Lecture 10: The Schrödinger Equation. Lecture 10, p 2

Similar documents
Lecture 10: The Schrödinger Equation. Lecture 10, p 2

Lecture 10: The Schrödinger Equation Lecture 10, p 1

Lecture 12: Particle in 1D boxes, Simple Harmonic Oscillators

Lecture 8: Wave-Particle Duality. Lecture 8, p 2

Lecture 12: Particle in 1D boxes & Simple Harmonic Oscillator

CHAPTER 6 Quantum Mechanics II

Opinions on quantum mechanics. CHAPTER 6 Quantum Mechanics II. 6.1: The Schrödinger Wave Equation. Normalization and Probability

Today: Particle-in-a-Box wavefunctions

CHAPTER 6 Quantum Mechanics II

CHAPTER 6 Quantum Mechanics II

Chapter 7. Bound Systems are perhaps the most interesting cases for us to consider. We see much of the interesting features of quantum mechanics.

If electrons moved in simple orbits, p and x could be determined, but this violates the Heisenberg Uncertainty Principle.

The Schrödinger Equation in One Dimension

Chapter 4 (Lecture 6-7) Schrodinger equation for some simple systems Table: List of various one dimensional potentials System Physical correspondence

Electron in a Box. A wave packet in a square well (an electron in a box) changing with time.

Lecture 16: 3D Potentials and the Hydrogen Atom. 1 = π. r = a 0. P(r) ( ) h E. E n. Lecture 16, p 2

Lecture 21 Matter acts like waves!

There is light at the end of the tunnel. -- proverb. The light at the end of the tunnel is just the light of an oncoming train. --R.

ECE 487 Lecture 6 : Time-Dependent Quantum Mechanics I Class Outline:

From Last time. Exam 3 results. Probability. The wavefunction. Example wavefunction. Discrete vs continuous. De Broglie wavelength

Lecture 13: Barrier Penetration and Tunneling

Lecture-XXVI. Time-Independent Schrodinger Equation

Lecture 15: Time-Dependent QM & Tunneling Review and Examples, Ammonia Maser

The Simple Harmonic Oscillator

David J. Starling Penn State Hazleton PHYS 214

Physics 342 Lecture 17. Midterm I Recap. Lecture 17. Physics 342 Quantum Mechanics I

Probability and Normalization

Problem Set 5: Solutions

Introduction to Quantum Mechanics (Prelude to Nuclear Shell Model) Heisenberg Uncertainty Principle In the microscopic world,

Notes on wavefunctions IV: the Schrödinger equation in a potential and energy eigenstates.

Notes for Special Relativity, Quantum Mechanics, and Nuclear Physics

Today: Finite box wavefunctions

The Quantum Theory of Atoms and Molecules

Lecture 4 (19/10/2012)

Modern Physics. Unit 3: Operators, Tunneling and Wave Packets Lecture 3.3: The Momentum Operator

Lecture 9: Introduction to QM: Review and Examples

The Schrödinger Equation

PHYS 3313 Section 001 Lecture #20

Explanations of quantum animations Sohrab Ismail-Beigi April 22, 2009

Chemistry 125: Instructions for Erwin Meets Goldilocks

ECE 487 Lecture 5 : Foundations of Quantum Mechanics IV Class Outline:

Lecture 2: simple QM problems

Lecture 19: Building Atoms and Molecules

C/CS/Phys C191 Particle-in-a-box, Spin 10/02/08 Fall 2008 Lecture 11

Intro to Quantum Physics

Problems and Multiple Choice Questions

The Birth of Quantum Mechanics. New Wave Rock Stars

Anyone who can contemplate quantum mechanics without getting dizzy hasn t understood it. --Niels Bohr. Lecture 17, p 1

Semiconductor Physics and Devices

Lecture 19: Building Atoms and Molecules

Final Exam. Tuesday, May 8, Starting at 8:30 a.m., Hoyt Hall.

PHYS 3313 Section 001 Lecture # 22

QUANTUM MECHANICS Intro to Basic Features

PHY4604 Introduction to Quantum Mechanics Fall 2004 Final Exam SOLUTIONS December 17, 2004, 7:30 a.m.- 9:30 a.m.

