, T B ) R

Bonferroni rejection region for the example Bonferroni rejection region..4. 1.4.1.4.1 1.4..4. 1 1 14 1.1.1.1. 1...14.1..1.4 11.4.6.69.9.6.4..1. 1.4. 1.46.. 1.4.6.1.1 1.4 T B 9..6 1.46 4.11 6.4.79..9.14.1..69. 6.4.41 6.4..69..1.4 7.1.14.9..79 6.4 4.11 1.46.6..1 6.1.1.6 1.4.. 1.46..4 1.4.1..4.6.9.69.6.4. 4.1..1.14...4.1.1.1. 1 1 4 6 7 9 1 11 1 1 14 1 T A Alpha =. %; Level =.99 %; Area = 4

Aims: Use joint distribution to... Find rejection region with maximal power for a specified alternative Also find rejection regions with Maximal alpha exploitation Maximal area Study special cases of exact p-value combination tests C = min(p 1, p ) C = p 1 p Reject H if c greater or equal the α quantile of the exact conditional null-distribution of C. Calculate power for Bonferroni related tests Bonferroni Tarone test: Test at level α/m. m is the number of tests that can become significant at level α/m. Choose m as large as possible. May add unused alpha to some individual tests.

Optimal rejection regions An optimal rejection region R can be found as solution of P((T A, T B ) R) max, under a specified alternative (maximal power) subject to conditions (i) and (ii) Similarly we can optimize either P((T A, T B ) R) max, under H (maximal α) or R max (maximal area) This is a binary optimization problem, since each point (t 1, t ) is either element of R or not element of R.

Optimization preprocessing Size of search space is of order n, preprocessing useful 1 Exclude points (t 1, t ) : P{(s 1, s ) : s 1 t 1, s t } > α >α? For all points B = (t 1, t ) get largest region A meeting condition (ii) without that point A B If P(A) + P(B) α, B R for sure

Preprocessing result example Preprocessing Excluded: Black, Remaining search space: Red, Included: Green.4. 1..1..1 1...4 1 1 14 1 1.1.1.1.1.4 11..7.9.6..1. 1.4 1.. 1..6.1 1. T B 9.1..7 1.. 4.1 6.4 6.4.4. 6.4..9.7.1.1.1. 7.1.9. 6.4 4.1 1...1 6.1.6 1.. 1..4 1..1..6.9.7.. 4.1.1.1.1.4 1 1 4 6 7 9 1 11 1 1 14 1 T A Alpha =. %; Level =.91 %; Area = 16

Actual opimization as binary linear program Solution is of type x = (, 1,,...) Objective function can be power, alpha, area γ i contribution of element x i to the objective function Find R, such that γ T x max, s.t. conditions (i) and (ii) Condition (ii) imposes x i x j for certain pairs i, j Constraint matrix for linear program: 1 1 1 1... 1 α 1 1... 1 1... 1 1... x....... Use LP solver (branch and bound algorithm)

Result: Maximal power rejection region Region with maximal power for specified alternative Succ. probs. EP A, EP B: Trtm..7,.4, Contr..,.. Common correlation...4. 1.4.1.4.1 1.4..4. 1 1 14 1.1.1.1. 1...14.1..1.4 11.4.6.69.9.6.4..1. 1.4. 1.46.. 1.4.6.1.1 1.4 T B 9..6 1.46 4.11 6.4.79..9.14.1..69. 6.4.41 6.4..69..1.4 7.1.14.9..79 6.4 4.11 1.46.6..1 6.1.1.6 1.4.. 1.46..4 1.4.1..4.6.9.69.6.4. 4.1..1.14...4.1.1.1. 1 1 4 6 7 9 1 11 1 1 14 1 T A Alpha =. %; Level =.44 %; Area = 4

