Fractal zeta functions and geometric combinatorial problems for self-similar subsets of Z n.

Similar documents
Zeta functions and solutions of Falconer type problems for self-similar subsets of Z n.

Zeta functions of discrete self-similar sets.

1 Directional Derivatives and Differentiability

Nonarchimedean Cantor set and string

APPLICATIONS OF DIFFERENTIABILITY IN R n.

MAT 771 FUNCTIONAL ANALYSIS HOMEWORK 3. (1) Let V be the vector space of all bounded or unbounded sequences of complex numbers.

Random measures, intersections, and applications

Self-similar tilings and their complex dimensions. Erin P.J. Pearse erin/

Mathematical Analysis Outline. William G. Faris

Qualifying Exams I, 2014 Spring

Chapter 8. P-adic numbers. 8.1 Absolute values

Math 209B Homework 2

Tube formulas and self-similar tilings

Class Meeting # 12: Kirchhoff s Formula and Minkowskian Geometry

Supplement. The Extended Complex Plane

Finite-dimensional spaces. C n is the space of n-tuples x = (x 1,..., x n ) of complex numbers. It is a Hilbert space with the inner product

1. Let A R be a nonempty set that is bounded from above, and let a be the least upper bound of A. Show that there exists a sequence {a n } n N

BURGESS INEQUALITY IN F p 2. Mei-Chu Chang

Hyperbolic volumes and zeta values An introduction

Sobolev Spaces. Chapter Hölder spaces

2-Distance Problems. Combinatorics, 2016 Fall, USTC Week 16, Dec 20&22. Theorem 1. (Frankl-Wilson, 1981) If F is an L-intersecting family in 2 [n],

A LOCALIZATION PROPERTY AT THE BOUNDARY FOR MONGE-AMPERE EQUATION

SPECTRAL THEOREM FOR COMPACT SELF-ADJOINT OPERATORS

MATH 311: COMPLEX ANALYSIS CONTOUR INTEGRALS LECTURE

PRIME NUMBERS YANKI LEKILI

Deforming conformal metrics with negative Bakry-Émery Ricci Tensor on manifolds with boundary

Math 350 Fall 2011 Notes about inner product spaces. In this notes we state and prove some important properties of inner product spaces.

1 )(y 0) {1}. Thus, the total count of points in (F 1 (y)) is equal to deg y0

Laplace s Equation. Chapter Mean Value Formulas

MS 3011 Exercises. December 11, 2013

Measure Theory on Topological Spaces. Course: Prof. Tony Dorlas 2010 Typset: Cathal Ormond

Fourier Bases on the Skewed Sierpinski Gasket

NORMAL NUMBERS AND UNIFORM DISTRIBUTION (WEEKS 1-3) OPEN PROBLEMS IN NUMBER THEORY SPRING 2018, TEL AVIV UNIVERSITY

Some results in support of the Kakeya Conjecture

ERRATUM TO AFFINE MANIFOLDS, SYZ GEOMETRY AND THE Y VERTEX

MATH642. COMPLEMENTS TO INTRODUCTION TO DYNAMICAL SYSTEMS BY M. BRIN AND G. STUCK

On rational approximation of algebraic functions. Julius Borcea. Rikard Bøgvad & Boris Shapiro

The Riemann hypothesis and holomorphic index in complex dynamics

SYMPLECTIC GEOMETRY: LECTURE 5

Dirichlet s Theorem. Martin Orr. August 21, The aim of this article is to prove Dirichlet s theorem on primes in arithmetic progressions:

VARIATIONAL PRINCIPLE FOR THE ENTROPY

Functional Analysis. Martin Brokate. 1 Normed Spaces 2. 2 Hilbert Spaces The Principle of Uniform Boundedness 32

NOTES ON DIOPHANTINE APPROXIMATION

The Arzelà-Ascoli Theorem

SCALE INVARIANT FOURIER RESTRICTION TO A HYPERBOLIC SURFACE

Binomial coefficients and k-regular sequences

Integers without divisors from a fixed arithmetic progression

Topological properties of Z p and Q p and Euclidean models

Functional Analysis. Franck Sueur Metric spaces Definitions Completeness Compactness Separability...

Vinogradov s mean value theorem and its associated restriction theory via efficient congruencing.

