The GW approximation in 90 minutes or so. F. Bruneval Service de Recherches de Métallurgie Physique CEA, DEN

Similar documents
GW approximation in ABINIT

The GW Approximation. Lucia Reining, Fabien Bruneval

Introduction to Density Functional Theory. Jeremie Zaffran 2 nd year-msc. (Nanochemistry)

Probabilistic method to determine electron correlation energy

5. Response properties in ab initio schemes

Robert Eisberg Second edition CH 09 Multielectron atoms ground states and x-ray excitations

8. Superfluid to Mott-insulator transition

Lecture 14: Forces and Stresses

Homework 4. 1 Electromagnetic surface waves (55 pts.) Nano Optics, Fall Semester 2015 Photonics Laboratory, ETH Zürich

Note on the Electron EDM

This chapter illustrates the idea that all properties of the homogeneous electron gas (HEG) can be calculated from electron density.

Molecular Dynamics and Density Functional Theory

Three-dimensional Yang-Mills theory as a testbed for truncations of Dyson-Schwinger equations

ψ ij has the eigenvalue

Röntgen s experiment in X-ray Spectroscopy. Röntgen s experiment. Interaction of x-rays x. x-rays. with matter. Wavelength: m

Lecture 3. Interaction of radiation with surfaces. Upcoming classes

Numerical Heat and Mass Transfer

HW #6, due Oct Toy Dirac Model, Wick s theorem, LSZ reduction formula. Consider the following quantum mechanics Lagrangian,

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

arxiv:cond-mat/ v2 [cond-mat.mes-hall] 3 Jan 2006

Using TranSIESTA (II): Integration contour and tbtrans

where the sums are over the partcle labels. In general H = p2 2m + V s(r ) V j = V nt (jr, r j j) (5) where V s s the sngle-partcle potental and V nt

Advanced Quantum Mechanics

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system

1) Silicon oxide has a typical surface potential in an aqueous medium of ϕ,0

Neutral-Current Neutrino-Nucleus Inelastic Reactions for Core Collapse Supernovae

Exactly solvable Richardson-Gaudin models in nuclear structure

Rate of Absorption and Stimulated Emission

SUPPLEMENTARY INFORMATION

A how to guide to second quantization method.

Multi-electron atoms (11) 2010 update Extend the H-atom picture to more than 1 electron: H-atom sol'n use for N-elect., assume product wavefct.

The Feynman path integral

Measurement of Radiation: Exposure. Purpose. Quantitative description of radiation

1. Mean-Field Theory. 2. Bjerrum length

A non-perturbative study of the correlation functions of three-dimensional Yang-Mills theory

Towards three-loop QCD corrections to the time-like splitting functions

GW Approximation in ωk space

14 The Postulates of Quantum mechanics

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM

V.C The Niemeijer van Leeuwen Cumulant Approximation

Formal solvers of the RT equation

) is the unite step-function, which signifies that the second term of the right-hand side of the

Errors for Linear Systems

Multiscale Modeling UCLA Prof. N. Ghoniem

Department of Chemistry Purdue University Garth J. Simpson

Physics 5153 Classical Mechanics. Principle of Virtual Work-1

1 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations

Progress & challenges with Luttinger-Ward approaches for going beyond DFT

Snce h( q^; q) = hq ~ and h( p^ ; p) = hp, one can wrte ~ h hq hp = hq ~hp ~ (7) the uncertanty relaton for an arbtrary state. The states that mnmze t

Quantum Field Theory III

STATISTICAL MECHANICS

Basics of density functional perturbation theory

Relaxation in water /spin ice models

The Electronic Structure of Dye- Sensitized TiO 2 Clusters from Many- Body Perturbation Theory

This model contains two bonds per unit cell (one along the x-direction and the other along y). So we can rewrite the Hamiltonian as:

Many-Body Perturbation Theory. Lucia Reining, Fabien Bruneval

Introduction to circuit analysis. Classification of Materials

Announcements. Lecture #2

Electronic band structure, sx-lda, Hybrid DFT, LDA+U and all that. Keith Refson STFC Rutherford Appleton Laboratory

Non-interacting Spin-1/2 Particles in Non-commuting External Magnetic Fields

5.76 Lecture #5 2/07/94 Page 1 of 10 pages. Lecture #5: Atoms: 1e and Alkali. centrifugal term ( +1)

Turbulence. Lecture 21. Non-linear Dynamics. 30 s & 40 s Taylor s work on homogeneous turbulence Kolmogorov.

