GNSS Data Assimilation and GNSS Tomography for Global and Regional Models

Similar documents
Data Assimilation. Alan O Neill Data Assimilation Research Centre University of Reading

Lecture 4: Piecewise Cubic Interpolation

4. Calculus of Variations

B.Sc. in Mathematics (Ordinary)

Ordinary Differential Equations- Boundary Value Problem

Problem 1. Brachistochrone time-of-flight

Lecture 19: Continuous Least Squares Approximation

1 Linear Least Squares

Synoptic Meteorology I: Finite Differences September Partial Derivatives (or, Why Do We Care About Finite Differences?

Ordinary differential equations

Predict Global Earth Temperature using Linier Regression

13.4 Work done by Constant Forces

Math 115 ( ) Yum-Tong Siu 1. Lagrange Multipliers and Variational Problems with Constraints. F (x,y,y )dx

ENGI 9420 Lecture Notes 7 - Fourier Series Page 7.01

Classical Mechanics. From Molecular to Con/nuum Physics I WS 11/12 Emiliano Ippoli/ October, 2011

In-Class Problems 2 and 3: Projectile Motion Solutions. In-Class Problem 2: Throwing a Stone Down a Hill

A. Limits - L Hopital s Rule ( ) How to find it: Try and find limits by traditional methods (plugging in). If you get 0 0 or!!, apply C.! 1 6 C.

Incorporating Ensemble Covariance in the Gridpoint Statistical Interpolation Variational Minimization: A Mathematical Framework

Calculus of Variations

Some Methods in the Calculus of Variations

NUMERICAL INTEGRATION. The inverse process to differentiation in calculus is integration. Mathematically, integration is represented by.

Discrete Least-squares Approximations

Numerical Methods I Orthogonal Polynomials

Math 520 Final Exam Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008

Summary Information and Formulae MTH109 College Algebra

MATH 3795 Lecture 18. Numerical Solution of Ordinary Differential Equations.

Exam 2, Mathematics 4701, Section ETY6 6:05 pm 7:40 pm, March 31, 2016, IH-1105 Instructor: Attila Máté 1

First midterm topics Second midterm topics End of quarter topics. Math 3B Review. Steve. 18 March 2009

A Matrix Algebra Primer

Numerical Integration

Math 270A: Numerical Linear Algebra

Chapter 14. Matrix Representations of Linear Transformations

Section 14.3 Arc Length and Curvature

Space Curves. Recall the parametric equations of a curve in xy-plane and compare them with parametric equations of a curve in space.

Math 8 Winter 2015 Applications of Integration

Definition of Continuity: The function f(x) is continuous at x = a if f(a) exists and lim

3.4 Numerical integration

Orthogonal Polynomials and Least-Squares Approximations to Functions

MatFys. Week 2, Nov , 2005, revised Nov. 23

Precalculus Spring 2017

Chapter 3 Polynomials

Chapter 3 Solving Nonlinear Equations

Part IB Numerical Analysis

Lecture 12: Numerical Quadrature

Probability Distributions for Gradient Directions in Uncertain 3D Scalar Fields

Numerical Integration

Introduction to Finite Element Method

Multi-objective optimization of dielectric layer photonic crystal filter

Quantum Physics II (8.05) Fall 2013 Assignment 2

Section 6.1 INTRO to LAPLACE TRANSFORMS

Review for final

Numerical Integration

Review of Calculus, cont d

MAC-solutions of the nonexistent solutions of mathematical physics

Functions of Several Variables

B Veitch. Calculus I Study Guide

( ) where f ( x ) is a. AB Calculus Exam Review Sheet. A. Precalculus Type problems. Find the zeros of f ( x).

A027 Uncertainties in Local Anisotropy Estimation from Multi-offset VSP Data

Variational and other methods

Multiple Integrals. Review of Single Integrals. Planar Area. Volume of Solid of Revolution

Sample Problems for the Final of Math 121, Fall, 2005

Partial Derivatives. Limits. For a single variable function f (x), the limit lim

Vorticity. curvature: shear: fluid elements moving in a straight line but at different speeds. t 1 t 2. ATM60, Shu-Hua Chen

Best Approximation. Chapter The General Case

Math 100 Review Sheet

Department of Mechanical Engineering MECE 551 Final examination Winter 2008 April 16, 9:00 11:30. Question Value Mark

ESCI 343 Atmospheric Dynamics II Lesson 14 Inertial/slantwise Instability

Terminal Velocity and Raindrop Growth

Chapter 2. Constraints, Lagrange s equations

Year 12 Mathematics Extension 2 HSC Trial Examination 2014

( dg. ) 2 dt. + dt. dt j + dh. + dt. r(t) dt. Comparing this equation with the one listed above for the length of see that

Lecture 20: Numerical Integration III

Numerical integration

A. Limits - L Hopital s Rule. x c. x c. f x. g x. x c 0 6 = 1 6. D. -1 E. nonexistent. ln ( x 1 ) 1 x 2 1. ( x 2 1) 2. 2x x 1.