MA5206 Homework 4. Group 4. April 26, ϕ 1 = 1, ϕ n (x) = 1 n 2 ϕ 1(n 2 x). = 1 and h n C 0. For any ξ ( 1 n, 2 n 2 ), n 3, h n (t) ξ t dt

Chap. 3. Controlled Systems, Controllability

Mid Term-1 : Practice problems

Eigenvalues and eigenfunctions of the Laplacian. Andrew Hassell

Primes, partitions and permutations. Paul-Olivier Dehaye ETH Zürich, October 31 st

Lecture 2: Linear Algebra Review

Congruent Number Problem and Elliptic curves

Sieve weight smoothings and moments

THE INVERSE FUNCTION THEOREM

Mixing time for a random walk on a ring

µ X (A) = P ( X 1 (A) )

Course 212: Academic Year Section 1: Metric Spaces

Spectra of Multiplication Operators as a Numerical Tool. B. Vioreanu and V. Rokhlin Technical Report YALEU/DCS/TR-1443 March 3, 2011

Solutions: Problem Set 3 Math 201B, Winter 2007

9 Radon-Nikodym theorem and conditioning

1. Introduction Boundary estimates for the second derivatives of the solution to the Dirichlet problem for the Monge-Ampere equation

THE TOPOLOGICAL COMPLEXITY OF THE KLEIN BOTTLE. 1. Introduction. Theorem 1.1. The topological complexity of the Klein bottle K equals 5.

COMBINATORIALLY CONVEX MODULI AND AN EXAMPLE OF GÖDEL

In class midterm Exam - Answer key

Rigidity and Non-rigidity Results on the Sphere

Random Walks on Hyperbolic Groups III

FILTERED RINGS AND MODULES. GRADINGS AND COMPLETIONS.

HOMEWORK #2 - MA 504

Linear Algebra Massoud Malek

Chapter 6: The metric space M(G) and normal families

Your first day at work MATH 806 (Fall 2015)

Erdős and arithmetic progressions

Numerical Solutions to Partial Differential Equations

Logarithmic functional and reciprocity laws

FUNCTIONAL ANALYSIS HAHN-BANACH THEOREM. F (m 2 ) + α m 2 + x 0

The Geometric Approach for Computing the Joint Spectral Radius

Semistable Representations of Quivers

Math 259: Introduction to Analytic Number Theory Exponential sums IV: The Davenport-Erdős and Burgess bounds on short character sums

Szemerédi-Trotter theorem and applications

On the low-lying zeros of elliptic curve L-functions

1 First and second variational formulas for area

Unbounded Harmonic Functions on homogeneous manifolds of negative curvature

Math 121 Homework 3 Solutions

What can be expressed via Conic Quadratic and Semidefinite Programming?

MA257: INTRODUCTION TO NUMBER THEORY LECTURE NOTES

Hecke-Operators. Alex Maier. 20th January 2007

FACTORIZATION IN COMMUTATIVE BANACH ALGEBRAS

On a certain vector crank modulo 7

Real Analysis Problems

Preliminary Exam 2018 Solutions to Morning Exam

Stochastic Optimization Algorithms Beyond SG

A remarkable representation of the Clifford group

1/12/05: sec 3.1 and my article: How good is the Lebesgue measure?, Math. Intelligencer 11(2) (1989),

Velocity averaging a general framework

Immerse Metric Space Homework

Transcription:

Fractal zeta functions and geometric combinatorial problems for self-similar subsets of Z n. Ben Lichtin joint work with Driss Essouabri (Saint-Etienne) 1 / 27

2 examples: Pascal s triangle mod p { Pas(p) := (m 1, m 2 ) N 2 0 : ( m1 m 2 ) } 0 (mod p). Pascal s pyramid (mod p). For any α = (α 1,..., α n ) N n 0, first set ( ) α1 + + α n Multnom n (α) := α 1,..., α n = (α 1 + + α n )!. α 1!... α n! Define: M n (p) := {α N n 0 : Multnom n (α) 0 (mod p)}. 2 / 27

2 examples: Pascal s triangle mod p { Pas(p) := (m 1, m 2 ) N 2 0 : ( m1 m 2 ) } 0 (mod p). Pascal s pyramid (mod p). For any α = (α 1,..., α n ) N n 0, first set ( ) α1 + + α n Multnom n (α) := α 1,..., α n = (α 1 + + α n )!. α 1!... α n! Define: M n (p) := {α N n 0 : Multnom n (α) 0 (mod p)}. 2 / 27