Physics 181. Particle Systems

5.04, Principles of Inorganic Chemistry II MIT Department of Chemistry Lecture 32: Vibrational Spectroscopy and the IR

Applied Nuclear Physics (Fall 2004) Lecture 23 (12/3/04) Nuclear Reactions: Energetics and Compound Nucleus

EAM series and their history

CI/CEPA. Introduction CI Size Consistency Derivation CEPA EPV Results Remarks

Physics 53. Rotational Motion 3. Sir, I have found you an argument, but I am not obliged to find you an understanding.

Multi-Scale Modeling from First Principles

Supplemental document

The Order Relation and Trace Inequalities for. Hermitian Operators

Many electrons: Density functional theory Part II. Bedřich Velický VI.

1 Rabi oscillations. Physical Chemistry V Solution II 8 March 2013

Neutral Electronic Excitations:

Ŝ z (s 1 ) m (s 1 ), m 1/2, m 1/2. Note that only ion states

Intermolecular force fields and how they can be determined

Independent electrons in an effective potential

1 (1 + ( )) = 1 8 ( ) = (c) Carrying out the Taylor expansion, in this case, the series truncates at second order:

Lecture 10. Reading: Notes and Brennan Chapter 5

One can coose te bass n te 'bg' space V n te form of symmetrzed products of sngle partcle wavefunctons ' p(x) drawn from an ortonormal complete set of

Solutions to Problems Fundamentals of Condensed Matter Physics

Average Matrix Relative Sensitivity Factors (AMRSFs) for Auger Electron Spectroscopy (AES)

Teoría del Funcional de la Densidad (Density Functional Theory)

Photoelectronic properties of chalcopyrites for photovoltaic conversion:

OPTICAL POTENTIAL APPROACH TO THE SLOW POSITRON SCATTERING FROM HELIUM ATOM UDC ; A. R. Tančić 1, M. R. Nikolić 2

Singular Value Decomposition: Theory and Applications

Amplification and Relaxation of Electron Spin Polarization in Semiconductor Devices

Lecture 8 Modal Analysis

Digital Signal Processing

APPENDIX F A DISPLACEMENT-BASED BEAM ELEMENT WITH SHEAR DEFORMATIONS. Never use a Cubic Function Approximation for a Non-Prismatic Beam

Lecture 4. Macrostates and Microstates (Ch. 2 )

EEE 241: Linear Systems

Linear-response excitations. Silvana Botti

Automated calculations for MPI

( ) + + REFLECTION FROM A METALLIC SURFACE

Electronic Structure for Excited States (multiconfigurational methods) Spiridoula Matsika

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1

A particle in a state of uniform motion remain in that state of motion unless acted upon by external force.

The Exact Formulation of the Inverse of the Tridiagonal Matrix for Solving the 1D Poisson Equation with the Finite Difference Method

Electron-Impact Double Ionization of the H 2

Transcription:

The GW approxmaton n 90 mnutes or so Servce de Recherches de Métallurge Physque CEA, DEN DFT tutoral, Lyon december 2012

Outlne I. Standard DFT suffers from the band gap problem II. Introducton of the Green's functon III. The GW approxmaton IV. The GW code n ABINIT and the G0W0 method V. Some applcatons DFT tutoral, Lyon december 2012

Standard DFT has unfortunately some shortcomngs band gap Band gap problem! after van Schlfgaarde et al PRL 96 226402 (2008) DFT tutoral, Lyon december 2012

A pervasve problem Effectve masses for transport n semconductors Optcal absorpton onset Defect formaton energy, dopant solublty Photoemsson Exp. DFT tutoral, Lyon december 2012