Trigonometric Functions

1 Bending of a beam with a rectangular section

Section 6: Area, Volume, and Average Value

Introduction to WRFDA

Lecture 6: Singular Integrals, Open Quadrature rules, and Gauss Quadrature

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives

Math 116 Calculus II

Lecture 14: Quadrature

Numerical Analysis. 10th ed. R L Burden, J D Faires, and A M Burden

Estimation of Global Solar Radiation at Onitsha with Regression Analysis and Artificial Neural Network Models

P 3 (x) = f(0) + f (0)x + f (0) 2. x 2 + f (0) . In the problem set, you are asked to show, in general, the n th order term is a n = f (n) (0)

Solutions of Klein - Gordan equations, using Finite Fourier Sine Transform

MATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1

University of Houston, Department of Mathematics Numerical Analysis II

The Wave Equation I. MA 436 Kurt Bryan

Collection of formulas Matematikk 3 (IRF30017)

Best Approximation in the 2-norm

Theoretical foundations of Gaussian quadrature

A Bernstein polynomial approach for solution of nonlinear integral equations

Trapezoidal Rule, n = 1, x 0 = a, x 1 = b, h = b a. f (x)dx = h 2 (f (x 0) + f (x 1 )) h3

a < a+ x < a+2 x < < a+n x = b, n A i n f(x i ) x. i=1 i=1

Review of basic calculus

Practice Final. Name: Problem 1. Show all of your work, label your answers clearly, and do not use a calculator.

CBE 291b - Computation And Optimization For Engineers

Chapter 4. Additional Variational Concepts

4.4 Areas, Integrals and Antiderivatives

Transcription:

GNSS Dt Assimiltion nd GNSS Tomogrphy for Globl nd Regionl Models M. Bender, K. Stephn, A. Rhodin, R. Potthst Germn Wether Service (DWD) Interntionl Symposium on Dt Assimiltion, Munich 214 27. Februry 214 M. Bender,, K. Stephn,, A. Rhodin,, R. Potthst

GNSS Dt Assimiltion nd GNSS Tomogrphy Outline GNSS Observtion Opertor Atmospheric Phse Delys Inverse Problem Properties of the Opertor GNSS Tomogrphy Germn GNSS Network Reconstruction Techniques Results GNSS Dt Assimiltion DWD Wether Models GNSS Observtion Opertor Design Rytrcer Outlook nd Summry ISDA, Munich, Februry 214

Atmospheric Phse Dely Opticl pth length : L = S n(s) ds, n - refrction index Fermt s principle: The pth tken between two points by ry of light is the pth tht cn be trversed in the lest time. minimum of opticl pth length, L = L min Trvel time s compred to undisturbed signl propgtion in vcuum phse dely, slnt totl dely: L = n(s) ds dg = (n(s) 1) ds + (S G) = T k i S G S The Slnt Totl Dely (STD) is usully defined by neglecting the geometric dely (S-G): STD = 1 6 N ds with N = 1 6 (n 1) S ISDA, Munich, Februry 214

GPS Processing: Observtion Equtions GPS phse equtions: L k 1i = ϱ k i (t) + N k 1iλ 1 + T k i (t) + I k i (t) + c (δ i (t) δ k (t)) + ɛ for stellite k nd receiver i nd ϱ - distnce N - mbiguity T - troposphere correction δ i - receiver clock prmeter I - ionosphere correction δ k - stellite clock prmeter ɛ - residul Troposphere correction from the lest-squres djustment: Ti k = m ZTD i Ti k = m h ZHD i + m w [ZWD i + cot ε (G Ni cos φ + G Ei sin φ)] (+ δ) ISDA, Munich, Februry 214

Why Use Slnt Delys? ZTDs informtion bout horizontl structure but no verticl profiles Horizontl slnts (ε = ) verticl profiles but no horizontl structures 4 3 3 2 2 Rel STDs (5 ε ) 1 verticl profiles nd horizontl structures 1 informtion bout the 3D field 1 2 3 4 elevtion / deg. Number of entries / 2 deg. ISDA, Munich, Februry 214

