Geometric Transformations and Wallpaper Groups

Similar documents
Geometric Transformations and Wallpaper. Groups. Lance Drager Math Camp

Geometric Transformations and Wallpaper Groups

Geometric Transformations and Wallpaper Groups

WALLPAPER GROUPS. Julija Zavadlav

Symmetric spherical and planar patterns

(A B) 2 + (A B) 2. and factor the result.

From Wikipedia, the free encyclopedia

Ma/CS 6a Class 19: Group Isomorphisms

17 More Groups, Lagrange s Theorem and Direct Products

Chapter 3. Introducing Groups

AM 106/206: Applied Algebra Madhu Sudan 1. Lecture Notes 12

1 Chapter 6 - Exercise 1.8.cf

SYMMETRIES IN R 3 NAMITA GUPTA

7. SYMMETRY GROUPS 7.1. What is Symmetry? rotational symmetry order

Some notes on Coxeter groups

ISOMETRIES OF R n KEITH CONRAD

Symmetry Groups 11/19/2017. Problem 1. Let S n be the set of all possible shuffles of n cards. 2. How many ways can we shuffle n cards?

Chapter 3: Groups in science, art, and mathematics

CHAPTER 8 WHY PRECISELY SEVENTEEN TYPES?

Part II. Geometry and Groups. Year

2) e = e G G such that if a G 0 =0 G G such that if a G e a = a e = a. 0 +a = a+0 = a.

GROUPS OF ORDER p 3 KEITH CONRAD

1 Fields and vector spaces

REU 2007 Discrete Math Lecture 2

Examples of Groups

Groups & Symmetry. Robert Heffernan

Introduction to Group Theory

Lecture 7 Cyclic groups and subgroups

MA441: Algebraic Structures I. Lecture 26

Classification of Isometries

Primitive arcs in P G(2, q)

SPECIAL CASES OF THE CLASS NUMBER FORMULA

The Symmetric Space for SL n (R)

6 Orthogonal groups. O 2m 1 q. q 2i 1 q 2i. 1 i 1. 1 q 2i 2. O 2m q. q m m 1. 1 q 2i 1 i 1. 1 q 2i. i 1. 2 q 1 q i 1 q i 1. m 1.

Definitions. Notations. Injective, Surjective and Bijective. Divides. Cartesian Product. Relations. Equivalence Relations

Group Actions Definition. Let G be a group, and let X be a set. A left action of G on X is a function θ : G X X satisfying:

Definitions, Theorems and Exercises. Abstract Algebra Math 332. Ethan D. Bloch

Geometry. Relations in SO(3) Supported by Geodetic Angles. J. H. Conway, 1 C. Radin, 2 and L. Sadun Introduction and Results

THE UNIT GROUP OF A REAL QUADRATIC FIELD

ISOMETRIES OF THE PLANE AND COMPLEX NUMBERS. y in R 2 is (

MATRIX CALCULUS APPLIED TO CRYSTALLOGRAPHY. (short revision) Mois I. Aroyo Universidad del Pais Vasco, Bilbao, Spain

THE VOLUME OF A HYPERBOLIC 3-MANIFOLD WITH BETTI NUMBER 2. Marc Culler and Peter B. Shalen. University of Illinois at Chicago

Solutions to Some Review Problems for Exam 3. by properties of determinants and exponents. Therefore, ϕ is a group homomorphism.

MATH 101: ALGEBRA I WORKSHEET, DAY #3. Fill in the blanks as we finish our first pass on prerequisites of group theory.

Lecture 2: Isometries of R 2

The Symmetric Groups

Crystals, Chemistry, and Space Groups

Introduction to Group Theory

2.3 Band structure and lattice symmetries: example of diamond

Note: all spaces are assumed to be path connected and locally path connected.

Algebra I Fall 2007

Selected exercises from Abstract Algebra by Dummit and Foote (3rd edition).