Pas(2) : 3 / 27

Upper Minkowski dimension of discrete sets. Definition: q = positive definite quadratic form on R n x = q 1/2 (x). F = discrete subset of R n. F has finite upper Minkowski dimension if : where: log (#F B(R)) e(f) := lim [0, ). R log R B(R) := {m R n ; m R}. 4 / 27

Define the zeta function of F ζ(f; s) := m F m s (F = F \ {0}). Properties: converges absolutely in {R(s) > e(f)}. e(f) = abscissa of convergence. Always assume e(f) (0, ). { m : m F } = {λ 1 < λ 2 < }; r k = #{m : m = λ k } σ = Re s > e(f) = ζ(f, s) = k r k λ s k. 5 / 27

Define the zeta function of F ζ(f; s) := m F m s (F = F \ {0}). Properties: converges absolutely in {R(s) > e(f)}. e(f) = abscissa of convergence. Always assume e(f) (0, ). { m : m F } = {λ 1 < λ 2 < }; r k = #{m : m = λ k } σ = Re s > e(f) = ζ(f, s) = k r k λ s k. 5 / 27

Define the zeta function of F ζ(f; s) := m F m s (F = F \ {0}). Properties: converges absolutely in {R(s) > e(f)}. e(f) = abscissa of convergence. Always assume e(f) (0, ). { m : m F } = {λ 1 < λ 2 < }; r k = #{m : m = λ k } σ = Re s > e(f) = ζ(f, s) = k r k λ s k. 5 / 27

Tauberian Applications Define F x := F { m < x} = x ball of F. #F x = λ k <x r k = average of coefficients of ζ(f, s). Problem: Describe #F x as x. Tauberian theory is useful if information outside halfplane of absolute convergence is available. Key Point: Self-similarity of F helps provide such information. 6 / 27

Tauberian Applications Define F x := F { m < x} = x ball of F. #F x = λ k <x r k = average of coefficients of ζ(f, s). Problem: Describe #F x as x. Tauberian theory is useful if information outside halfplane of absolute convergence is available. Key Point: Self-similarity of F helps provide such information. 6 / 27

Tauberian Applications Define F x := F { m < x} = x ball of F. #F x = λ k <x r k = average of coefficients of ζ(f, s). Problem: Describe #F x as x. Tauberian theory is useful if information outside halfplane of absolute convergence is available. Key Point: Self-similarity of F helps provide such information. 6 / 27

Compatible self-similar discrete sets. Similarity = affine map x c T x + b c > 1 and T is invariant by O(q) Finite set f = (f i ) r 1 (f i = c i T i + b i ) of similarities is compatible if T i T j = T j T i i, j Definition. F is compatible self-similar {T i } r 1 compatible s.t. defining f i = c i T i + b i : f i (F) f i (F) finite if i i F r i=1 f i(f) is finite ( symmetric difference). 7 / 27

Compatible self-similar discrete sets. Similarity = affine map x c T x + b c > 1 and T is invariant by O(q) Finite set f = (f i ) r 1 (f i = c i T i + b i ) of similarities is compatible if T i T j = T j T i i, j Definition. F is compatible self-similar {T i } r 1 compatible s.t. defining f i = c i T i + b i : f i (F) f i (F) finite if i i F r i=1 f i(f) is finite ( symmetric difference). 7 / 27

Compatibility implies: B = (e 1,..., e n ) = orthonormal basis of C n (= C R R n ) s.t. each T j is diagonal. i λ i = (λ i,1,..., λ i,n ) (S 1 ) n s.t. Scal(f) := {c i } r 1. Ti (e j ) = λ i,j e j j (Ti = adjoint). Theorem 1 [E-L, Adv. Math. 2013]. Compatible self-similar F R n satisfies: ζ(f; s) = m F 1 m s has a meromorphic continuation to C with moderate growth and poles in: P(F) = { } r s k : λ β i c s i = 1 (λ β := λ β k k ). β N n 0 k N 0 i=1 k 8 / 27