Maximal alpha rejection region Rejection region with maximal alpha (red area)..4. 1.4.1.4.1 1.4..4. 1 1 14 1.1.1.1. 1...14.1..1.4 11.4.6.69.9.6.4..1. 1.4. 1.46.. 1.4.6.1.1 1.4 T B 9..6 1.46 4.11 6.4.79..9.14.1..69. 6.4.41 6.4..69..1.4 7.1.14.9..79 6.4 4.11 1.46.6..1 6.1.1.6 1.4.. 1.46..4 1.4.1..4.6.9.69.6.4. 4.1..1.14...4.1.1.1. 1 1 4 6 7 9 1 11 1 1 14 1 T A Alpha =. %; Level =.46 %; Area =

Maximal area rejection region Region with maximal area..4. 1.4.1.4.1 1.4..4. 1 1 14 1.1.1.1. 1...14.1..1.4 11.4.6.69.9.6.4..1. 1.4. 1.46.. 1.4.6.1.1 1.4 T B 9..6 1.46 4.11 6.4.79..9.14.1..69. 6.4.41 6.4..69..1.4 7.1.14.9..79 6.4 4.11 1.46.6..1 6.1.1.6 1.4.. 1.46..4 1.4.1..4.6.9.69.6.4. 4.1..1.14...4.1.1.1. 1 1 4 6 7 9 1 11 1 1 14 1 T A Alpha =. %; Level =.4 %; Area = 7

C = p 1 p rejection region C=p 1 p rejection region..4. 1.4.1.4.1 1.4..4. 1 1 14 1.1.1.1. 1...14.1..1.4 11.4.6.69.9.6.4..1. 1.4. 1.46.. 1.4.6.1.1 1.4 T B 9..6 1.46 4.11 6.4.79..9.14.1..69. 6.4.41 6.4..69..1.4 7.1.14.9..79 6.4 4.11 1.46.6..1 6.1.1.6 1.4.. 1.46..4 1.4.1..4.6.9.69.6.4. 4.1..1.14...4.1.1.1. 1 1 4 6 7 9 1 11 1 1 14 1 T A Alpha =. %; Level =.4 %; Area = 7

C = min(p 1, p ) rejection region C=min(p 1,p ) rejection region..4. 1.4.1.4.1 1.4..4. 1 1 14 1.1.1.1. 1...14.1..1.4 11.4.6.69.9.6.4..1. 1.4. 1.46.. 1.4.6.1.1 1.4 T B 9..6 1.46 4.11 6.4.79..9.14.1..69. 6.4.41 6.4..69..1.4 7.1.14.9..79 6.4 4.11 1.46.6..1 6.1.1.6 1.4.. 1.46..4 1.4.1..4.6.9.69.6.4. 4.1..1.14...4.1.1.1. 1 1 4 6 7 9 1 11 1 1 14 1 T A Alpha =. %; Level =.99 %; Area = 4

Tarone rejection region Tarone rejection region..4. 1.4.1.4.1 1.4..4. 1 1 14 1.1.1.1. 1...14.1..1.4 11.4.6.69.9.6.4..1. 1.4. 1.46.. 1.4.6.1.1 1.4 T B 9..6 1.46 4.11 6.4.79..9.14.1..69. 6.4.41 6.4..69..1.4 7.1.14.9..79 6.4 4.11 1.46.6..1 6.1.1.6 1.4.. 1.46..4 1.4.1..4.6.9.69.6.4. 4.1..1.14...4.1.1.1. 1 1 4 6 7 9 1 11 1 1 14 1 T A Alpha =. %; Level =.99 %; Area = 4

Power of Bonferroni rejection region = % Power for Bonferroni region Succ. probs. EP A, EP B: Trtm..7,.4, Contr..,.. Common correlation..6.9.9 1. 7.41 1.79 1.7 4.61. 1 1 14.1... 1.1.1.9.7.16.9 1.1.11.61 1.7.4 1..4 6.76 11..4.1.19 7.1 4.9 1.1.14 1. 1.1.1.9.6. 1.6 6.9 1.9.19.71 T B 9..1 1.6.71 7.4 7.96 4.1.79..14.7.16.1.4.. 1.7 7.1.7.9.69...6 6..6.11.7.7.1.1. 4 1 1 4 6 7 9 1 11 1 1 14 1 T A Alpha =. %; Level =.191 %; Area = 4