2. On integer geometry (22 March 2011)

DEPARTMENT OF MATHEMATIC EDUCATION MATHEMATIC AND NATURAL SCIENCE FACULTY

Escher s Tessellations: The Symmetry of Wallpaper Patterns II. 1 February 2012

On exceptional completions of symmetric varieties

Homework #7 Solutions

CONSEQUENCES OF THE SYLOW THEOREMS

MODEL ANSWERS TO THE FIRST HOMEWORK

Group Theory

The 17 Plane Symmetry Groups. Samantha Burns Courtney Fletcher Aubray Zell Boise State University

4 Group representations

Group theory applied to crystallography

1 Lecture 1 (1/5/2009)

1 Lecture 1 (1/5/2009)

Notes on Algebra. Donu Arapura

MATH 25 CLASS 21 NOTES, NOV Contents. 2. Subgroups 2 3. Isomorphisms 4

On Three-Dimensional Space Groups

Lines and points. Lines and points

Lecture 10: A (Brief) Introduction to Group Theory (See Chapter 3.13 in Boas, 3rd Edition)

AN ALGEBRA PRIMER WITH A VIEW TOWARD CURVES OVER FINITE FIELDS

Properties of Linear Transformations from R n to R m

Molecular Spectroscopy. January 24, 2008 Introduction to Group Theory and Molecular Groups

FINITE GROUP THEORY: SOLUTIONS FALL MORNING 5. Stab G (l) =.

IIT Mumbai 2015 MA 419, Basic Algebra Tutorial Sheet-1

Math 120A: Extra Questions for Midterm

The structure of liquids and glasses. The lattice and unit cell in 1D. The structure of crystalline materials. Describing condensed phase structures

5 Symmetries and point group in a nut shell

Commensurability between once-punctured torus groups and once-punctured Klein bottle groups

School of Mathematics and Statistics MT5824 Topics in Groups Problem Sheet V: Direct and semidirect products (Solutions)

Math Bank - 6. What is the area of the triangle on the Argand diagram formed by the complex number z, -iz, z iz? (a) z 2 (b) 2 z 2

DIHEDRAL GROUPS II KEITH CONRAD

2.4 Investigating Symmetry

Kevin James. MTHSC 412 Section 3.4 Cyclic Groups

S11MTH 3175 Group Theory (Prof.Todorov) Final (Practice Some Solutions) 2 BASIC PROPERTIES

Cosets and Normal Subgroups

A study of a permutation representation of P GL(4, q) via the Klein correspondence. May 20, 1999

DISCRETE MATH (A LITTLE) & BASIC GROUP THEORY - PART 3/3. Contents

Yale University Department of Mathematics Math 350 Introduction to Abstract Algebra Fall Midterm Exam Review Solutions

SPINNING AND BRANCHED CYCLIC COVERS OF KNOTS. 1. Introduction

ALGEBRA PH.D. QUALIFYING EXAM SOLUTIONS October 20, 2011

Part IA Groups. Based on lectures by J. Goedecke Notes taken by Dexter Chua. Michaelmas 2014

Some practice problems for midterm 2

Math 210A: Algebra, Homework 5

0 Sets and Induction. Sets

An eightfold path to E 8

Section 1.5. Solution Sets of Linear Systems

MODEL ANSWERS TO HWK #7. 1. Suppose that F is a field and that a and b are in F. Suppose that. Thus a = 0. It follows that F is an integral domain.

MATH 430 PART 2: GROUPS AND SUBGROUPS

HOMEWORK 3 LOUIS-PHILIPPE THIBAULT

Transcription:

Geometric Transformations and Wallpaper Groups Lance Drager Texas Tech University Geometric Transformations IV p.1/35

Symmetries of Geometric Patterns (Discrete Groups of Isometries) Geometric Transformations IV p.2/35

Discrete Groups of Isometries Let G E be a group of isometries. If p is a point, the orbit of p under G is defined to be Orb(p) = {gp g G}. Either Orb(p) Orb(q) = or Orb(p) = Orb(q). Suppose r Orb(p) Orb(q), then r = gp = hq, so q = g 1 hp = ap for some a G. Then gp = gaq for all g G, so Orb(p) Orb(q). Similarly Orb(q) Orb(p). The orbits partition the plane. Geometric Transformations IV p.3/35

Discrete Groups of Isometries Definition. G is discrete if, for every orbit Γ of G, there is a δ > 0 such that p, q Γ and p q = dist(p, q) δ. Example: D 3 as the symmetries of an equilateral triangle is discrete. Example: The orthogonal group O E is not discrete. Geometric Transformations IV p.4/35

The Point Group Let G be a discrete group of isometries. We can define a group mapping π : G O: (A v) A. N(G) = ker(π) is the subgroup of G consisting of all the translations (I v) in G. It is a normal subgroup called the translation subgroup of G. The image K(G) = π(g) O is called the point group of G. Note that K(G) is not a subgroup of G. Geometric Transformations IV p.5/35