Compatibility implies: B = (e 1,..., e n ) = orthonormal basis of C n (= C R R n ) s.t. each T j is diagonal. i λ i = (λ i,1,..., λ i,n ) (S 1 ) n s.t. Scal(f) := {c i } r 1. Ti (e j ) = λ i,j e j j (Ti = adjoint). Theorem 1 [E-L, Adv. Math. 2013]. Compatible self-similar F R n satisfies: ζ(f; s) = m F 1 m s has a meromorphic continuation to C with moderate growth and poles in: P(F) = { } r s k : λ β i c s i = 1 (λ β := λ β k k ). β N n 0 k N 0 i=1 k 8 / 27

Publicity for forthcoming article. Compatibility hypothesis not needed for our results. Arguments are fairly different from compatibility case. 9 / 27

Fractal dimension. Theorem 2. [E-L, 2013] F R n = compatible self-similar set. Then e(f) = fractal dimension of F = the unique real solution of 2 types of self similar sets: r i=1 c s i = 1. Latticelike: Z{log c i } i = discrete subgroup of R; E.G. Pas(p), M n (p) are latticelike. Non latticelike: Z{log c i } i is dense in R. 10 / 27

Fractal dimension. Theorem 2. [E-L, 2013] F R n = compatible self-similar set. Then e(f) = fractal dimension of F = the unique real solution of 2 types of self similar sets: r i=1 c s i = 1. Latticelike: Z{log c i } i = discrete subgroup of R; E.G. Pas(p), M n (p) are latticelike. Non latticelike: Z{log c i } i is dense in R. 10 / 27

Properties of Pas(p): Similarities: f i = p Id 2 + b i b i { (u, v) {0, 1,..., p 1} 2}. Set θ p = log( p(p+1) 2 ) log p. Theorem 3 [E.- Jap. J. of Math. (2005)]. ζ (Pas(p); s) converges in {σ > θ p }. e(pas(p)) = θ p. ζ (Pas(p); s) has a meromorphic continuation to C with moderate growth and simple poles in: { θ p k + 2πih } log p : (k, h) N 0 Z 0. 11 / 27

Properties of Pas(p): Similarities: f i = p Id 2 + b i b i { (u, v) {0, 1,..., p 1} 2}. Set θ p = log( p(p+1) 2 ) log p. Theorem 3 [E.- Jap. J. of Math. (2005)]. ζ (Pas(p); s) converges in {σ > θ p }. e(pas(p)) = θ p. ζ (Pas(p); s) has a meromorphic continuation to C with moderate growth and simple poles in: { θ p k + 2πih } log p : (k, h) N 0 Z 0. 11 / 27

Pascal s pyramid (mod p). Define Theorem 4 [E-L, 2013] log θ n,p = ζ(m n (p), s) = ( (p+n 1 p 1 log p α M n(p) ) ). α s has a meromorphic continuation to C with moderate growth and simple poles in: { θ n,p k + 2πih } log p : (k, h) N 0 Z 0, and e(m n (p)) = θ n,p. 12 / 27

(I) σ > θ p = log( p(p+1) 2 ) log p = ζ(pas(p), s) = k r k (p) λ s k where: {λ k } k := { (m 1, m 2 ) : (m 1, m 2 ) Pas(p)} r k (p) := #{(m 1, m 2 ) Pas(p) : (m 1, m 2 ) = λ k } Average of coefficients: #(Pas(p) x ) := λ k <x r k (p) Theorem 5.[E-L, 2013]. η > 0 and a convergent Fourier series f p (u) 0 s.t. ( ) logx #(Pas(p) x ) = x θp f p + O(x θp η ) x. logp 13 / 27

(I) σ > θ p = log( p(p+1) 2 ) log p = ζ(pas(p), s) = k r k (p) λ s k where: {λ k } k := { (m 1, m 2 ) : (m 1, m 2 ) Pas(p)} r k (p) := #{(m 1, m 2 ) Pas(p) : (m 1, m 2 ) = λ k } Average of coefficients: #(Pas(p) x ) := λ k <x r k (p) Theorem 5.[E-L, 2013]. η > 0 and a convergent Fourier series f p (u) 0 s.t. ( ) logx #(Pas(p) x ) = x θp f p + O(x θp η ) x. logp 13 / 27