Momentum expectation Momentum expectation value value for for infinite square well

Recall the Goal. What IS the structure of an atom? What are the properties of atoms?

CHAPTER 2: POSTULATES OF QUANTUM MECHANICS

Physics 1C. Lecture 28D

Chapter 28 Quantum Theory Lecture 24

Physics 486 Discussion 5 Piecewise Potentials

spring mass equilibrium position +v max

Modern Physics for Scientists and Engineers International Edition, 4th Edition

Hydrogen atom energies. Friday Honors lecture. Quantum Particle in a box. Classical vs Quantum. Quantum version

SPARKS CH301. Why are there no blue fireworks? LIGHT, ELECTRONS & QUANTUM MODEL. UNIT 2 Day 2. LM15, 16 & 17 due W 8:45AM

Chapter. 5 Bound States: Simple Case

Quantum Mechanics. p " The Uncertainty Principle places fundamental limits on our measurements :

Physics 1C. End of Chapter 30 Exam Preparationds

* = 2 = Probability distribution function. probability of finding a particle near a given point x,y,z at a time t

Probability, Expectation Values, and Uncertainties

Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 2006 Christopher J. Cramer. Lecture 9, February 8, 2006

Physics. Light Quanta

Class 21. Early Quantum Mechanics and the Wave Nature of Matter. Physics 106. Winter Press CTRL-L to view as a slide show. Class 21.

PHY 114 A General Physics II 11 AM-12:15 PM TR Olin 101

Tutorial for PhET Sim Quantum Bound States

CHAPTER 6 Quantum Mechanics II

Quantum Mechanics. incorporate the phenomenon of quantum tunneling, which we explore in this theory for explaining the behavior of

Chapter 16 Waves. Types of waves Mechanical waves. Electromagnetic waves. Matter waves

PHYS 3313 Section 001 Lecture #16

More on waves + uncertainty principle

Structure of the atom

Chap. 3. Elementary Quantum Physics

Modern Physics notes Paul Fendley Lecture 6

Physics 43 Chapter 41 Homework #11 Key

Modern Physics notes Paul Fendley Lecture 3

Lab 5: Measuring Magnetic Field of Earth

Hydrogen atom energies. From Last Time. Today. Another question. Hydrogen atom question. Compton scattering and Photoelectric effect

Name Solutions to Test 3 November 7, 2018

The Bohr Model of Hydrogen, a Summary, Review

No Lecture on Wed. But, there is a lecture on Thursday, at your normal recitation time, so please be sure to come!

PHYS Concept Tests Fall 2009

Intro/Review of Quantum

Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 2006 Christopher J. Cramer. Lecture 7, February 1, 2006

22.02 Intro to Applied Nuclear Physics

Intro/Review of Quantum

Appendix A. The Particle in a Box: A Demonstration of Quantum Mechanical Principles for a Simple, One-Dimensional, One-Electron Model System

Chancellor Phyllis Wise invites you to a birthday party!

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

Physics 1C. Class Review. "All good things must come to an end. --Proverb

Action Principles in Mechanics, and the Transition to Quantum Mechanics

Wave Properties of Particles Louis debroglie:

Transcription:

Quantum mechanics is the description of the behavior of matter and light in all its details and, in particular, of the happenings on an atomic scale. Things on a very small scale behave like nothing that you have any direct eperience about. They do not behave like waves, they do not behave like particles, they do not behave like clouds, or billiard balls, or weights on springs, or like anything that you have ever seen. --Richard P. Feynman Lecture 10, p 1

