B. Vedel Joint work with P.Abry (ENS Lyon), S.Roux (ENS Lyon), M. Clausel LJK, Grenoble),

Similar documents
HWT and anisotropic texture analysis

An optimality result about sample path properties of Operator Scaling Gaussian Random Fields

From Fractional Brownian Motion to Multifractional Brownian Motion

Self-Similar Anisotropic Texture Analysis: the Hyperbolic Wavelet Transform Contribution

Explicit construction of operator scaling Gaussian random fields

How much should we rely on Besov spaces as a framework for the mathematical study of images?

Integral representations in models with long memory

Generalized pointwise Hölder spaces

Explicit constructions of operator scaling Gaussian fields

Adaptive wavelet decompositions of stochastic processes and some applications

A Critical Parabolic Sobolev Embedding via Littlewood-Paley Decomposition

Besov regularity for the solution of the Stokes system in polyhedral cones

Shearlet Smoothness Spaces

HYPERBOLIC WAVELET LEADERS FOR ANISOTROPIC MULTIFRACTAL TEXTURE ANALYSIS

AALBORG UNIVERSITY. Compactly supported curvelet type systems. Kenneth N. Rasmussen and Morten Nielsen. R November 2010

Joint ICTP-TWAS School on Coherent State Transforms, Time- Frequency and Time-Scale Analysis, Applications.

A Wavelet-based Multifractal Analysis for scalar and vector fields: Application to developped turbulence

Some roles of function spaces in wavelet theory detection of singularities

Identication of the pointwise Hölder exponent of Generalized Multifractional Brownian Motion

The contribution of wavelets in multifractal analysis

Besov-type spaces with variable smoothness and integrability

Uniformly and strongly consistent estimation for the Hurst function of a Linear Multifractional Stable Motion

Anisotropy of Hölder Gaussian random fields: characterization, estimation, and application to image textures

Optimal series representations of continuous Gaussian random fields

Wavelet leaders in multifractal analysis

On a class of pseudodifferential operators with mixed homogeneities

A new class of pseudodifferential operators with mixed homogenities

Wave operators with non-lipschitz coefficients: energy and observability estimates

Hölder regularity for operator scaling stable random fields

Wavelets and Fractals

Wavelet bases for function spaces on cellular domains

Mathematical Methods in Machine Learning

A bridge between geometric measure theory and signal processing: Multifractal analysis

Aalborg Universitet. Frame decomposition of decomposition spaces Borup, Lasse Diness; Nielsen, Morten. Publication date: 2006

Function spaces on the Koch curve

Multi-operator scaling random fields

WAVELETS, SHEARLETS AND GEOMETRIC FRAMES: PART II

MATH 205C: STATIONARY PHASE LEMMA

JUHA KINNUNEN. Harmonic Analysis

Wedgelets and Image Compression

Affine and Quasi-Affine Frames on Positive Half Line

The heat kernel meets Approximation theory. theory in Dirichlet spaces

Multiscale Geometric Analysis: Thoughts and Applications (a summary)

Beyond incoherence and beyond sparsity: compressed sensing in the real world

Duality of multiparameter Hardy spaces H p on spaces of homogeneous type

Chapter Introduction

The Discrepancy Function and the Small Ball Inequality in Higher Dimensions

Applications of controlled paths

Recovering overcomplete sparse representations from structured sensing

Modelling internet round-trip time data

8 Singular Integral Operators and L p -Regularity Theory

WAVELET DOMAIN BOOTSTRAP FOR TESTING THE EQUALITY OF BIVARIATE SELF-SIMILARITY EXPONENTS

Approximation theory in neural networks

Lecture Notes on Fractals and Multifractals

Autosimilarité et anisotropie : applications en imagerie médicale

Sparse Multidimensional Representation using Shearlets

Besov Regularity and Approximation of a Certain Class of Random Fields

On the Structure of Anisotropic Frames

An inverse scattering problem in random media

A Fourier analysis based approach of rough integration

Comprehensive multifractal analysis of turbulent velocity using the wavelet leaders