Direct Problem, Observtion Opertor To compute relistic STD observtions 3D refrctivity filed is required. Numericl wether models provide 3D fields of temperture, pressure nd humidity. 1) Compute the 3D refrctivity field N(r) p N(r) = k d 1 T + k 2 e T + k 3 e, r is the position vector T 2 2) Estimte the signl pth S Solve Fermt s Principle for the given tmospheric stte nd given stllite-receiver geometry: Vritionl problem S N ds = min S = S(N)! 3) Compute the line integrl for given signl pth S Simulted STD STD = 1 6 S N ds S is prmeterized curve through the sclr field N. ISDA, Munich, Februry 214

Observtion Opertor The observtion opertor H mps the stte spce to the observtion spce nd covers ll observtions H(x) = y: H = {h i } i=1...r with h i = STD i N ds i, signl pth S i S i This is system of non-liner equtions which cn, e.g. be solved by minimizing the 3D-Vr cost function J: J(x) = 1 2 (x x) T B 1 (x x) + 1 2 (y H(x))T R 1 (y H(x)) Linerized nd discretized opertor H: H(x) = y = J c x = h j x i x=x x = H x = y System of liner equtions with mtrix H. ISDA, Munich, Februry 214

Ill-posed Inverse Problems Well-posed problems 1 A solution must exist. 2 There must be only one unique solution. 3 The solution must be stble. Tomogrphic problems violte t lest the two ltter conditions nd re therefore ill-posed. Conditioning of the mtrix An ill-posed problem leds to n ill-conditioned mtrix H. Ill-conditioned mtrices hve lrge condition numbers κ = σmx σ min σ i - singulr vlues. H 1 or (H T H) 1 re unstble nd unbounded The norml equtions (lest-squres djustment) led to meningless result: H T H x = H T m x = (H T H) 1 H T m ISDA, Munich, Februry 214

Number of Observtions - Avilble STD Dt number of slnts in 3 minutes 4 4 3 3 2 GPS GLONASS Glileo 6 7 8 9 1 11 12 13 14 15 16 17 18 time, UTC N sl 12 h N sl 3 min. N sl min. GPS 2594632 433 8642 GLONASS 26413 37281 74334 Glileo 2367267 46 899 Slnts for tomogrphy 121187 241635 GNSS slnt dely dt from 3 Germn GNSS sttions. ISDA, Munich, Februry 214

Impct of the GPS Stellite Constelltion 1:-1:15 UTC, 14 slnts ISDA, Munich, Februry 214 1:15-1:3 UTC, 11979 slnts

GNSS Tomogrphy I. GNSS Tomogrphy ISDA, Munich, Februry 214

Applictions of GNSS Tomogrphy Assimiltion of tomogrphiclly reconstructed humidity fields, retievl Smll, independent ppliction which cn run on PCs Only one vrible, e.g. N wet or bsolute humidity Rther smll number of grid nodes smll mtices H, stndrd liner lgebr (LAPACK) Provides 3D humidity fields without ny input from wether models Rel-time cpbilities ISDA, Munich, Februry 214

Design of GNSS Tomogrphy Systems GNSS STDs STDs Opertor H STD inversion humidity field Additionl observtions Synop dt, rdiosonde profiles, WVR or GPS IWF provide extr informtion nd stbility H = (H STD, H sy, H RS, H WVR,... ) Constrints Inter-voxel constrints or constrints on specific lyers Bckground x Fills gps in the observtions nd leds to more stble solutions: model fields or extrpolted surfce observtions Almost dt ssimiltion: J(x) = 1 2 (x x) T B 1 (x x) + 1 2 (y H(x))T R 1 (y H(x)) Solutions: Conjugte grdients, Tikhonov regulristion, Klmn filter, singulr vlue decomposition, ART,... ISDA, Munich, Februry 214

GPS-Tomogrphy - Germny 6 8 1 12 14 54 54 53 53 52 52 51 51 Grid resolution Grid dimension: 1 km3 Horizontl res. : 35 - km Verticl res. : 2 - m 3 min. temporl resolution 49 49 48 48 2 voxel in E-W direction 25 voxel in N-S direction 2-3 verticl voxels (up to 8-1 km) 6 8 1 12 1-1 Voxel 3 STDs 14 ISDA, Munich, Februry 214