Three Kinds of Symmetry Groups If G is a discrete group of isometries, there are three cases for N(G). N(G) = {(I 0)}. G fixes the origin. These groups are the symmetries of rosette patterns and are called rosette groups. All the translation vectors in N(G) are collinear. These groups are the symmetries of frieze patterns and are called frieze groups. N(G) contains non-collinear translations. These groups are the symmetries of wallpaper patterns and are called wallpaper groups. We will classify rosette groups and frieze groups. We ll describe the classification of wallpaper groups, but we won t go through all the details. Geometric Transformations IV p.6/35

Classification of Rosette Groups Rosette groups are the symmetries of rosette patterns Geometric Transformations IV p.7/35

Classification of Rosette Groups Theorem. A rosette group G is either a finite cyclic group generated by a rotation or one of the dihedral groups D n. Let J G be the subgroup of rotations. It s possible J = {I}. In this case J = C 1 or can be just denoted by 1. If J contains a nontrivial rotation, choose R = R(θ) J, so that 0 < θ < 360 and θ is as small as possible. There must be a smallest such θ because the group is discrete. Geometric Transformations IV p.8/35

Classification of Rosette Groups Classification Continued. Claim: nθ = 360 for some positive integer n. Suppose not. Then there is an integer k so that kθ < 360 < (k + 1)θ. Hence 360 = kθ + ϕ, where 0 < ϕ < θ. Then I = R(360) = R(kθ + ϕ) = R(θ) k R(ϕ) = R k R(ϕ). But then R(ϕ) = R k J, which contradicts our choice of θ. If nθ = 360 then R n = I. We say that R has order n, in symbols o(r) = n. Geometric Transformations IV p.9/35

Classification of Rosette Groups Classification Continued. Claim: J = R = { I, R, R 2,..., R n 1}. Suppose not. Then there is a rotation R(ϕ) J (0 < ϕ < 360 ) where ϕ is not an integer multiple of θ. But then there is some integer k so that ϕ = kθ + ψ, where 0 < ψ < θ. But then we have R(ϕ) = R k R(ψ), so R(ψ) = R k R(ϕ) J, which contradicts our choice of θ. Thus J is a cyclic group, which we can denote by C n or just n. Note that if m Z, then R m = R k for some k {0, 1,..., n 1}, namely k = m (mod n). Geometric Transformations IV p.10/35

Classification of Rosette Groups Classification Continued. If J = G we are done. If not, G must contain a reflection. Suppose that G contains a reflection S = S(ϕ). If J = {I}, then G = {I, S} with S 2 = I. We can call this D 1 or 1. If J is C n, then G must contain the elements R k S = S(kθ + ϕ) for k = 0, 1, 2,... n 1. Claim: There is no reflection other that the R k S in G. Suppose not. Then S(ψ) G for some ψ / {kθ + ϕ k Z}. But S(ψ)S(ϕ) = R(ψ ϕ) G, so we must have ψ ϕ = kθ for some k Z. But this implies ψ = kθ + ϕ, a contradiction. Geometric Transformations IV p.11/35

Classification of Rosette Groups Classification Continued. Claim: SR = R n 1 S. SR = S(ϕ)R(θ) = S(ϕ θ) = R( θ)s(ϕ) = R 1 S = R n 1 S. So, in this case, G is isomorphic to the dihedral group D n, also denoted n. Thus every rosette group is isomorphic to C n (a.k.a. n) or the dihedral group D n (a.k.a. n). The names n and n are due to Conway. Geometric Transformations IV p.12/35

The Lattice of an Isometry Group If G is a discrete group of isometries, the lattice L of G is the orbit of the origin under the translation subgroup N(G) of G. In other words, L = { v R 2 (I v) G }. if a, b L then ma + nb L for all m, n Z, since (I ma) = (I a) m and (I nb) are in G and (I ma)(i nb)0 = ma + nb. Theorem. Let L be the lattice of G and let K = K(G) O be the point group. Then KL L, i.e. if A K and v L then Av L. Geometric Transformations IV p.13/35