A Bayesian Approach for the Multifractal Analysis of Spatio-Temporal Data

OPTIMAL POINTWISE ADAPTIVE METHODS IN NONPARAMETRIC ESTIMATION 1

Besov regularity for operator equations on patchwise smooth manifolds

Comprehensive Multifractal Analysis of Turbulent Velocity Using the Wavelet Leaders

Jordan Journal of Mathematics and Statistics (JJMS) 9(1), 2016, pp BOUNDEDNESS OF COMMUTATORS ON HERZ-TYPE HARDY SPACES WITH VARIABLE EXPONENT

Entropy and Approximation Numbers of Embeddings of Function Spaces with Muckenhoupt Weights, I

Sparse solutions of underdetermined systems

Recent Developments on Fractal Properties of Gaussian Random Fields

Singular Measures and f(α)

Smooth pointwise multipliers of modulation spaces

Hardy spaces with variable exponents and generalized Campanato spaces

On the local existence for an active scalar equation in critical regularity setting

On the p-laplacian and p-fluids

Existence, stability and instability for Einstein-scalar field Lichnerowicz equations by Emmanuel Hebey

Empirical Wavelet Transform

Littlewood-Paley theory

Joint Parameter Estimation of the Ornstein-Uhlenbeck SDE driven by Fractional Brownian Motion

MATH 263: PROBLEM SET 1: BUNDLES, SHEAVES AND HODGE THEORY

arxiv: v2 [stat.me] 8 Dec 2013

A NOTE ON WAVELET EXPANSIONS FOR DYADIC BMO FUNCTIONS IN SPACES OF HOMOGENEOUS TYPE

Asymptotic Properties and Hausdorff Dimensions of Fractional Brownian Sheets

Strengthened Sobolev inequalities for a random subspace of functions

Some new method of approximation and estimation on sphere

IPAM MGA Tutorial on Feature Extraction and Denoising: A Saga of u + v Models

Available online at ScienceDirect. Procedia Environmental Sciences 27 (2015 ) 16 20

JENAER SCHRIFTEN MATHEMATIK UND INFORMATIK

Computation of operators in wavelet coordinates

Conservation law equations : problem set

Singular Integrals. 1 Calderon-Zygmund decomposition

NEW INSIGHTS INTO THE ESTIMATION OF SCALING EXPONENTS

Orthonormal bases of regular wavelets in metric and quasi-metric spaces

OSGOOD TYPE REGULARITY CRITERION FOR THE 3D NEWTON-BOUSSINESQ EQUATION

HARMONIC ANALYSIS. Date:

Time-Scale Block Bootstrap tests for non Gaussian finite variance self-similar processes with stationary increments

ASSESSING CROSS-DEPENDENCIES USING BIVARIATE MULTIFRACTAL ANALYSIS

ANISOTROPIC, MIXED-NORM LIZORKIN TRIEBEL SPACES AND DIFFEOMORPHIC MAPS

L. Levaggi A. Tabacco WAVELETS ON THE INTERVAL AND RELATED TOPICS

R. M. Brown. 29 March 2008 / Regional AMS meeting in Baton Rouge. Department of Mathematics University of Kentucky. The mixed problem.

Nonparametric estimation using wavelet methods. Dominique Picard. Laboratoire Probabilités et Modèles Aléatoires Université Paris VII

Transcription:

Hyperbolic wavelet analysis of textures : global regularity and multifractal formalism B. Vedel Joint work with P.Abry (ENS Lyon), S.Roux (ENS Lyon), M. Clausel LJK, Grenoble), S.Jaffard(Créteil) Harmonic Analysis, Probability and Applications, Conference in honor of Aline Bonami, Orléans, June, the 10th 2014

Introduction

Introduction Same maximal directional regularity s = 0.2 More or less roughness in other direction A classical wavelet analysis will give H 1 = 0.2, H 2 = 0.2 1.3 0.15, H 3 = 0.2 1.3, H 4 = 0.2 1.7 0.12 A multifractal analysis will not distinguish between these textures and a fbm of Hurst exponent H i.