(II) ( σ > θ n,p = log ( p+n 1 p 1 ) ) log p = ζ(m n (p), s) = k R k (p) Λ s k where: {Λ k } k := { α : α M n (p)} R k (p) := #{α M n (p) : α = Λ k } Average of coefficients: #(M n (p) x ) := Λ k <x R k (p) A new proof of result of Barbolosi-Grabner (1996). Theorem 6.[E-L, 2013]. η > 0 and convergent Fourier series F n,p (u) 0 s.t. ( ) log x #(M n (p) x ) = x θn,p F n,p + O(x θn,p η ). log p 14 / 27

(II) ( σ > θ n,p = log ( p+n 1 p 1 ) ) log p = ζ(m n (p), s) = k R k (p) Λ s k where: {Λ k } k := { α : α M n (p)} R k (p) := #{α M n (p) : α = Λ k } Average of coefficients: #(M n (p) x ) := Λ k <x R k (p) A new proof of result of Barbolosi-Grabner (1996). Theorem 6.[E-L, 2013]. η > 0 and convergent Fourier series F n,p (u) 0 s.t. ( ) log x #(M n (p) x ) = x θn,p F n,p + O(x θn,p η ). log p 14 / 27

Averages for other weights Metric Invariants Examples of metric invariants (w.r.t. O(q)): (k = 2) : Distinct distances, angles (k 3) : k point configurations, k chains, volumes of n simplices (k = n + 1). k Configuration = {( x 1 x 2, x 1 x 3,..., (x k 1 x k ) : x i F i }. k Chain = {( x 1 x 2, x 2 x 3,..., x k 1 x k ) : x i F i }. Geometric combinatorial problems: For metric invariant on (R n ) k find a lower bound for : # distinct values of invariant determined by elements of F k x (x 1). 15 / 27

Averages for other weights Metric Invariants Examples of metric invariants (w.r.t. O(q)): (k = 2) : Distinct distances, angles (k 3) : k point configurations, k chains, volumes of n simplices (k = n + 1). k Configuration = {( x 1 x 2, x 1 x 3,..., (x k 1 x k ) : x i F i }. k Chain = {( x 1 x 2, x 2 x 3,..., x k 1 x k ) : x i F i }. Geometric combinatorial problems: For metric invariant on (R n ) k find a lower bound for : # distinct values of invariant determined by elements of F k x (x 1). 15 / 27

Averages for other weights Metric Invariants Examples of metric invariants (w.r.t. O(q)): (k = 2) : Distinct distances, angles (k 3) : k point configurations, k chains, volumes of n simplices (k = n + 1). k Configuration = {( x 1 x 2, x 1 x 3,..., (x k 1 x k ) : x i F i }. k Chain = {( x 1 x 2, x 2 x 3,..., x k 1 x k ) : x i F i }. Geometric combinatorial problems: For metric invariant on (R n ) k find a lower bound for : # distinct values of invariant determined by elements of F k x (x 1). 15 / 27

Erdös distinct distance problem (1946): q(x) := i x 2 i x := ( i x 2 i )1/2. If X is a finite subset of R n, then the set of its distinct distances (X ) := { x y ; x, y X } should satisfy: # (X ) ε #X 2 n ε as #X. n = 2: Guth-Katz (2014) (with slightly better exponent of Erdòs). 16 / 27

Erdös distinct distance problem (1946): q(x) := i x 2 i x := ( i x 2 i )1/2. If X is a finite subset of R n, then the set of its distinct distances (X ) := { x y ; x, y X } should satisfy: # (X ) ε #X 2 n ε as #X. n = 2: Guth-Katz (2014) (with slightly better exponent of Erdòs). 16 / 27

Distance set in any x ball of F : (F x ) := { m 1 m 2 : m i F x i = 1, 2}. Theorem 7 [E-L, PLMS 2015]. F = compatible self-similar subset of Z n (n 2); e(f) > n 2. n 2 1 = ε > 0, # (F x ) ε #(F x ) e(f) ε (x ). 17 / 27

Corollaries. For (compatible) self-similar F Z n : (1) n = 2 and e(f) > 0 implies Erdös distance conjecture but only for all sufficiently large x balls: ε > 0, # (F x ) ε #(F x ) 1 ε (x ). (2) θ p > 0 = # (Pas(p) x ) ε [ #Pas(p)x ] 1 ε. (3) a n s.t. p > a n = θ n,p > n 2. p > a n = # (M n (p) x ) ε [ #Mn (p) x ] 1 n 2 θn,p ε. 18 / 27