Tomogrphic Reconstruction Slnt Totl Delys (STDs) Appliction of the Sstmoinen-Model Slnt Wet Delys (SWDs) Tomogrphic Reconstruction Estimtion of n initil field. Appliction of itertive Algebric Reconstruction Techniques MART: x k+1 j = x k j λa i j ( ) A i A m i,a i i,x k Field of the wet refrctivity N wet The bsolute humidity cn be obtined if the T-field is vilble. Tlk on dvnced tomogrphy: E. Altuntc, Kend workshop, 2 pm ISDA, Munich, Februry 214

25 4 35 25 Tomogrphic Reconstruction - horizontl Horizontl distribution of the wet refrctivity N wet t 19 m ASL. COSMO-DE: Tomogrphy: IWV: 54 53 52 51 49 48 54 53 52 51 49 48 4 3 35 4 4 54 53 52 51 49 48 3 35 35 25 3 3 3 35 3 35 35 35 35 3 35 25 35 25 35 35 3 3 3 35 35 5 6 7 8 9 1 11 12 13 14 15 N wet 5 6 7 8 9 1 11 12 13 14 15 N wet 5 6 7 8 9 1 11 12 13 14 15 IWV [kg m 2 ] 4 4 14 July 29, 16: UTC 24 26 28 3 32 34 36 38 4 42 Tomogrphic rekonstruction using 269 sttions nd 3 minutes of GPS dt. ISDA, Munich, Februry 214

Tomogrphic Reconstruction - verticl Verticl distribution of the wet refrctivity N wet up to m ASL. N wet N wet 1 2 3 4 1 2 3 4 3 4 3 2 1 47 48 49 51 52 53 54 ltitude 3 3 3 47 48 49 51 52 53 54 ltitude 3 3 4 3 2 1 ltitude ASL [m] ltitude ASL [m] COSMO DE Tomogrphy ISDA, Munich, Februry 214

Schleswig 27 8 9 h12 RSRwProfile.xy Fritzlr 27 8 9 h12 RSRwProfile.xy Greifswld 27 8 9 h12 RSRwProfile.xy Meiningen 27 8 9 h12 RSRwProfile.xy Emden 27 8 9 h12 RSRwProfile.xy Idr 27 8 9 h12 RSRwProfile.xy Bergen 27 8 9 h12 RSRwProfile.xy Stuttgrt 27 8 9 h12 RSRwProfile.xy Lindenberg 27 8 9 h12 RSRwProfile.xy Kuemmersbr 27 8 9 h12 RSRwProfile.xy Essen 27 8 9 h12 RSRwProfile.xy Muenchen 27 8 9 h12 RSRwProfile.xy Rdiosonde Vlidtion Sttion Schleswig 1 rdiosonde profile tomogrphy profile Sttion Greifswld 1 rdiosonde profile tomogrphy profile Sttion Emden 1 rdiosonde profile tomogrphy profile Sttion Bergen 1 rdiosonde profile tomogrphy profile Sttion Lindenberg 1 rdiosonde profile tomogrphy profile Sttion Essen 1 rdiosonde profile tomogrphy profile 4 4 4 4 4 4 3 3 3 3 3 3 2 2 2 2 2 2 1 1 1 1 1 1 2 4 6 8 1 12 14 16 18 2 2 4 6 8 1 12 14 16 18 2 2 4 6 8 1 12 14 16 18 2 2 4 6 8 1 12 14 16 18 2 2 4 6 8 1 12 14 16 18 2 2 4 6 8 1 12 14 16 18 2 Sttion Fritzlr 1 rdiosonde profile tomogrphy profile Sttion Meiningen 1 rdiosonde profile tomogrphy profile Sttion Idr 1 rdiosonde profile tomogrphy profile Sttion Stuttgrt 1 rdiosonde profile tomogrphy profile Sttion Kuemmersbr 1 rdiosonde profile tomogrphy profile Sttion Muenchen 1 rdiosonde profile tomogrphy profile 4 4 4 4 4 4 3 3 3 3 3 3 2 2 2 2 2 2 1 1 1 1 1 1 2 4 6 8 1 12 14 16 18 2 2 4 6 8 1 12 14 16 18 2 2 4 6 8 1 12 14 16 18 2 2 4 6 8 1 12 14 16 18 2 2 4 6 8 1 12 14 16 18 2 2 4 6 8 1 12 14 16 18 2 Rdiosonde profiles Tomogrphy profiles, interpolted to the RS sttion coordintes ISDA, Munich, Februry 214