Lecture 10: The Schrödinger Equation Lecture 10, p

This week and last week are critical for the course: Week 3, Lectures 7-9: Week 4, Lectures 10-1: Light as Particles Schrödinger Equation Particles as waves Particles in infinite wells, finite wells Probability Simple Harmonic Oscillator Uncertainty Principle Midterm Eam Monday, week 5 It will cover lectures 1-1 (ecept Simple Harmonic Oscillators) Practice eams: Old eams are linked from the course web page. Review Sunday before Midterm Office hours: Sunday and Monday Net week: Homework 4 covers material in lecture 10 due on Thur. after midterm. We strongly encourage you to look at the homework before the midterm! Discussion: Covers material in lectures 10-1. There will be a quiz. Lab: Go to 57 Loomis (a computer room). You can save a lot of time by reading the lab ahead of time It s a tutorial on how to draw wave functions. Lecture 10, p 3

Overview Probability distributions Schrödinger s Equation Particle in a Bo Matter waves in an infinite square well Quantized energy levels ψ() U= n=1 n=3 U= 0 L n= Nice descriptions in the tet Chapter 40 Good web site for animations http://www.falstad.com/qm1d/ Lecture 10, p 4

Matter Waves - Quantitative Having established that matter acts qualitatively like a wave, we want to be able to make precise quantitative predictions, under given conditions. Usually the conditions are specified by giving a potential energy U(,y,z) in which the particle is located. Eamples: Electron in the coulomb potential produced by the nucleus Electron in a molecule Electron in a solid crystal Electron in a nanostructure quantum dot Proton in the nuclear potential inside the nucleus U() For simplicity, consider a 1-dimensional potential energy function, U(). Classically, a particle in the lowest energy state would sit right at the bottom of the well. In QM this is not possible. (Why?) Lecture 10, p 5

Act 1: Classical probability distributions Start a classical (large) object moving in a potential well (two are shown here). At some random time later, what is the probability of finding it near position? U() Ball in a bo: U() Ball in a valley: E KE Total energy E = KE + U() E P() P() a b c a b c HINT: Think about speed vs position. Lecture 10, p 6

Solution Start a classical (large) object moving in a potential well (two are shown here). At some random time later, what is the probability of finding it near position? U() Ball in a bo: U() Ball in a valley: E KE Total energy E = KE + U() E KE P() P() a b c a b c Probability is equally distributed Lecture 10, p 7

Solution Start a classical (large) object moving in a potential well (two are shown here). At some random time later, what is the probability of finding it near position? U() Ball in a bo: U() Ball in a valley: E KE Total energy E = KE + U() E KE P() P() a b c a b c Probability is equally distributed More likely to spend time at the edges. To predict a quantum particle s behavior, we need an equation that tells us how the particle s wave function, Ψ(,y,z,t), changes in space and time. Lecture 10, p 8

The Schrödinger Equation (SEQ) In 196, Erwin Schrödinger proposed an equation that described the time- and space-dependence of the wave function for matter waves (i.e., electrons, protons,...) There are two important forms for the SEQ. First we will focus on a very important special case of the SEQ, the time-independent SEQ. Also simplify to 1-dimension: ψ(,y,z) ψ(). ħ d ψ ( ) + U( ) ψ ( ) = Eψ ( ) m d This special case applies when the particle has a definite total energy (E in the equation). We ll consider the more general case (E has a probability distribution), and also D and 3D motion, later. ħ = h π QM entities don t always have a definite energy. Time does not appear in the equation. Therefore, ψ(,y,z) is a standing wave, because the probability density, ψ(), is not a function of time. We call ψ(,y,z) a stationary state. Notation: Distinguish Ψ(,y,z,t) from ψ(,y,z). Lecture 10, p 9

Time-Independent SEQ What does the time-independent SEQ represent? It s actually not so puzzling it s just an epression of a familiar result: Kinetic Energy (KE) + Potential Energy (PE) = Total Energy (E) ħ d ψ ( ) + U( ) ψ ( ) = Eψ ( ) m d KE term PE term Total E term Can we understand the KE term? Consider a particle with a definite momentum. Its wave function is: ψ() cos(k), where p = h/λ = ħk. dψ d ψ p = k sin ( k) = k cos( k) = ψ ( ) d d ħ So, the first term in the SEQ is (p /m)ψ. Note that the KE of the particle depends on the curvature (d ψ/d ) of the wave function. This is sometimes useful when analyzing a problem. Lecture 10, p 10