Power for maximal alpha region = 6% Power for maximal alpha region Succ. probs. EP A, EP B: Trtm..7,.4, Contr..,.. Common correlation..6.9.9 1. 7.41 1.79 1.7 4.61. 1 1 14.1... 1.1.1.9.7.16.9 1.1.11.61 1.7.4 1..4 6.76 11..4.1.19 7.1 4.9 1.1.14 1. 1.1.1.9.6. 1.6 6.9 1.9.19.71 T B 9..1 1.6.71 7.4 7.96 4.1.79..14.7.16.1.4.. 1.7 7.1.7.9.69...6 6..6.11.7.7.1.1. 4 1 1 4 6 7 9 1 11 1 1 14 1 T A Alpha =. %; Level = 6.97 %; Area =

Power for maximal area region = 7% Power for maximal area region Succ. probs. EP A, EP B: Trtm..7,.4, Contr..,.. Common correlation..6.9.9 1. 7.41 1.79 1.7 4.61. 1 1 14.1... 1.1.1.9.7.16.9 1.1.11.61 1.7.4 1..4 6.76 11..4.1.19 7.1 4.9 1.1.14 1. 1.1.1.9.6. 1.6 6.9 1.9.19.71 T B 9..1 1.6.71 7.4 7.96 4.1.79..14.7.16.1.4.. 1.7 7.1.7.9.69...6 6..6.11.7.7.1.1. 4 1 1 4 6 7 9 1 11 1 1 14 1 T A Alpha =. %; Level = 7.77 %; Area = 7

Maximal power = 79% Power for maximal power region Succ. probs. EP A, EP B: Trtm..7,.4, Contr..,.. Common correlation..6.9.9 1. 7.41 1.79 1.7 4.61. 1 1 14.1... 1.1.1.9.7.16.9 1.1.11.61 1.7.4 1..4 6.76 11..4.1.19 7.1 4.9 1.1.14 1. 1.1.1.9.6. 1.6 6.9 1.9.19.71 T B 9..1 1.6.71 7.4 7.96 4.1.79..14.7.16.1.4.. 1.7 7.1.7.9.69...6 6..6.11.7.7.1.1. 4 1 1 4 6 7 9 1 11 1 1 14 1 T A Alpha =. %; Level = 79.46 %; Area = 4

Introduction.7.7 Binary endpoints 7..4 Joint4.1 distribution4. Optimal 66. rejection 66. regions 6. 1.6 Power 4.1 Discussion 4.1.... 1.9. 1.7.9.9.4.6....7. 1. 4.6 9.4 46. 4. 4. 41.6 1.7 4.1...7. 6. 9.1 7. 9.7 46.1 46.1 4.1 1.9 4.1.6..7.7 4.1.7 1.4 1. 64. 64. 64. 49.4 4.1 4.1 Exact power (%) for different alternatives n=1 per group Succ. prob. treat. Optimize Combine p-values Bonferroni-related Simplifications Corr. EP A EP B Power Area Alpha p1*p minp Tarone Bonf. Collapse Only A Only B...4..4. 1. 1.4...9.9.7. 76. 67.. 69.9 67. 67.7. 9.7 67..9.7. 7. 1.6 77. 4. 7. 7.1 9.. 67. 1.7.7.7 97.7 9.7 9.4 96. 7.4. 79.6 79.6 67. 67.....4..4. 1. 1.4...9.9..7. 7. 66.6 1. 67.4 67. 67.7. 9. 67..9..7.. 79.1 74.6 1.1 7. 71. 9.1 4. 67. 1.7..7.7 96.4 94. 94. 9. 6. 6.9 7.1 76.7 67. 67. Success probability control =. for both EP For these scenarios, maximal power test is.9 to 7. % points better than next best test Maximizing alpha is not sole the key to good power C = p 1 p and maximal area test similar Tarone and minp very similar Simplifications have least power

Non-inferiority - superiority tests What if we want to show non-inferiority for both EP and superiority in the sense of the global null-hypothesis for some EP? Find optimal rejection region for global superiority test within the rejection region of the non-inferiority test. Problem: At the moment the optimal test is designed for a point null-hypothesis Type-I-error rate control for more general null-hypothesis H : OR 1 1 AND OR 1?