How do go beyond wthn the DFT framework? Not easy to fnd mprovement wthn DFT framework There s no such thng as a perturbatve expanson Perdew's Jacob's ladder does not help for the band gap after J. Perdew JCP (2005). Need to change the overall framework! DFT tutoral, Lyon december 2012

Outlne I. Standard DFT suffers from the band gap problem II. Introducton of the Green's functon III. The GW approxmaton IV. The GW code n ABINIT and the G0W0 method V. Some applcatons DFT tutoral, Lyon december 2012

Many-body perturbaton theory Hstorcally older than the DFT (from the 40-50's)! Bg names: Feynman, Schwnger, Hubbard, Hedn, Lundqvst Green's functons = propagator G r t, r ' t ' = DFT tutoral, Lyon december 2012

The Green's functon N,0 Exact ground state wavefuncton: Creaton, annhlaton operator: 1 2 r t N,0 r t, r t s a (N+1) electron wavefuncton not necessarly n the ground state r ' t ' N,0 s another (N+1) electron wavefuncton Let's compare the two of them! DFT tutoral, Lyon december 2012

Green's functon defnton N,0 r t r ' t ' N, 0 2 1 e = G r t, r ' t ' for t t ' Mesures how an extra electron propagates from (r't') to (rt). DFT tutoral, Lyon december 2012

Green's functon defnton N,0 r ' t ' r t N, 0 2 1 h for = G r ' t ', r t t ' t Mesures how a mssng electron (= a hole) propagates from (rt) to (r't'). DFT tutoral, Lyon december 2012

Fnal expresson for the Green's functon G r t, r ' t ' = N,0 T [ r t r ' t ' ] N, 0 tme-orderng operator e G r t, r ' t ' =G r t, r ' t ' h G r ' t ', r t Compact expresson that descrbes both the propagaton of an extra electron and an extra hole DFT tutoral, Lyon december 2012

Lehman representaton G r, r ', t t ' = N,0 T [ r t r ' t ' ] N,0 Closure relaton M, M, M, Lehman representaton: G r, r ', = where { f r f r ' ± E N 1, E N,0 = E N,0 E N 1, Exact exctaton energes! DFT tutoral, Lyon december 2012

Related to photoemsson spectroscopy Ekn hν Energy conservaton: before after h E N,0 =E kn E N 1, Quaspartcle energy: =E N,0 E N 1, =E kn h DFT tutoral, Lyon december 2012

And nverse photoemsson spectroscopy hν Ekn Energy conservaton: before after E kn E N,0 =h E N 1, Quaspartcle energy: =E N 1, E N,0 =E kn h DFT tutoral, Lyon december 2012

Other propertes of the Green's functon Galtsk-Mgdal formula for the total energy: E total = 1 d Tr [ h0 Im G ] Expectaton value of any 1 partcle operator (local or non-local) O =lm Tr [ OG ] t t ' DFT tutoral, Lyon december 2012

Outlne I. Standard DFT suffers from the band gap problem II. Introducton of the Green's functon III. The GW approxmaton IV. The GW code n ABINIT and the G0W0 method V. Some applcatons DFT tutoral, Lyon december 2012

How to calculate the Green's functon? Feynman dagrams Hedn's functonal approach PRA (1965). DFT tutoral, Lyon december 2012

Hedn's coupled equatons 6 coupled equatons: 1= r 1 t 1 1 2= r 2 t 2 2 G 1,2 =G 0 1,2 d34 G0 1,3 3,4 G 4,2 1,2 = d34 G 1,3 W 1,4 4,2,3 1,2,3 = 1,2 1,3 d 4567 Dyson equaton self-energy 1,2 G 4,6 G 5,7 6,7,3 G 4,5 vertex 0 1,2 = d34 G 1,3 G 4,1 3,4,2 polarzablty 1,2 = 1,2 d3 v 1,3 0 3,2 delectrc matrx 1 W 1,2 = d3 1,3 v 3,2 screened Coulomb nteracton DFT tutoral, Lyon december 2012