Schleswig 27 8 28 h12 RSRwProfile.xy Fritzlr 27 8 28 h12 RSRwProfile.xy Greifswld 27 8 28 h12 RSRwProfile.xy Meiningen 27 8 28 h12 RSRwProfile.xy Emden 27 8 28 h12 RSRwProfile.xy Idr 27 8 28 h12 RSRwProfile.xy Bergen 27 8 28 h12 RSRwProfile.xy Stuttgrt 27 8 28 h12 RSRwProfile.xy Lindenberg 27 8 28 h12 RSRwProfile.xy Kuemmersbr 27 8 28 h12 RSRwProfile.xy Essen 27 8 28 h12 RSRwProfile.xy Muenchen 27 8 28 h12 RSRwProfile.xy Rdiosonde Vlidtion Sttion Schleswig 1 rdiosonde profile tomogrphy profile Sttion Greifswld 1 rdiosonde profile tomogrphy profile Sttion Emden 1 rdiosonde profile tomogrphy profile Sttion Bergen 1 rdiosonde profile tomogrphy profile Sttion Lindenberg 1 rdiosonde profile tomogrphy profile Sttion Essen 1 rdiosonde profile tomogrphy profile 4 4 4 4 4 4 3 3 3 3 3 3 2 2 2 2 2 2 1 1 1 1 1 1 2 4 6 8 1 12 14 16 18 2 2 4 6 8 1 12 14 16 18 2 2 4 6 8 1 12 14 16 18 2 2 4 6 8 1 12 14 16 18 2 2 4 6 8 1 12 14 16 18 2 2 4 6 8 1 12 14 16 18 2 Sttion Fritzlr 1 rdiosonde profile tomogrphy profile Sttion Meiningen 1 rdiosonde profile tomogrphy profile Sttion Idr 1 rdiosonde profile tomogrphy profile Sttion Stuttgrt 1 rdiosonde profile tomogrphy profile Sttion Kuemmersbr 1 rdiosonde profile tomogrphy profile Sttion Muenchen 1 rdiosonde profile tomogrphy profile 4 4 4 4 4 4 3 3 3 3 3 3 2 2 2 2 2 2 1 1 1 1 1 1 2 4 6 8 1 12 14 16 18 2 2 4 6 8 1 12 14 16 18 2 2 4 6 8 1 12 14 16 18 2 2 4 6 8 1 12 14 16 18 2 2 4 6 8 1 12 14 16 18 2 2 4 6 8 1 12 14 16 18 2 Rdiosonde profiles Tomogrphy profiles, interpolted to the RS sttion coordintes ISDA, Munich, Februry 214

Tomogrphy: GPS + GLONASS + Glileo Horizontl distribution of the wet refrctivity Nwet t 19 m ASL 8 1 9 1 11 5 12 1 35 4 95 1 588 slnts 14 July 29, 13:3 UTC 7 95 95 1 95 1 1 95 1 4 1 95 6 5 15 14 15 13 95 12 95 11 27912 slnts 1 13 Nwet Nwet 35 4 95 1 9 95 5 95 1 1 8 48 95 95 7 95 6 5 15 14 13 12 4 11 354 1 25 3 9 8 49 1 8 7 5 7 6 48 5 1 51 52 95 15 5 49 95 1 35 4 56 95 49 51 53 54 48 5 7 52 5 1 5 5 354 53 4 51 52 4 54 53 54 GPS+GLONASS+Glileo 95 GPS+GLONASS GPS 14 15 Nwet 35 4 95 1 776 slnts Resolution: 22 28 32 voxel 15 minutes of GNSS observtions ISDA, Munich, Februry 214

Tomogrphy? 54 N wet 3 km grid Slnts up to 5 km 53 52 4 blck GPS blue GLONASS white Glileo 1 11 12 13 14 ISDA, Munich, Februry 214

GNSS Dt Assimiltion II. GNSS Dt Assimiltion ISDA, Munich, Februry 214

Wether Models nd Assimiltion Systems Opertionl numericl wether models running t the DWD Globl Model: GME, ICON Resolution 2 km, 3D-Vr dt ssimiltion Europen Model: COSMO-EU Resolution 7 km, ssimiltion: nudging will be replced by ICON with locl grid refinement over EUROPE Germn Locl Model: COSMO-DE Resolution 2.8 km, ssimiltion: nudging, will soon be replced by locl trnsform ensemble Klmn filter (LETKF) ISDA, Munich, Februry 214