The Lattice of an Isometry Group We can make the following general computation, conjugating a translation (I v) by an isometry (A a) (A a)(i v)(a a) 1 = (A a)(i v)(a 1 A 1 a) = (A a)(a 1 v A 1 a) (1) = (AA 1 a + A(v A 1 a)) = (I a + Av a) = (I Av), so we get a translation with the translation vector changed by the matrix A. Geometric Transformations IV p.14/35

The Lattice of an Isometry Group If v L then (I v) G and if A K then (A a) G for some vector a. Then the conjugate of (I v) by (A a) is in G. By the computation above (I Av) G, so Av L. Geometric Transformations IV p.15/35

Frieze Groups Let G be a Frieze group, i.e., all the vectors in the lattice L are collinear. These groups are the symmetry groups of Frieze patterns. Geometric Transformations IV p.16/35

Frieze Groups A wallpaper border. Geometric Transformations IV p.17/35

Frieze Groups We want to classify the Frieze Groups up to geometric isomorphism. We consider two Frieze Groups G 1 and G 2 to be in the same geometric isomorphism class if there is a group isomorphism ϕ: G 1 G 2 that preserves the type of the transformations. Let G be a Frieze group. Choose a L so that a > 0 is a small as possible. This is possible because G is discrete. Claim: L = {na n Z}. Suppose not. Then there is a c in L so that c / Za. But we must have c = sa for some scalar s, where s / Z. We can write s = k + r where k is an integer and 0 < r < 1. Thus, c = sa = ka + ra. Since ka L, ra = c ka L. But ra = r a < a, contradicting our choice of a. Geometric Transformations IV p.18/35

Frieze Groups If T E, the conjugation ψ T (S) = T ST 1 is a group isomorphism E E which preserves type. Hence ψ T (G) is geometrically isomorphic to G. Choosing T to be a rotation, we may as well assume that a points in the positive x-direction. Thus, our lattice looks like y a x Geometric Transformations IV p.19/35

Frieze Groups The point group K O of G must preserve the lattice L. There are only four possible elements of K: The identity I A half turn, i.e., rotation by 180. Call it T for turn. Reflection through the x-axis, call it H. Reflection through the y-axis, call it V. With this preparation, let s describe the classification of frieze groups. Geometric Transformations IV p.20/35

Classification of Frieze Groups Theorem. There are exactly 7 geometric isomorphism classes of frieze groups. A system for naming these groups has been standardized by crystallographers. Another (better) naming system has been invented by Conway, who also invented English names for these classes. Geometric Transformations IV p.21/35

Crystallographic Names The crystallographic names consist of two symbols. 1. First Symbol 1 No vertical reflection. m A vertical reflection. 2. Second Symbol 1 No other symmetry. m Horizontal reflection. g Glide reflection (horizontal). 2 Half-turn rotation. Geometric Transformations IV p.22/35

Conway Names In the Conway system two rotations are of the same class if their rotocenters differ by a motion in the group. Two reflections are of the same class if their mirror lines differ by a motion in the group. Conway Names We think of the translations as rotation about a center infinity far away in the up direction, or down direction. This rotation has order. 2 A class of half-turn rotations. Shows the presence of a reflection. If a 2 or comes after the, then the rotocenters are at the intersection of mirror lines. x Indicates the presence of a glide reflection. Geometric Transformations IV p.23/35

The 7 Frieze Groups Hop, 11, Geometric Transformations IV p.24/35

The 7 Frieze Groups Hop, 11, Jump, 1m, Geometric Transformations IV p.24/35

The 7 Frieze Groups Hop, 11, Jump, 1m, Sidle, m1, Geometric Transformations IV p.24/35

The 7 Frieze Groups Step, 1g, x Geometric Transformations IV p.25/35

The 7 Frieze Groups Step, 1g, x Spinhop, 12, 22 Geometric Transformations IV p.25/35

The 7 Frieze Groups Step, 1g, x Spinhop, 12, 22 Spinjump, mm, 22 Geometric Transformations IV p.25/35

The 7 Frieze Groups Spinsidle, mg, 2 Geometric Transformations IV p.26/35

How to Classify Frieze Groups Geometric Transformations IV p.27/35

Proof of the Classification Let G be our frieze group, as set up above. The possible elements of the point group K are the half-turn T, reflection in the x-axis H, reflection in the y-axis V, and the identity matrix I. Of course, we have explicit matrices for these transformations T = [ 1 0 0 1 ], H = [ 1 0 0 1 ], V = It s easy to check HT = T H = V. V T = T V = H. HV = V H = T. Thus, if two of these are in K, so is the third. [ 1 0 0 1 ]. Geometric Transformations IV p.28/35