Smplest approxmaton 1,2 = G 1,2 v 1,2 t Fock exchange Dyson equaton: v 1,2 G=G0 G 0 G G=G0 G 0 G0... G 1,2 Not enough: Hartree-Fock s known to perform poorly for solds DFT tutoral, Lyon december 2012

Hartree-Fock approxmaton for band gaps DFT tutoral, Lyon december 2012

Hedn's coupled equatons 6 coupled equatons: G 1,2 =G 0 1,2 d34 G0 1,3 3,4 G 4,2 1,2 = d34 G 1,3 W 1,4 4,2,3 1,2,3 = 1,2 1,3 d 4567 Dyson equaton self-energy 1,2 G 4,6 G 5,7 6,7,3 G 4,5 0 1,2 = d34 G 1,3 G 4,1 3,4,2 1,2 = 1,2 d3 v 1,3 0 3,2 1 W 1,2 = d3 1,3 v 3,2 screened Coulomb nteracton DFT tutoral, Lyon december 2012

Hedn's coupled equatons 6 coupled equatons: G 1,2 =G 0 1,2 d34 G0 1,3 3,4 G 4,2 1,2 = d34 G 1,3 W 1,4 4,2,3 1,2,3 = 1,2 1,3 d 4567 Dyson equaton self-energy 1,2 G 4,6 G 5,7 6,7,3 G 4,5 0 1,2 = d34 G 1,3 G 4,1 3,4,2 1,2 = 1,2 d3 v 1,3 0 3,2 1 W 1,2 = d3 1,3 v 3,2 screened Coulomb nteracton DFT tutoral, Lyon december 2012

Hedn's coupled equatons 6 coupled equatons: G 1,2 =G 0 1,2 d34 G0 1,3 3,4 G 4,2 1,2 = d34 G 1,3 W 2 1,4 2 4,2,3 1,2,3 = 1,2 1,3 d 4567 Dyson equaton self-energy 1,2 G 4,6 G 5,7 6,7,3 G 4,5 0 1,2 = d34 G 1,3 G 3,4,2 2 4,1 2 1,2 = 1,2 d3 v 1,3 0 3,2 1 W 1,2 = d3 1,3 v 3,2 screened Coulomb nteracton DFT tutoral, Lyon december 2012

Here comes the GW approxmaton 1,2 = G 1,2 W 1,2 GW approxmaton 0 1,2 = G 1,2 G 2,1 RPA approxmaton 1,2 = 1,2 d3 v 1,3 0 3,2 W 1,2 = d3 1 1,3 v 3,2 DFT tutoral, Lyon december 2012

What s W? Interacton between electrons n vacuum: 2 1 e v ( r, r ' )= 4 πε0 r r ' Interacton between electrons n a homogeneous polarzable medum: 2 1 e W (r, r ' )= 4 π ε0 ε r r r ' Delectrc constant of the medum Dynamcally screened nteracton between electrons n a general medum: 2 1 e ε ( r, r ' ', ω) W (r, r ', ω)= d r ' ' 4 π ε0 r ' ' r ' DFT tutoral, Lyon december 2012

W s frequency dependent W can measured drectly by Inelastc X-ray Scatterng W q=0.80 a.u, Slcon Plasmon frequency ω [ev] Zero below the band gap H-C Wessker et al. PRB (2010) DFT tutoral, Lyon december 2012

GW has a super Hartree-Fock GW Approxmaton Hartree-Fock Approxmaton x r 1, r 2 = xc r 1, r 2, = d ' G r 1, r 2, ' v r 1, r 2 2 d ' G r 1, r 2, ' W r 1, r 2, ' 2 = bare exchange x r 1, r 2 Bare exchange c r 1, r 2, + correlaton GW s nothng else but a screened verson of Hartree-Fock. Non Hermtan dynamc DFT tutoral, Lyon december 2012