Corollaries. For (compatible) self-similar F Z n : (1) n = 2 and e(f) > 0 implies Erdös distance conjecture but only for all sufficiently large x balls: ε > 0, # (F x ) ε #(F x ) 1 ε (x ). (2) θ p > 0 = # (Pas(p) x ) ε [ #Pas(p)x ] 1 ε. (3) a n s.t. p > a n = θ n,p > n 2. p > a n = # (M n (p) x ) ε [ #Mn (p) x ] 1 n 2 θn,p ε. 18 / 27

Corollaries. For (compatible) self-similar F Z n : (1) n = 2 and e(f) > 0 implies Erdös distance conjecture but only for all sufficiently large x balls: ε > 0, # (F x ) ε #(F x ) 1 ε (x ). (2) θ p > 0 = # (Pas(p) x ) ε [ #Pas(p)x ] 1 ε. (3) a n s.t. p > a n = θ n,p > n 2. p > a n = # (M n (p) x ) ε [ #Mn (p) x ] 1 n 2 θn,p ε. 18 / 27

Sketch of proof of Theorem 7. Step 1: Introduce 2 variable zeta-function: ζ dis (F, s) = (m 1,m 2 ) (F ) 2 m 1 m 2 2 m 1 s 1 m2 s 2. Converges absolutely in {s C 2 ; σ i > D i} (D := e(f) + 2). Set: (F x ) := { m 1 m 2 ; (m 1, m 2 ) Fx 2 } := {δ 1,..., δ Nx } (N x = # (F x )) { m : m F x } := {λ 1,..., λ Mx } ν i,k1,k 2 := #{(m 1, m 2 ) : m j = λ kj j, m 1 m 2 = δ i }. σ 1, σ 2 > D = ζ dis (F, s) = (k 1,k 2 ) i δ2 i ν i,k 1,k 2 λ s 1 k1 λ s 2. k2 19 / 27

Sketch of proof of Theorem 7. Step 1: Introduce 2 variable zeta-function: ζ dis (F, s) = (m 1,m 2 ) (F ) 2 m 1 m 2 2 m 1 s 1 m2 s 2. Converges absolutely in {s C 2 ; σ i > D i} (D := e(f) + 2). Set: (F x ) := { m 1 m 2 ; (m 1, m 2 ) Fx 2 } := {δ 1,..., δ Nx } (N x = # (F x )) { m : m F x } := {λ 1,..., λ Mx } ν i,k1,k 2 := #{(m 1, m 2 ) : m j = λ kj j, m 1 m 2 = δ i }. σ 1, σ 2 > D = ζ dis (F, s) = (k 1,k 2 ) i δ2 i ν i,k 1,k 2 λ s 1 k1 λ s 2. k2 19 / 27

Sketch of proof of Theorem 7. Step 1: Introduce 2 variable zeta-function: ζ dis (F, s) = (m 1,m 2 ) (F ) 2 m 1 m 2 2 m 1 s 1 m2 s 2. Converges absolutely in {s C 2 ; σ i > D i} (D := e(f) + 2). Set: (F x ) := { m 1 m 2 ; (m 1, m 2 ) Fx 2 } := {δ 1,..., δ Nx } (N x = # (F x )) { m : m F x } := {λ 1,..., λ Mx } ν i,k1,k 2 := #{(m 1, m 2 ) : m j = λ kj j, m 1 m 2 = δ i }. σ 1, σ 2 > D = ζ dis (F, s) = (k 1,k 2 ) i δ2 i ν i,k 1,k 2 λ s 1 k1 λ s 2. k2 19 / 27

Step 2: Upper bound for coefficient averages A(x) := j λ kj <x i δ2 i ν i,k1,k 2. Claim 1: A(x) ε N x x e(f)+n+ɛ. µ i (x) := #{(m 1, m 2 ) F 2 x : m 1 m 2 = δ i }. A(x) = N x i=1 δ2 i µ i(x). Uniform bound for µ i (x): (via integral points on spheres). m 2 F x : #{m 1 Z n ; m 1 m 2 2 = t 2, m 1 x} ε t n 2+ε where implied constant is uniform in m 2. Setting t = δ i = µ i (x) ε m 2 F x t n 2+ε ε x e(f)+n 2+ε. A(x) ε N x x e(f)+n+ε. 20 / 27