Introduction

Introduction Numerous tools of harmonic analysis are adapted to isotropic situations (functional spaces, wavelets, multifractal analysis)

Introduction Numerous tools of harmonic analysis are adapted to isotropic situations (functional spaces, wavelets, multifractal analysis) Numerous models to describe rough textures : fractional Brownian motions, multifractal functions, multifractal fields...

Introduction Numerous tools of harmonic analysis are adapted to isotropic situations (functional spaces, wavelets, multifractal analysis) Numerous models to describe rough textures : fractional Brownian motions, multifractal functions, multifractal fields... How to characterize phenomena (textures, images) whose regularity depends on the direction?

Outline Anisotropic fields and spaces

Anisotropy Anisotropy is here characterized by The axes A parameter α (0, 2) or a basis of R 2 and a matrix D α = α = 1 Isotropic case ( α 0 ) 0 2 α

Anisotropy Notion of Operator scaling (anisotropic self-similarity) a > 0 f (a Dα x) = f (a α x 1, a 2 α x 2 ) = a H f (x 1, x 2 ) Quasi (or pseudo) norm : positive continuous function, D α homogeneous ρ α (a Dα x) = aρ α (x) Properties : ρ α (x + y) C(ρ α (x) + ρ α (y)) 2 D α pseudo-norms define the same topology. ( ) Example : ρ α (x) = x 1 2 2 1/2. α + x 2 2 α

Anisotropy Anisotropic unit ball - Action of the scaling x λ Dα x on an ellipse.

Operator scaling Gaussian Random Field Operator Scaling Gaussian Random Field (OSGRF and extensions to OSSRF) - Biermé et al. (07) Fix α and a pseudo-norm ρ α 0 < H< min(α, 2 α) Define X α,h,ρα (x) = (e i x, ξ 1) dŵ (ξ), R 2 (ρ α (ξ)) (H+1)

Some anisotropic models OSGRF (and extensions to OSSRF) X α,h,ρα is a gaussian random field has stationary increments is Operator Scaling, that is X α,h,ρα (a α x 1, a 2 α x 2 ) d = a H X α,h,ρα (x 1, x 2 ).

Typical OSGRF (H=0.6) E = ( ) 1 0 0 1 ( ) 0.7 0 E = 0 1.3 E = ( ) 1 0 1 1 E = ( 1 ) 1 1 1

Anisotropic functional spaces Basic example 1 : Anisotropic Sobolev space (α = 1/2) H 3,α (R 2 ) = {f L 2 ; (s 1 = 6 = 3 α, s 2 = 2 = 3 2 α ). 6 x 1 f L 2 and 2 x 2 f L 2 and...}

Anisotropic functional spaces Basic example 2 : Anisotropic Hölder spaces : C > 0, (x, y) R 2, f (y) f (x) C (ρ α (y x)) s ( C y 1 x 1 2 α + y2 x 2 ( (α = 1/2) C y 1 x 1 4 + y 2 x 2 4 3 ) 2 s 2 α ) s/2

Anisotropic functional spaces Anisotropic Littlewood-Paley analysis : let ϕ α 0 0, S(R2 ) such that ϕ α 0 (x) = 1 if ξ 1, For j N, we define and ϕ α 0 (x) = 0 if 2 Dα ξ 1. ϕ α j (x) = ϕ α 0 (2 jdα ξ) ϕ α 0 (2 (j 1)Dα ξ). Then + j=0 ϕ α j 1, and (ϕ α j ) j 0 is called an anisotropic resolution of the unity. supp (ϕ α 0 ) R1 α, supp ( ϕ α ) j R α j+1 \ Rj 1 α, where R α j = {ξ = (ξ 1, ξ 2 ) R 2 ; ξ 1 2 jα, and ξ 2 2 j(2 α) }.