Summary: DFT vs GW Electronc densty r Local and statc exchange-correlaton potental v xc r Approxmatons:, GGA, hybrds Green's functon G r t, r ' t ' Non-local, dynamc Depends onto empty states exchange-correlaton operator = self-energy xc r, r ', GW approxmaton GW r t, r ' t ' =G r t, r ', t ' W r t, r ' t ' DFT tutoral, Lyon december 2012

GW approxmaton gets good band gap No more a band gap problem! after van Schlfgaarde et al PRL 96 226402 (2008) DFT tutoral, Lyon december 2012

Outlne I. Standard DFT suffers from the band gap problem II. Introducton of the Green's functon III. The GW approxmaton IV. The GW code n ABINIT and the G0W0 method V. Some applcatons DFT tutoral, Lyon december 2012

Avalable GW codes DFT tutoral, Lyon december 2012

Avalable GW codes has a GW code nsde DFT tutoral, Lyon december 2012

How to get G? Remember the Lehman representaton: f r f r ' ± G r, r ', = where the f r and the are complcated quanttes But for ndependent electrons lke Kohn-Sham electrons: G r, r ', = KS KS KS KS r r' ± Ths can be consdered as the best guess for G One can get W and GW DFT tutoral, Lyon december 2012

GW as a perturbaton wth respect to GW quaspartcle equaton: [ h0 xc ] = GW GW GW GW KS equaton: [h 0 v Approxmaton : xc ] = GW DFT tutoral, Lyon december 2012

GW as a perturbaton wth respect to GW quaspartcle equaton: [ h 0 xc GW ] = GW KS equaton: [ h v ] = GW = xc 0 [ xc GW v xc ] DFT tutoral, Lyon december 2012

Lnearzaton of the energy dependance GW = [ xc GW v xc ] Not yet known Taylor expanson: GW xc = xc GW xc... Fnal result: GW = where Z [ xc xc Z =1/ 1 v xc ] DFT tutoral, Lyon december 2012

Quaspartcle equaton A typcal ABINIT ouptput for Slcon at Gamma pont k = Band 4 5 0.000 0.000 0.000 E0 <Vxc> SgX SgC(E0) 0.506-11.291-12.492 0.744 3.080-10.095-5.870-3.859 E^0_gap E^GW_gap GW = Z dsgc/de Sg(E) 0.775-0.291-11.645 0.775-0.290-9.812 E-E0-0.354 0.283 E 0.152 3.363 2.574 3.212 Z [ xc v xc ] DFT tutoral, Lyon december 2012

Flow chart of a typcal GW calculaton DFT, occuped AND empty states calculate W If self-consstent GW GW, Egenvalues calculate G * W GW k DFT tutoral, Lyon december 2012

Outlne I. Standard DFT suffers from the band gap problem II. Introducton of the Green's functon III. The GW approxmaton IV. The GW code n ABINIT and the G0W0 method V. Some applcatons DFT tutoral, Lyon december 2012

GW approxmaton gets good band gap No more a band gap problem! after van Schlfgaarde et al PRL 96 226402 (2008) DFT tutoral, Lyon december 2012

Clusters de sodum Na 4 e Na 4 4 E 0 Na 4 E 0 Na = { HOMO, Na4 LUMO, Na4 + Na4 /Na4 Bruneval PRL (2009) DFT tutoral, Lyon december 2012

Defect calculaton wthn GW approxmaton Up to 215 atoms Cubc slcon carbde DFT tutoral, Lyon december 2012

Photolumnescence of VS Bruneval and Roma PRB (2011) DFT tutoral, Lyon december 2012

Band Offset at the nterface between two semconductors Very mportant for electroncs! Example: S/SO2 nterface for transstors GW correcton wth respect to R. Shaltaf PRL (2008). DFT tutoral, Lyon december 2012

Summary The GW approxmaton solves the band gap problem! The calculatons are extremely heavy, so that we resort to many addtonal techncal approxmatons: method named G0W0 The complexty comes from Dependance upon empty states Non-local operators Dynamc operators that requres freq. convolutons There are stll some other approxmatons lke the Plasmon-Pole model... that I'll dscuss durng the practcal sesson... DFT tutoral, Lyon december 2012