Particle Wavefunctions: : Eamples What do the solutions to the SEQ look like for general U()? Eamples of ψ() for a particle in a given potential U() (but with different E): ψ() We call these wavefunctions eigenstates of the particle. ψ() These are special states: energy eigenstates. ψ() The corresponding probability distributions ψ() of these states are: ψ ψ ψ Key point: Particle cannot be associated with a specific location. -- like the uncertainty that a particle went through slit 1 or slit. Question: Which corresponds to the lowest/highest kinetic energy? The particle kinetic energy is proportional to the curvature of the wave function. Lecture 10, p 11

Probability distribution Difference between classical and quantum cases U() Classical (particle with same energy as in qunatum case) U() Quantum (lowest energy state state) E E P() In classical mechanics, the particle is most likely to be found where its speed is slowest P() = ψ In classical mechanics, the particle moves back and forth coming to rest at each turning point In quantum mechanics, the particle can be most likely to be found at the center. In quantum mechanics, the particle can also be found where it is forbidden in classical mechanics.

Solutions to the time-independent SEQ ħ d ψ ( ) + U( ) ψ ( ) = Eψ ( ) m d Notice that if U() = constant, this equation has the simple form: d ψ = Cψ ( ) d where C m = ( ) U E ħ is a constant that might be positive or negative. For positive C (i.e., U > E), what is the form of the solution? a) sin k b) cos k c) e a d) e -a For negative C (U < E) what is the form of the solution? a) sin k b) cos k c) e a d) e -a Most of the wave functions in P14 will be sinusoidal or eponential. Lecture 10, p 13

Solution ħ d ψ ( ) + U( ) ψ ( ) = Eψ ( ) m d Notice that if U() = constant, this equation has the simple form: d ψ = Cψ ( ) d where C m = ( ) U E ħ is a constant that might be positive or negative. For positive C (i.e., U > E), what is the form of the solution? a) sin k b) cos k c) e a d) e -a For negative C (U < E) what is the form of the solution? a) sin k b) cos k c) e a d) e -a Most of the wave functions in P14 will be sinusoidal or eponential. Lecture 10, p 14

Eample: Particle in a Bo As a specific important eample, consider a quantum particle confined to a region, 0 < < L, by infinite potential walls. We call this a one-dimensional (1D) bo. U = 0 for 0 < < L U = everywhere else U() We already know the form of ψ when U = 0: sin(k) or cos(k). However, we can constrain ψ more than this. 0 L The waves have eactly the same form as standing waves on a string, sound waves in a pipe, etc. The wavelength is determined by the condition that it fits in the bo. On a string the wave is a displacement y() and the square is the intensity, etc. The discrete set of allowed wavelengths results in a discrete set of tones that the string can produce. In a quantum bo, the wave is the probability amplitude ψ() ond the square ψ() is the probability of finding the electron near point. The discrete set of allowed wavelengths results in a discrete set of allowed energies that the particle can have. Lecture 10, p 15

Boundary conditions Standing waves A standing wave is the solution for a wave confined to a region Boundary condition: Constraints on a wave where the potential changes Displacement = 0 for wave on string conductor E = 0 at surface of a E = 0 If both ends are constrained (e.g., for a cavity of length L), then only certain wavelengths λ are possible: n λ f 1 L v/l L v/l 3 L/3 3v/L nλ = L n = 1,, 3 mode inde L 4 L/ v/l n L/n nv/l

The Energy is Quantized Due to Confinement by the Potential The discrete E n are known as energy eigenvalues : E n n nλ = L n electron p h 1.505 ev nm = = = m mλ λ n n h 8mL 1 where E1 E = En n λ (= v/f) E 4 L/ 16E 1 3 L/3 9E 1 L 4E 1 1 L E 1 Important features: Discrete energy levels. E 1 0 Standing wave (±p for a given E) n = 0 is not allowed. (why?) an eample of the uncertainty principle U = E n U = n=3 n= n=1 0 L Lecture 10, p 17