STD Assimiltion Opertor The STD ssimiltion opertor H STD consists of 3 prts: 1) Compute the 3D refrctivity field N(r) p N(r) = k d 1 T + k 2 e T + k 3 e, r is the position vector T 2 2) Estimte the bended signl pth S rytrcing Solve Fermt s Principle for the given tmospheric stte nd given stllite-receiver geometry: Vritionl problem S n(x, y(x), z(x)) 1 + y 2 + z 2 dx = min. 3) Compute the line integrl for given signl pth S STD = S n(x, y, z) 1 + y 2 + z 2 dx G S is prmeterized curve through the sclr field N or n, G is the geometric distnce between stellite nd receiver. ISDA, Munich, Februry 214

Fermt s Principle Vritionl Problem: n(x, y(x), z(x)) 1 + y 2 + z 2 dx = min. S The Euler-Lgrnge equtions led to set of differentil equtions: y = z = ( ny n n x n y ) (1 + y 2 + z 2 ) ( nz n n x n z ) (1 + y 2 + z 2 ) n - refrction index, n x = n x, n y = n y, n z = n z Derivtives re required in crtesin slnt coordintes but n is given in ellipsoidl coordintes: n = n(λ, β, h) ISDA, Munich, Februry 214

Fermt s Principle Difference Equtions Difference equtions with Lgrnge polynomils: j+1 L j,k(x j )y k n y (x j, y j, z j ) n(x j, y j, z j ) n x(x j, y j, z j ) n(x j, y j, z j ) k=j 1 j+1 k=j 1 L j,k(x j )z k 1 + j+1 k=j 1 L j,k(x j )y k + n z(x j, y j, z j ) n(x j, y j, z j ) n x(x j, y j, z j ) n(x j, y j, z j ) 1 + j+1 k=j 1 L j,k(x j )y k + 2 2 j+1 k=j 1 j+1 k=j 1 j+1 k=j 1 j+1 k=j 1 L j,k(x j )y k 2 L j,k(x j )z k = L j,k(x j )z k 2 L j,k(x j )z k = For given set of supporting points x i this leds to bnd mtrix of bnd width 7 which cn be solved by the Newton lgorithm. ISDA, Munich, Februry 214

Rytrcer Relistion Quntities re given in different frmes of reference: model (n) - ellipsoidl coordintes = crtesin ECEF coordintes = locl horizon system = slnt system Derivtives of the trnsformtions re required for n x, n y, n z The Newton lgorithm requires the Jcobin of the difference equtions: Exct derivtives re required s finite differences re much too slow. = second derivtives required Algorithm is very sensitive to errors in the derivtives but very stble nd fst for computing the bended signl pth: Only 1 or 2 Newton itertions re required down to elevtions of 5. ISDA, Munich, Februry 214

The Bended Signl Pth The rytrcer is strtet with predefined set of supporting points on the stellite-receiver xis ({x i }). The solution re the devitions y(x) nd z(x) from the stright line leding to the 3D signl pth S = (x, y(x), z(x)) z(x) [m] y(x) [m] 1 4 2,,,4,3,2,1, ε = 1 o ε = 5 o ε = 7 o ε = 1 o ε = 3 o 1 1 2 2 distnce to receiver, x [km] ISDA, Munich, Februry 214

Bended Signl Pth inside the Model 1 z(x) [m] 4 model top t 2 km model top t 4 km 2 y(x) [m],,,4,3,2,1, ε = 1 o ε = 5 o ε = 7 o ε = 1 o ε = 3 o 1 2 3 4 distnce to receiver, x [km] ISDA, Munich, Februry 214

Impct of the Rytrcer STD / m STD with rytrcing vs. stright line 4 3 2 1 STD rytrcing STD line 1 2 3 Elevtion ε 4 4 2 STD [mm] 2 12 1 4 2 STD / mm 4 3 2 1 1 mm error ε = 33 o STD = 1 mm 5 1 15 2 25 3 35 4 elevtion ε / deg. ISDA, Munich, Februry 214

Conclusions nd Outlook GNSS slnt delys provide vluble informtion bout sptil tmospheric structures. STDs nd ZTDs cn be ssimilted to wether models using observtion opertors but for elevtions below 35 rytrcer is needed to void systemtic overestimtion of the dely. Tomogrphiclly reconstructed humidity fields cn be ssimilted to void direct ssimiltion of lrge numbers of STDs. Tomogrphy s independent ppliction requires much more nd better observtions to reconstruct relible 3D fields from slnt delys. GLONASS, Compss nd Glileo observtions will be vilble in ner future, rel-time products within the next yers. To resolve the tmospheric wter vpour distributions more dense GNSS networks would be required. ISDA, Munich, Februry 214