Anisotropic functional spaces Anisotropic Littlewood analysis : For f S (R 2 ) let α j (ϕ f = F 1 α f ) j. 80 60 40 20 0-20 - 40-60 - 80-80 - 60-40 - 20 0 20 40 60 80

Anisotropic functional spaces Anisotropic Besov spaces : ( α j f = F 1 ϕ α f ) j. Definition The Besov space Bp,q s,α (R 2 ), for 0 < p +, 0 < q +, s R, is defined by Bp,q s,α (R 2 ) = f S (R 2 ); 1/q 2 jsq α j f q p < + j 0.

Anisotropic wavelets Classical wavelets are clearly not adapted 40 80 30 60 20 40 10 20 0 0-10 - 20-20 - 40-30 - 60-40 - 40-30 - 20-10 0 10 20 30 40-80 - 80-60 - 40-20 0 20 40 60 80 It does not fit with the anisotropic Littlewood Paley analysis

Anisotropic wavelets : Triebel basis Hochmuth, Triebel : construction of a orthonormal anisotropic wavelet basis adapted to an anisotropy α : Looks like : ψ(2 jα x 1 k 1 )ψ(2 j(2 α) x 2 k 2 ), j 0, k 1, k 2 Z ϕ(2 jα x 1 k 1 )ψ(2 j(2 α) x 2 k 2 ), j 0, k 1, k 2 Z ψ(2 jα x 1 k 1 )ϕ(2 j(2 α) x 2 k 2 ), j 0, k 1, k 2 Z

Anisotropic wavelets : Triebel basis Hochmuth, Triebel : construction of a orthonormal anisotropic wavelet basis adapted to an anisotropy α : Looks like : ψ(2 [jα] x 1 k 1 )ψ(2 [j(2 α)] x 2 k 2 ), j 0, k 1, k 2 Z ϕ(2 [jα] x 1 k 1 )ψ(2 [j(2 α)] x 2 k 2 ), j 0, k 1, k 2 Z ψ(2 [jα] x 1 k 1 )ϕ(2 [j(2 α)] x 2 k 2 ), j 0, k 1, k 2 Z = provides characterizations of Hölder, Sobolev, Besov spaces with anisotropy α... = Bp,q s,α (R 2 ) Bp,q(R s 2 ) = Transference method... (Triebel, Theory of functions III)

What to do when α is not known?

Anisotropic wavelets Directional wavelets (J.P. Antoine et al, 93) Hyperbolic wavelet analysis (De Vore et al, 98) Curvelets (Candès - Donoho, 02) Bandlets (Le Pennec - Mallat, 03) Anisotropic wavelets (Triebel, 10) Shearlets (Kutyniok et al.,10)...

Hyperbolic wavelet analysis Hyperbolic wavelet basis : ψ j1,j 2,k 1,k 2 (x 1, x 2 ) = ψ(2 j 1 x 1 k 1 )ψ(2 j 2 x 2 k 2 ), j 1, j 2 0, k 1, k 2 Z (DeVore, Konyagin, Temlyakov, 98) Rectangular supports of size 2 j 1 2 j 2

Hyperbolic wavelet analysis Hyperbolic wavelet basis : ψ j1,j 2,k 1,k 2 (x 1, x 2 ) = ψ(2 j 1 x 1 k 1 )ψ(2 j 2 x 2 k 2 ), j 1, j 2 0, k 1, k 2 Z (DeVore, Konyagin, Temlyakov, 98) Rectangular supports of size 2 j 1 2 j 2 Hyperbolic wavelet coefficients of f c j1,j 2,k 1,k 2 = 2 j 1+j 2 f, ψ j1,j 2,k 1,k 2

Hyperbolic wavelet analysis Theorem (P. Abry, M. Clausel, S. Jaffard, S. Roux, B.V.) If f C s,α (R 2 ) then (j 1, j 2 ) sup c j1,j 2,k 1,k 2 (f ) C2 max( k 1,k 2 j 1α j, 2 2 α )s ( ) (starting with a 1D Meyer wavelet).

