Lecture 2: Geometrical Optics 1. Spherical Waves. From Waves to Rays. Lenses. Chromatic Aberrations. Mirrors. Outline

Similar documents
Astro 500 A500/L-7 1

Telescopes and Optics II. Observational Astronomy 2017 Part 4 Prof. S.C. Trager

Laser Optics-II. ME 677: Laser Material Processing Instructor: Ramesh Singh 1

Lecture 2: Basic Astronomical Optics. Prisms, Lenses, and Mirrors

Ray Optics. 30 teaching hours (every wednesday 9-12am) labs as possible, tutoring (see NW s homepage on atomoptic.

Offset Spheroidal Mirrors for Gaussian Beam Optics in ZEMAX

Optical/IR Observational Astronomy Telescopes I: Optical Principles. David Buckley, SAAO. 24 Feb 2012 NASSP OT1: Telescopes I-1

Moonbows. Friday somebody asked if rainbows can be seen at night.

Name Final Exam May 1, 2017

UNIT-5 EM WAVES UNIT-6 RAY OPTICS

5. Aberration Theory

ROINN NA FISICE Department of Physics

Prof. Jose Sasian OPTI 518. Introduction to aberrations OPTI 518 Lecture 14

20. Aberration Theory

PRINCIPLES OF PHYSICAL OPTICS

Brewster Angle and Total Internal Reflection

School. Team Number. Optics

Physics 102: Lecture 16 Introduction to Mirrors

Concave mirrors. Which of the following ray tracings is correct? A: only 1 B: only 2 C: only 3 D: all E: 2& 3

Vågrörelselära och optik

Physics 20 Work Plan

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

Chapter 1. Ray Optics

Electromagnetic Waves Across Interfaces

Introduction to aberrations OPTI 518 Lecture 14

Lecture 19 Optical MEMS (1)

PhysicsAndMathsTutor.com 1

Magnifying Glass. Angular magnification (m): 25 cm/f < m < 25cm/f + 1. image at 25 cm (= normal near point) relaxed eye, image at (normal) far point

Designing a Computer Generated Hologram for Testing an Aspheric Surface

Part 1 - Basic Interferometers for Optical Testing

Physics 3312 Lecture 7 February 6, 2019

n The visual examination of the image of a point source is one of the most basic and important tests that can be performed.

EP 225 Waves, Optics, and Fields

Vector diffraction theory of refraction of light by a spherical surface

Lecture 2: Thin Films. Thin Films. Calculating Thin Film Stack Properties. Jones Matrices for Thin Film Stacks. Mueller Matrices for Thin Film Stacks

Lens Design II. Lecture 1: Aberrations and optimization Herbert Gross. Winter term

Lecture 8 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell

Course Secretary: Christine Berber O3.095, phone x-6351,

Astronomical Optics. Second Edition DANIEL J. SCHROEDER ACADEMIC PRESS

Fig. 2 The image will be in focus everywhere. It's size changes based on the position of the focal plane.

Telescopes. Astronomy 320 Wednesday, February 14, 2018

Typical anisotropies introduced by geometry (not everything is spherically symmetric) temperature gradients magnetic fields electrical fields

Introduction to aberrations OPTI518 Lecture 5

Real Telescopes & Cameras. Stephen Eikenberry 05 October 2017

2.71. Final examination. 3 hours (9am 12 noon) Total pages: 7 (seven) PLEASE DO NOT TURN OVER UNTIL EXAM STARTS PLEASE RETURN THIS BOOKLET

Since focal length = focal power

A system of two lenses is achromatic when the separation between them is

Optical Physics of Rifle Scopes

Lecture 8: Polarimetry 2. Polarizers and Retarders. Polarimeters. Scattering Polarization. Zeeman Effect. Outline

Final examination. 3 hours (9am 12 noon) Total pages: 7 (seven) PLEASE DO NOT TURN OVER UNTIL EXAM STARTS PLEASE RETURN THIS BOOKLET

Electromagnetic fields and waves

The Treptow Giant Telescope in Berlin is the longest moveable refracting telescope on Earth. Some of its properties are summarised below:

Optical/IR Observational Astronomy Telescopes I: Telescope Basics. David Buckley, SAAO

Metrology and Sensing

Light matter interaction. Ground state spherical electron cloud. Excited state : 4 quantum numbers n principal (energy)