Discussion Exact conditional tests useful for small sample inference Example of two binary endpoints Can get optimal rejection region for a specified alternative Generalizations to more endpoints no problem in principle But optimization run-time may be non-polynomial Level of significance close to nominal level Not sole determinant of good power Behavior under other than point null-hypothesis remains to be analyzed Exact joint distribution can be used to study other tests Maxmial power test can be used as benchmark Further restictions can be implemented, e.g. as suggested for non-inferiority - superiority test

Literature Westfall, P. H., Young, S. S. (199). P value adjustments for multiple tests in multivariate binomial models. Journal of the American Statistical Association, 4(47), 7-76 Tarone, R. E. (199). A modified Bonferroni method for discrete data. Biometrics, 1-. Agresti, A. (199). A survey of exact inference for contingency tables. Statistical Science, 11-1. Agresti, A. (). Categorical data analysis. A John Wiley and Sons, Inc. Publication, Hoboken, New Jersey, USA. Wellek, S. (). Statistical Methods for the Analysis of Two Arm Non Inferiority Trials with Binary Outcomes. Biometrical journal, 47(1), 4-61.

Exact power (%) for different alternatives n=1 per group Succ. prob. treat. Optimize Combine p-values Bonferroni-related Simplifications Corr. EP A EP B Power Area Alpha p1*p minp Tarone Bonf. Collapse Only A Only B... 1.9. 1.7.9.9.4.6...7. 4.1 47. 41. 4.4 4. 4. 41.6. 4.1..7. 69.1 6. 61. 6. 46.6 46.6 4.7 4. 4.1.6.7.7 7..4 4.1 4. 66. 66. 6. 1.6 4.1 4.1.... 1.9. 1.7.9.9.4.6....7. 1. 4.6 9.4 46. 4. 4. 41.6 1.7 4.1...7. 6. 9.1 7. 9.7 46.1 46.1 4.1 1.9 4.1.6..7.7 4.1.7 1.4 1. 64. 64. 64. 49.4 4.1 4.1 n=1 per group Succ. prob. treat. Optimize Combine p-values Bonferroni-related Simplifications Corr. EP A EP B Power Area Alpha p1*p minp Tarone Bonf. Collapse Only A Only B...4..4. 1. 1.4...9.9.7. 76. 67.. 69.9 67. 67.7. 9.7 67..9.7. 7. 1.6 77. 4. 7. 7.1 9.. 67. 1.7.7.7 97.7 9.7 9.4 96. 7.4. 79.6 79.6 67. 67.....4..4. 1. 1.4...9.9

Non-inferiority - superiority maximal area non inf. (green), maximal area (red) T A T B 4 6 1 1 14 16 1 4 6 4 6 7 9 1 11 1 1 14 1 16 17 1 19 1 4 6 7 9..1.1...1.1..1..4...4..1..1.4.7 1. 1.4 1...4.1 6... 1..6. 1..9.4.1 1.1.. 1.4.6.6. 1....1 17.9.1.4 1... 4.4.. 1..4.1.4.1.. 1...6.6 1.4.. 17.9.1.4.9 1...6 1... 1.1.1.4. 1. 1.4 1..7.4.1 6..1..4...4..1..1.1...1.1..... 6. 1.1 17.9.4 17.9 1.1 6.... 1 Alpha =. %; Level =.4 % Alpha =. %; Level =.4 %; Area = 1

Non-inferiority - superiority C = p 1 p non inf. (green), combination C=(p1p) (red) T B 9 7 6 4 1 19 1 17 16 1 14 1 1 11 1 9 7 6 4...6.1.17.9.417.91.16... 1...1.1...1.1.1..4...4..1.1.4.1.1.41..7.4.1.1.4.91...6 1....1..1...6.61.4...1.41...4.4..1..4.1..1.4.6.6. 1...1..1..6.1..9.4.1.1.4.71.1.41...4.1.1..4...4..1.1.1...1.1. 6. 1.1 17.9.4 17.9 1.1 6.... 4 6 1 1 14 16 1 4 6 Alpha =. %; Level = 1.9 %; Area = 11 T A