Hyperbolic wavelet analysis Theorem (P. Abry, M. Clausel, S. Jaffard, S. Roux, B.V.) If f C s,α (R 2 ) then (j 1, j 2 ) sup c j1,j 2,k 1,k 2 (f ) C2 max( k 1,k 2 j 1α j, 2 2 α )s ( ) Conversely, if ( ) holds, f C s,α log (R2 ). (starting with a 1D Meyer wavelet).

Hyperbolic wavelet analysis Theorem (P. Abry, M. Clausel, S. Jaffard, S. Roux, B.V.) If f C s,α (R 2 ) then (j 1, j 2 ) sup c j1,j 2,k 1,k 2 (f ) C2 max( k 1,k 2 j 1α j, 2 2 α )s ( ) Conversely, if ( ) holds, f C s,α log (R2 ). General version of this result for anisotropic Besov spaces : f B s,α p,q log (j 1,j 2 ) N 2 0 2 max( j 1 j α, 2 2 α )sq 2 (j 1 +j 2 )q p c j1,j 2,, q l p < +. (starting with a 1D Meyer wavelet).

Sketch of the proof 1st step : To obtain a characterization of B s,α p,q (R 2 ) in term of Hyperbolic wavelet characterization : θ j1,j 2 = τ j1 τ j2 with τ a 1D resolution of unity. j1,j 2 (f ) = F 1 ( j1,j 2 ( f )).

Sketch of the proof 1st step : To obtain a characterization of B s,α p,q (R 2 ) in term of Hyperbolic wavelet characterization : θ j1,j 2 = τ j1 τ j2 with τ a 1D resolution of unity. j1,j 2 (f ) = F 1 ( j1,j 2 ( f )).

Sketch of the proof 1st step : To obtain a characterization of B s,α p,q (R 2 ) in term of Hyperbolic wavelet characterization : θ j1,j 2 = τ j1 τ j2 with τ a 1D resolution of unity. j1,j 2 (f ) = F 1 ( j1,j 2 ( f )).

Sketch of the proof Isotropic case : we can replace j (f ) with j 1,j 2 j1,j 2 (f ) with max(j 1, j 2 ) = j. About 3 j terms

Sketch of the proof Anisotropic case

Sketch of the proof Anisotropic case

Sketch of the proof Anisotropic case

Sketch of the proof Anisotropic case we can replace α j (f ) with j 1,j 2 j1,j 2 (f ) with max( j 1 j α, 2 2 α ) j. About C α j terms

Sketch of the proof f B s,α p,q (R 2 )? 1/q 2 jsq α j f q p j 0 2 jsq j 0 2 jsq j 0 < + j1,j2 j 1,j 2 ; max( j 1 j α, 2 2 α ) j j1,j2 j 1,j 2 ; max( j 1 j α, 2 2 α ) j (f ) (f ) q p q p 1/q 1/q < + < +

Sketch of the proof f B s,α p,q (R 2 )? 1/q 2 jsq α j f q p j 0 2 jsq j 0 2 jsq j 0 < + j1,j2 j 1,j 2 ; max( j 1 j α, 2 2 α ) j j1,j2 j 1,j 2 ; max( j 1 j α, 2 2 α ) j (f ) (f ) q p q p 1/q 1/q < + < + OK if p = q = 2

Sketch of the proof f B s,α p,q (R 2 )? 1/q 2 jsq α j f q p j 0 2 jsq j 0 2 jsq j 0 < + j1,j2 j 1,j 2 ; max( j 1 j α, 2 2 α ) j j1,j2 j 1,j 2 ; max( j 1 j α, 2 2 α ) j (f ) (f ) q p q p 1/q 1/q < + < + OK but with a logarithmic correction in the other cases.

Sketch of the proof 2nd step : The wavelet coefficients are obtained by the Fourier analysis of j1,j 2 (f ).

Hyperbolic wavelet analysis Benefits : No a priori knowledge of α (Universal basis... but axis are known) Orthonormal basis (in particular, no redundancy useful also for synthesis)

Hyperbolic wavelet analysis Benefits : No a priori knowledge of α (Universal basis... but axis are known) Orthonormal basis (in particular, no redundancy useful also for synthesis) Applications : Texture analysis : OSGRF (cf. last part)

Beyond global regularity Analysis of complex textures taking into account local regularity and anisotropy?