Optical Instruments. Chapter 25. Simple Magnifier. Clicker 1. The Size of a Magnified Image. Angular Magnification 4/12/2011

Metrology and Sensing

Lecture 4: Optics / C2: Quantum Information and Laser Science

Applications of the Abbe Sine Condition in Multi-Channel Imaging Systems

21. Propagation of Gaussian beams

A Question. Simple Magnifier. Magnification by a Lens 11/29/2011. The last lecture

Lecture 4: Anisotropic Media. Dichroism. Optical Activity. Faraday Effect in Transparent Media. Stress Birefringence. Form Birefringence

λ Fig. 2 Name: y direction. In what c) in the + y direction d) in the y direction e) in the x direction

Why Use a Telescope?

Optical/IR Observational Astronomy Telescopes I: Telescope Basics. David Buckley, SAAO

Phys 100 Astronomy (Dr. Ilias Fernini) Review Questions for Chapter 5

Lecture 5: Polarization. Polarized Light in the Universe. Descriptions of Polarized Light. Polarizers. Retarders. Outline

Optical Systems Program of Studies Version 1.0 April 2012

Chapter 3 Telescopes 2/19/2014. Lecture Outline. 3.1 Optical Telescopes. 3.1 Optical Telescopes. Units of Chapter Optical Telescopes

Ground- and Space-Based Telescopes. Dr. Vithal Tilvi

Unit 4 Parent Guide: Waves. What is a wave?

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

Chapter 1 - The Nature of Light

LC circuit: Energy stored. This lecture reviews some but not all of the material that will be on the final exam that covers in Chapters

Lecture Outlines. Chapter 5. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Chapter Ray Optics and Optical Instrument

Chapter 5 Telescopes

LAB DEMONSTRATION OF INTERFEROMETRIC

S. Blair September 27,

Tools of Astronomy: Telescopes

Solutions to Problems in Chapter 2: Waves

Engineering Physics 1 Prof. G.D. Vermaa Department of Physics Indian Institute of Technology-Roorkee

Light.notebook May 03, 2016

MIDTERM 3 REVIEW SESSION. Dr. Flera Rizatdinova

Astronomy 203 practice final examination

Introduction to Computer Graphics (Lecture No 07) Ellipse and Other Curves

Wave Propagation in Uniaxial Media. Reflection and Transmission at Interfaces

A small object is placed a distance 2.0 cm from a thin convex lens. The focal length of the lens is 5.0 cm.

Astro 500 A500/L-6 1

- 1 - θ 1. n 1. θ 2. mirror. object. image

LECTURE 23: LIGHT. Propagation of Light Huygen s Principle

= 115V. = = = C/m 2

Lecture 11 Optical Instruments Overview

Calculating Thin Film Stack Properties. Polarization Properties of Thin Films

LECTURE 23: LIGHT. Propagation of Light Huygen s Principle

Telescopes. Bởi: OpenStaxCollege

Chapter 5 Wave-Optics Analysis of Coherent Optical Systems

Lecture notes 5: Diffraction

CONIC SECTIONS TEST FRIDAY, JANUARY 5 TH

Optics and Telescopes

Transcription:

Lecture 2: Geometrical Optics 1 Outline 1 Spherical Waves 2 From Waves to Rays 3 Lenses 4 Chromatic Aberrations 5 Mirrors Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Astronomical Telescopes and Instruments, Lecture 2: Geometrical Optics 1 1

Introduction to Geometrical Optics Spherical Waves wave equations for dielectric 2 E µɛ c 2 2 E t 2 = 0 spherical wave solution E (r, t) = E 0 A r ei(kr ωt) E 0 : polarization A: a constant r: radial distance from center/source of wave mostly part of spherical wave Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Astronomical Telescopes and Instruments, Lecture 2: Geometrical Optics 1 2

Light Sources light source: collection of sources of spherical waves astronomical sources: almost exclusively incoherent lasers, masers: coherent sources spherical wave originating at very large distance can be approximated by plane wave Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Astronomical Telescopes and Instruments, Lecture 2: Geometrical Optics 1 3

Ideal Optics ideal optics: spherical waves from any point in object space are imaged into points in image space corresponding points are called conjugate points focal point: center of converging or diverging spherical wavefront object space and image space are reversible Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Astronomical Telescopes and Instruments, Lecture 2: Geometrical Optics 1 4