Quantum Wire Eample An electron is trapped in a quantum wire that is L = 4 nm long. Assume that the potential seen by the electron is approimately that of an infinite square well. 1: Calculate the ground (lowest) state energy of the electron. : What photon energy is required to ecite the trapped electron to the net available energy level (i.e., n = )? U= E n U= n=3 n= n=1 The idea here is that the photon is absorbed by the electron, which gains all of the photon s energy (similar to the photoelectric effect). 0 L Lecture 10, p 18

Solution An electron is trapped in a quantum wire that is L = 4 nm long. Assume that the potential seen by the electron is approimately that of an infinite square well. 1: Calculate the ground (lowest) state energy of the electron. h 1.505 ev nm En = En = = 8mL 4L E 1 with E1 1.505 ev nm = = 0.035 ev 4(4 nm) 1 Using: h E = = mλ where λ =L. 1.505 ev nm λ : What photon energy is required to ecite the trapped electron to the net available energy level (i.e., n = )? U= E n U= n=3 n= n=1 0 L En = n E1 So, the energy difference between the n = and n = 1 levels is: E = ( - 1 )E 1 = 3E 1 = 0.071 ev Lecture 10, p 19

Boundary conditions We can solve the SEQ wherever we know U(). However, in many problems, including the 1D bo, U() has different functional forms in different regions. In our bo problem, there are three regions: 1: < 0 : 0 < < L 3: > L ψ() will have different functional forms in the different regions. We must make sure that ψ() satisfies the constraints (e.g., continuity) at the boundaries between these regions. The etra conditions that ψ must satisfy are called boundary conditions. They appear in many problems. Lecture 10, p 0

Particle in a Bo (1) Regions 1 and 3 are identical, so we really only need to deal with two distinct regions, (I) outside, and (II) inside the well Region I: When U =, what is ψ()? U() ψ ( ) + ( ) ( ) = 0 d ħ d m E U ψ I ψ Ι II I ψ Ι For U =, the SEQ can only be satisfied if: ψ I () = 0 0 L U = 0 for 0 < < L U = everywhere else Otherwise, the energy would have to be infinite, to cancel U. Note: The infinite well is an idealization. There are no infinitely high and sharp barriers. Lecture 10, p 1

Region II: When U = 0, what is ψ()? Particle in a Bo () d ψ m E U ψ ( ) + ( ) ( ) = 0 d ħ d ψ ( ) me = ψ ( ) d ħ U() II ψ 0 L The general solution is a superposition of sin and cos: ψ ( ) = B sink + B cosk 1 where, k = π λ Remember that k and E are related: E p ħ k h = = = m m mλ because U = 0 B 1 and B are coefficients to be determined by the boundary conditions. Lecture 10, p

Particle in a Bo (3) U() Now, let s worry about the boundary conditions. Match ψ at the left boundary ( = 0). I II I Region I: ψ I( ) = 0 ψ Ι ψ ΙΙ ψ Ι Region II: II( ) B1 sink B cosk ψ = + 0 L Recall: The wave function ψ() must be continuous at all boundaries. Therefore, at = 0: ψ (0) = ψ (0) I II ( ) B ( ) 0 = B sin 0 + cos 0 1 0 = B because cos(0) = 1 and sin(0) = 0 This boundary condition requires that there be no cos(k) term! Lecture 10, p 3

Particle in a Bo (4) Now, match ψ at the right boundary ( = L). At = L: This constraint requires k to have special values: k n ψ ( L) = ψ ( L) I nπ π = n = 1,,... Using k, w e fin : nλn L λ = d = L This is the same condition we found for confined waves, e.g., waves on a string, EM waves in a laser cavity, etc.: n II 1 λ (= v/f) 4 L/ 3 L/3 L 1 L ( ) 0 = B sin kl U() For matter waves, the wavelength is related to the particle energy: E = h /mλ I ψ Ι II ψ ΙΙ 0 L h En = En where E 8mL 1 1 I ψ Ι Lecture 10, p 4

Net Lectures Normalizing the wavefunction General properties of bound-state wavefunctions Finite-depth square well potential (more realistic) Lecture 10, p 5