Beyond global regularity Analysis of complex textures taking into account local regularity and anisotropy? In the isotropic case, a well-known tool : Multifractal analysis

Beyond global regularity Analysis of complex textures taking into account local regularity and anisotropy? In the isotropic case, a well-known tool : Multifractal analysis Definition of an extended multifractal analysis

Beyond global regularity Analysis of complex textures taking into account local regularity and anisotropy? In the isotropic case, a well-known tool : Multifractal analysis Definition of an extended multifractal analysis Done for a fixed anisotropy using Triebel bases (Ben Braiek, Ben Slimane, 2011)

Beyond global regularity Pointwise regularity : isotropic case f locally bounded on R 2, s > 0. f C s (x 0 ) if C > 0, δ and P x0 with deg(p x0 ) s such that x x 0 δ = f (x) P x0 (x) C x x 0 s where = ρ is the euclidian norm isotropic pointwise exponent : h f (x 0 ) = sup{s, f C s (x 0 )} Characterization of h f (x 0 ) via the classical wavelet basis.

Beyond global regularity Pointwise regularity : Anisotropic case f locally bounded on R 2, s > 0. f C s,α (x 0 ) if C > 0, δ and P x0 with deg α (P x0 ) s such that x x 0 δ = f (x) P x0 (x) C x x 0 s α where α = ρ α is an anisotropic pseudo-norm. Anisotropic pointwise exponent : h f,α (x 0 ) = sup{s, f C s,α (x 0 )} Characterization of h f,α (x 0 ) via the Triebel wavelet basis.

Wavelet leaders dyadic rectangle : λ = λ(j 1, j 2, k 1, k 2 ) = [ k 1 2 j, k 1 + 1 1 2 j [ [ k 2 1 2 j, k 2 + 1 2 2 j [, 2 Hyperbolic wavelet leaders For any x 0 = (a, b) R 2, where d j1,j 2 (x 0 ) = 3λ j1,j 2 (x 0 ) = [ [2j 1 a] 1 2 j 1 d λ = sup c λ. λ λ sup c λ. λ 3λ j1,j 2 (x 0 ), [2j 1 a] + 2 2 j 1 [ [ [2j 2 b] 1 2 j 2, [2j 2 b] + 2 2 j [, 2

Local regularity Hyperbolic wavelet characterizations of C s,α (x 0 ) f C s,α (x 0 ) = C > 0 such that for any j 1, j 2 one has d j1,j 2 (x 0 ) C2 max( j 1 α, 2 α )s. (1) j 2 f C ε 0 (R 2 ) + (1) = f C s,α log 2 (x 0 ).

Local regularity Hyperbolic wavelet characterizations of C s,α (x 0 ) f C s,α (x 0 ) = C > 0 such that for any j 1, j 2 one has d j1,j 2 (x 0 ) C2 max( j 1 α, 2 α )s. (1) j 2 f C ε 0 (R 2 ) + (1) = f C s,α log 2 (x 0 ). Again, same tool for all anisotropies.

Beyond global regularity Iso anisotropic Hölder sets : E f (H, α) = {x R 2, h f,α (x) = H}

Beyond global regularity Iso anisotropic Hölder sets : E f (H, α) = {x R 2, h f,α (x) = H} Hyperbolic spectrum of singularities of f on (R + { }) (0, 2) d(h, α) = dim H (E f (H, α)).