From Waves to Rays: General Optical System ideal optical system transforms plane wavefront into spherical, converging wavefront Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Astronomical Telescopes and Instruments, Lecture 2: Geometrical Optics 1 5

From Waves to Rays: Azimuthal Symmetry most optical systems are azimuthally symmetric axis of symmetry is optical axis Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Astronomical Telescopes and Instruments, Lecture 2: Geometrical Optics 1 6

From Waves to Rays: Locally Flat Wavefronts rays are normal to local wave (locations of constant phase) local wave around rays is assumed to be plane wave Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Astronomical Telescopes and Instruments, Lecture 2: Geometrical Optics 1 7

From Waves to Rays: Rays geomtrical optics works with rays only rays are reflected and refracted according to Fresnel equations phase is neglected incoherent sum rays can carry polarization information Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Astronomical Telescopes and Instruments, Lecture 2: Geometrical Optics 1 8

From Waves to Rays: Finite Object Distance object may also be at finite distance also in astronomy: reimaging within instruments and telescopes Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Astronomical Telescopes and Instruments, Lecture 2: Geometrical Optics 1 9

Geometrical Optics Example: SPEX Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Astronomical Telescopes and Instruments, Lecture 2: Geometrical Optics 1 10

Limitations of Geometrical Optics optical system cannot collect all parts of spherical wavefront diffraction geometrical optics neglects diffraction effects geometrical optics: λ 0 physical optics λ > 0 simplicity of geometrical optics mostly outweighs limitations Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Astronomical Telescopes and Instruments, Lecture 2: Geometrical Optics 1 11

Lenses Definitions lens = refracting device, discontinuity in material properties perfect lens for infinite object: makes plane wavefront into spherical wavefront material Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Astronomical Telescopes and Instruments, Lecture 2: Geometrical Optics 1 12

Surface Shape of Perfect Lens lens material has index of refraction n o z(r) n + z(r) f = constant n z(r) + r 2 + (f z(r)) 2 = constant solution z(r) is hyperbola with eccentricity e = n > 1 Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Astronomical Telescopes and Instruments, Lecture 2: Geometrical Optics 1 13

Conic Sections circle and ellipses: cuts angle < cone angle parabola: angle = cone angle hyperbola: cut along axis Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Astronomical Telescopes and Instruments, Lecture 2: Geometrical Optics 1 14

en.wikipedia.org/wiki/conic_constant Conic Constant r 2 2Rz + (1 + K )z 2 = 0 for z(0) = 0 z = r 2 R 1+ r 1 1 (1+K ) r2 R 2 R radius of curvature K conic constant K = e 2, e eccentricity prolate elliptical (K > 0) spherical (K = 0) oblate elliptical (0 > K > 1) parabolic (K = 1) hyperbolic (K < 1) sphere is good approximation to all conic sections close to origin Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Astronomical Telescopes and Instruments, Lecture 2: Geometrical Optics 1 15

Foci of Conic Sections sphere has single focus ellipse has two foci parabola (ellipse with e = 1) has one focus (and another one at infinity) hyperbola (e > 1) has two focal points en.wikipedia.org/wiki/file:eccentricity.svg Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Astronomical Telescopes and Instruments, Lecture 2: Geometrical Optics 1 16

Paraxial Optics assumption 1: Snell s law for small angles of incidence (sin x x): n φ = φ assumption 2: ray hight h small so that optics curvature can be neglected (plane optics, (cos x 1)) assumption 3: tanφ φ = h/f Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Astronomical Telescopes and Instruments, Lecture 2: Geometrical Optics 1 17

Spherical Lenses if two spherical surfaces have same radius, can fit them together surface error requirement less than λ/10 5cm diameter lens, 500 nm wavelength 1ppm accuracy grinding spherical surfaces is easy most optical surfaces are spherical Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Astronomical Telescopes and Instruments, Lecture 2: Geometrical Optics 1 18

Planoconvex Lenses Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Astronomical Telescopes and Instruments, Lecture 2: Geometrical Optics 1 19

Types of Lenses en.wikipedia.org/wiki/file:lens2.svg Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Astronomical Telescopes and Instruments, Lecture 2: Geometrical Optics 1 20