Proof of the Classification The 5 possibilities for K are I. {I}. II. {I, T }. III. {I, V }. IV. {I, H}. V. {I, T, H, V }. Case I. The group contains only translations. This is Hop (11, ). Case II. Since T K, we must have (T v) G for some v. This is a rotation around some point. We can conjugate our group by a translation to get an isomorphic group that contains (T 0) (the translation subgroup doesn t change). Geometric Transformations IV p.29/35

Proof of the Classification Case II continued. We now have the origin as a rotocenter. The group contains exactly the elements (I na) and (T na) for n Z. To find the rotocenter p of this rotation, we have to solve (I T )p = na, but (I T )(na/2) = na/2 (n/2)t a = na/2 (n/2)( a) = na, so the rotocenters are at half lattice points na/2. There are two classes of rotations, one containing the rotation at a/2 and the other the rotation at a. This is Spinhop (12, 22 ). Geometric Transformations IV p.30/35

Proof of the Classification Case III. In this case we have the reflection matrix V K. Note V e 1 = e 1 and V e 2 = e 2. We must have some isometry (V b) G, and we can write b = αe 1 + βe 2. If β 0, then (V b) is a glide. But this is impossible, because then (V b) 2 would be translation in the vertical direction, which is not in the group. Thus, (V b) = (V αe 1 ) is a reflection. By conjugating the whole group by a translation, we may as well assume the reflection (V 0) is in the group. Now the group consists of the elements (I na) and (V na), which is a reflection through the vertical line that passes through na/2. Thus we have vertical reflections at half lattice points. There are two classes of mirror lines. The group is Sidle (m1, ). Geometric Transformations IV p.31/35

Proof of the Classification Case IV. We have K = {I, H}. Now things start to get interesting! The matrix H could come either from a reflection or from a glide. Recall He 1 = e 1 and He 2 = e 2. Suppose H comes from a reflection. By conjugating with a translation, we may assume the mirror line is the x-axis, i.e., (H 0) is in the group. The group contains the elements (I na) and (H na), the latter being uninteresting glides. The group is Jump (1m, ). Geometric Transformations IV p.32/35

Proof of the Classification Case IV. continued. Suppose H comes from a glide (but not a reflection). We can conjugate the group to make the glide line the x-axis, so we will have a glide of the form (H se 1 ). But then (H se 1 ) 2 = (I 2se 1 ) is in the group, so 2se 1 must be a lattice point, say 2se 1 = ma. If m was even, se 1 would be a lattice point ka but then we would have (I ka) 1 (H ka) = (H 0) in the group, a contradiction. Thus m is odd, say m = 2k + 1. Then (H 2se 1 ) = (H a/2 + ka). Multiplying by a translation, we get the glide (H a/2) in the group. The group contains the elements (I na) and (H a/2 + na). The group is Step (1g, x). Geometric Transformations IV p.33/35

Proof of the Classification Case V. The point group is K = {I, V, H, T }. Again, V must come from a reflection, which we can assume is (V 0). Again, there are two cases: H comes from a reflection and H comes from a glide. Suppose H comes from a reflection. By conjugating with a vertical translation we can assume the mirror is the x-axis, so we have (H 0), and we ll still have (V 0). Then we have (H 0)(V 0) = (T 0), the half-turn around the origin. The group elements are (I na); (H na), which are uninteresting glides; (V na), which give vertical mirrors a half lattice points; and (T na), which are half-turns with the rotocenters at half-lattice points. The group is Spinjump, (mm, 22 ). Geometric Transformations IV p.34/35

Proof of the Classification Case V, continued. Assume H comes from a glide. As above, we can assume (V 0) is in the group. As in Case IV, we can assume the glide line is the x-axis and that our glide is (H a/2). We then have (H a/2)(v 0) = (T a/2). The group elements are (I na); the glides (H a/2 + na), which are not very interesting; the reflections (V na) which have their mirrors at half lattice points; and the half-turns (T a/2 + na), which have their rotocenters at the points a/4 + na/2, for example a/4, 3a/4, 5a/4, 7a/4.... The group is Spinsidle (mg, 2 ). Geometric Transformations IV p.35/35