Beyond global regularity For a locally bounded function Hyperbolic partition functions S(j, p, α) = 2 2j (j 1,j 2 ); max( j 1 α, j 2 α )=j (k 1,k 2 ) Z 2 d p j 1,j 2,k 1,k 2,

Beyond global regularity For a locally bounded function Hyperbolic partition functions S(j, p, α) = 2 2j Anisotropic scaling function (j 1,j 2 ); max( j 1 α, j 2 α )=j ω f (p, α) = lim inf j (k 1,k 2 ) Z 2 d p j 1,j 2,k 1,k 2, log S(j, p, α) log 2 j,

Beyond global regularity For a locally bounded function Hyperbolic partition functions S(j, p, α) = 2 2j Anisotropic scaling function (j 1,j 2 ); max( j 1 α, j 2 α )=j ω f (p, α) = lim inf j Legendre Hyperbolic Spectrum : (k 1,k 2 ) Z 2 d p j 1,j 2,k 1,k 2, log S(j, p, α) log 2 j, L f (H, α) = inf p R {Hp ω f (p, (α, 2 α)) + 2}.

Beyond global regularity Extended multifractal formalism For f C ε 0 (R 2 ), one has (H, α) (R +) (0, 2), d f (H, α) L f (H, α). If (H, α) (R +) (0, 2), d(h, α) = L f (H, α), then f is said to satisfy the hyperbolic multifractal formalism.

Analysis of OSGRF (θ 0 = 0, α 0 = 1, H 0 = 0.2) (θ 0 = 0, α 0 = 0.7,H 0 = 0.2) (θ 0 = 0, α 0 = 0.3, H 0 = 0.2) (θ 0 = π/6, α 0 = 0.7, H 0 = 0.2)(θ 0 = π/4, α 0 = 0.7, H 0 = 0.2)(θ 0 = π/3, α 0 = 0.7, H 0 = 0.2)

Directional Regularity : Anisotropic spaces Theorem Let D α = ( ) α 0 and 0 < α 0 2 α 0 < 2. One has 1. (Biermé, Lacaux, 09) 2. (Clausel, V.) sup{s, X Dα0,H 0,ρ C s,α 0 loc } = H 0 sup{s, X Dα0,H 0,ρ C s,α } < H 0 Proof : expansion on anisotropic wavelet bases.

Estimation procedure Wavelet coefficients d j1,j 2,k 1,k 2 Structure function Z(q, j 1, j 2 ) = 1 N j1,j 2 j 1,j 2 d j1,j 2,k 1,k 2 q N j1,j 2 : number of coefficients at scale (j 1, j 2 ). ζ(q, α) = lim inf j α log 2 (Z(q, [αj], [(2 α)j])) j Estimators α q = argmax α ζ(q, α) Ĥ q = ζ(q, α)/q.

Estimation procedure Image log 2 (Z(q = 2, j 1, j 2 )) 7 5 j1 3 1 1 3 5 7 j 2

Estimation procedure Image log 2 (Z(q = 2, j 1, j 2 )) 7 α = 1.5 ; j1 5 3 αj 1 = (2 α)j 2 ; α log 2 (Z(q, αj, [(2 α)j])) 2 2.5 3 3.5 4 4.5 Interpolation 1 3 5 7 j 1 1 3 5 7 j 2

Estimation procedure Image log 2 (Z(q = 2, j 1, j 2 )) 7 α = 1.5 ; j1 5 3 αj 1 = (2 α)j 2 ; α log 2 (Z(q, αj, [(2 α)j])) 2 2.5 3 3.5 4 4.5 Regression ζ(q, α) 1 3 j 5 7 ζ(q, α) 1 1 0.5 0 0.5 1 3 5 7 j 2 0 1. 2 α

Estimation procedure Image log 2 (Z(q = 2, j 1, j 2 )) 7 α = 1 ; j1 5 3 αj 1 = (2 α)j 2 ; α log 2 (Z(q, αj, [(2 α)j])) 3 2 1 0 1 ζ(q, α) 1 3 5 7 j ζ(q, α) 1 1 0.5 0 0.5 1 3 5 7 j 2 0 1. 2 α

Estimation procedure Image log 2 (Z(q = 2, j 1, j 2 )) 7 5 j1 3 1 1 1 3 5 7 j 2 0.5 ζ(q, α) 0 0.5 0 1. 2 α