Positive/Converging Spherical Lens Parameters commons.wikimedia.org/wiki/file:lens1.svg center of curvature and radii with signs: R 1 > 0, R 2 < 0 center thickness: d with material index of refraction positive focal length f Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Astronomical Telescopes and Instruments, Lecture 2: Geometrical Optics 1 21

Negative/Diverging Spherical Lens Parameters commons.wikimedia.org/wiki/file:lens1b.svg note different signs of radii: R 1 < 0, R 2 > 0 virtual focal point negative focal length Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Astronomical Telescopes and Instruments, Lecture 2: Geometrical Optics 1 22

General Lens Setup: Real Image commons.wikimedia.org/wiki/file:lens3.svg object distance S 1, object height h 1 image distance S 2, image height h 2 axis through two centers of curvature is optical axis surface point on optical axis is the vertex chief ray through center maintains direction Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Astronomical Telescopes and Instruments, Lecture 2: Geometrical Optics 1 23

General Lens Setup: Virtual Image commons.wikimedia.org/wiki/file:lens3b.svg note object closer than focal length of lens virtual image Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Astronomical Telescopes and Instruments, Lecture 2: Geometrical Optics 1 24

Thin Lens Approximation thin-lens equation: 1 + 1 ( 1 = (n 1) 1 ) S 1 S 2 R 1 R 2 Gaussian lens formula: Finite Imaging 1 S 1 + 1 S 2 = 1 f rarely image point sources, but extended object object and image size are proportional orientation of object and image are inverted (transverse) magnification perpendicular to optical axis: M = h 2 /h 1 = S 2 /S 1 Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Astronomical Telescopes and Instruments, Lecture 2: Geometrical Optics 1 25

Thick Lenses www.newport.com/servicesupport/tutorials/default.aspx?id=169 ( ) basic thick lens equation 1 f = (n 1) 1 1 + (n 1)d R1 R2 nr 1 R 2 thin means d << R 1 R 2 focal lengths measured from principal planes distance between vertices and principal planes given by f (n 1)d H 1,2 = R 2,1 n Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Astronomical Telescopes and Instruments, Lecture 2: Geometrical Optics 1 26

Chromatic Aberration 1 Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Astronomical Telescopes and Instruments, Lecture 2: Geometrical Optics 1 27

Chromatic Aberration 2 Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Astronomical Telescopes and Instruments, Lecture 2: Geometrical Optics 1 28

Chromatic Aberration 3 en.wikipedia.org/wiki/file:lens6a.svg due to wavelength dependence of index of refraction higher index in the blue shorter focal length in blue Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Astronomical Telescopes and Instruments, Lecture 2: Geometrical Optics 1 29

Achromatic Lens en.wikipedia.org/wiki/file:lens6b.svg combination of positive and negative lens made from materials with differents dispersions Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Astronomical Telescopes and Instruments, Lecture 2: Geometrical Optics 1 30

Transmission of Transparent Materials www.edmundoptics.com/technical-support/technical-library/frequently-asked-questions/ Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Astronomical Telescopes and Instruments, Lecture 2: Geometrical Optics 1 31

Mirrors Mirrors vs. Lenses mirrors are totally achromatic reflective over very large wavelength range (UV to radio) can be supported from the back wavefront error is twice that of surface, lens is (n-1) times surface only one surface to play with Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Astronomical Telescopes and Instruments, Lecture 2: Geometrical Optics 1 32

Plane Mirrors: Fold Mirrors and Beamsplitters Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Astronomical Telescopes and Instruments, Lecture 2: Geometrical Optics 1 33

Spherical Mirrors www.tutorvista.com/content/science/science-ii/reflection-light/formation-spherical-mirrors.php easy to manufacture focuses light from center of curvature onto itself focal length is half of curvature tip-tilt misalignment does not matter has no optical axis does not image light from infinity correctly (spherical aberration) Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Astronomical Telescopes and Instruments, Lecture 2: Geometrical Optics 1 34

Parabolic Mirrors want to make flat wavefront into spherical wavefront distance az(r) + z(r)f = const. z(r) = r 2 /2R perfect image of objects at infinity has clear optical axis Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Astronomical Telescopes and Instruments, Lecture 2: Geometrical Optics 1 35

Elliptical Mirrors en.wikipedia.org/wiki/ellipse have two foci at finite distances reimage one focal point into another Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Astronomical Telescopes and Instruments, Lecture 2: Geometrical Optics 1 36