Estimation procedure Image log 2 (Z(q = 2, j 1, j 2 )) 7 j1 5 3 ˆα ˆαj 1 = (2 ˆα)j 2 ; 1 1 3 5 7 j 2 α log 2 (Z(q, αj, [(2 α)j])) 3 2 1 0 1 2 ˆζ(q) 1 3 5 7 j ζ(q, α) 1 ˆζ(q) 0.5 0 0.5 0 ˆα 1. α 2 ˆα ζ(q) = argmax α ζ(q, α) ; ˆζ(q) = ζ(q, ˆα ζ(q) ) ;

Estimation : θ 0 unknown Isotropic Anisotropic ˆα Ĥ (α 0 = 0.7, H 0 = 0.6) (α 0 = 0.3, H 0 = 0.2) (α 0 = 0.7, H 0 = 0.2) 1.3 1.8 1.3 1.4 1.1 1.1 1 0.9 0.6 0.9 0.7 1 0.9 0.8 0.7 0.6 0.5 0 π 4 π 2 θ 3π 4 π 0.2 0.7 0.6 0.5 0.4 0.3 0.2 0 π 4 Efficient and fast estimation procedures. Joint estimation of parameters (α 0, H 0, θ 0 ) π 2 θ 3π 4 π 0.7 0.5 0.4 0.3 0.2 0 π 4 Bootstrap : test for isotropy (and multifractality). π 2 θ 3π 4 π

Extended Fractional Brownian Fields (EFBF) Bonami, Estrade (03) X (a,β) = (e i x, ξ 1)f (ξ)dŵ (ξ), R 2 f (ξ) = ξ 2h(arg(ξ)) 2, H 1 = max h(arg(ξ)), H 2 = min h(arg(ξ)). H 2 = H 1 isotropic. 1 Ĥ(α) 0.5 0 100 real. (2 10, 2 10 ) 0.5 0.6 0.4 0.8 1 1.2 1 0 0.5 1 1.5 2 H 1 = 0.8 et H 2 = 0.2, H 2 = 0.4, H 2 = 0.6, H 2 = 0.8. α.

Fractional Brownian Sheet (FBS) (e i<x1,ξ1> 1)(e i<x2,ξ2> 1) B H1,H 2 (x) = R 2 ξ 1 H 1+ 1 2 ξ 2 H 2+ 1 dŵξ 1,ξ 2, 2. 1.5 Ĥ(α) 1 100 real. (2 10, 2 10 ) 0.5 0 0 0.5 1 1.5 2 H 1 = 0.8 et H 2 = 0.2, H 2 = 0.4, H 2 = 0.6, H 2 = 0.8. α.

Multifractal case : (α 0 = 0.8, H 0 = 0.7,λ 0 = 0) (α 0 = 0.8,H 0 = 0.7,λ 0 = 0.1) (α 0 = 0.8, H 0 = 0.7,λ 0 = 0.2) (α 0 = 0.8, H 0 = 0.3,λ 0 = 0) (α 0 = 0.8, H 0 = 0.3,λ 0 = 0.1) (α 0 = 0.8, H 0 = 0.3,λ 0 = 0.2)

Estimation : Isotropic Anisotropic 2 1.5 1 0.5 0 2 1.5 1 0.5 ˆα ˆζ(q) 0 4 ζ(q) D(q) h(q) c(q) 4 2 0 2 4 q 4 2 0 2 4 4 2 0 2 2 1.5 1 0.5 0 2 1.5 1 0.5 ˆD(h) 0 0.2 0.6 1 h.

Conclusion A lot has been done for analysis at prescribed anisotropy

Conclusion A lot has been done for analysis at prescribed anisotropy Hyperbolic wavelet analysis is an efficient tool for unknown anisotropy

Conclusion A lot has been done for analysis at prescribed anisotropy Hyperbolic wavelet analysis is an efficient tool for unknown anisotropy What about axes (global, local)?

Conclusion A lot has been done for analysis at prescribed anisotropy Hyperbolic wavelet analysis is an efficient tool for unknown anisotropy What about axes (global, local)? Anisotropic multifractal models

Thank you for your attention!