Step 2: Upper bound for coefficient averages A(x) := j λ kj <x i δ2 i ν i,k1,k 2. Claim 1: A(x) ε N x x e(f)+n+ɛ. µ i (x) := #{(m 1, m 2 ) F 2 x : m 1 m 2 = δ i }. A(x) = N x i=1 δ2 i µ i(x). Uniform bound for µ i (x): (via integral points on spheres). m 2 F x : #{m 1 Z n ; m 1 m 2 2 = t 2, m 1 x} ε t n 2+ε where implied constant is uniform in m 2. Setting t = δ i = µ i (x) ε m 2 F x t n 2+ε ε x e(f)+n 2+ε. A(x) ε N x x e(f)+n+ε. 20 / 27

Step 3: Lower bound for A(x) - Harder part Claim 2: A(x) ε x 2e(F)+2 ε. So: Claims 1 + 2 = x 2e(F)+2 ε ε A(x) ε x e(f)+n+ε N x N x := # (F x ) ε x e(f) n+2 ε n 2 1 ε (#F x ) e(f) ε. 21 / 27

Step 3: Lower bound for A(x) - Harder part Claim 2: A(x) ε x 2e(F)+2 ε. So: Claims 1 + 2 = x 2e(F)+2 ε ε A(x) ε x e(f)+n+ε N x N x := # (F x ) ε x e(f) n+2 ε n 2 1 ε (#F x ) e(f) ε. 21 / 27

Idea behind Proof of Claim 2 Write ζ dis (F, s) = ζ(f, s 1 )ζ(f, s 2 2) + ζ(f, s 1 2)ζ(F, s 2 ) 2ζ 3 (s) = ζ 1 + ζ 2 2ζ 3 where m 1, m 2 n ζ 3 (s) := m 1 s 1 m2 s = ζ 2 3,i (s 1 )ζ 3,i (s 2 ). (m 1,m 2 ) F F i=1 ζ 1 is analytic in {σ 1 > D 2, σ 2 > D} ζ 2 is analytic in {σ 1 > D, σ 2 > D 2} ζ 3 is analytic in {σ i > D 1 i}. Each ζ i is meromorphic on C 2 with moderate growth. 22 / 27

Idea behind Proof of Claim 2 Write ζ dis (F, s) = ζ(f, s 1 )ζ(f, s 2 2) + ζ(f, s 1 2)ζ(F, s 2 ) 2ζ 3 (s) = ζ 1 + ζ 2 2ζ 3 where m 1, m 2 n ζ 3 (s) := m 1 s 1 m2 s = ζ 2 3,i (s 1 )ζ 3,i (s 2 ). (m 1,m 2 ) F F i=1 ζ 1 is analytic in {σ 1 > D 2, σ 2 > D} ζ 2 is analytic in {σ 1 > D, σ 2 > D 2} ζ 3 is analytic in {σ i > D 1 i}. Each ζ i is meromorphic on C 2 with moderate growth. 22 / 27

( Initial ) Poles of ζ 1, ζ 2, ζ 3 : ζ 1 has first pole (real part) at Q 1 = (D 2, D); ζ 2 has first pole (real part) at Q 2 = (D, D 2); Real part of first pole (u i, v i ) of ζ 3,i (s 1 )ζ 3,i (s 2 ) lies in or below Int [Q 1, Q 2 ]. 23 / 27

Step 4: Perron formula - if Latticelike ξ = (ξ, ξ) R 2 set (ξ) := (ξ) (ξ). Then ξ > D(= e(f) + 2) = H(x 1, x 2 ) := = {m i F : m i <x i i} (ξ) (ζ 1 + ζ 2 2ζ 3 ) m 1 m 2 2 i x s i i s i (s i + 1) ds 1ds 2 Next: Iterate Cauchy residue method. For ζ 1 resp. ζ 2 move to (Q 1 η) resp. (Q 2 η) (η 1) etc. = A, B s.t. A + B < 2D 2 and i ( 1 m i x i ) H(x 1, x 2 ) = x1 D 2 x2 D φ 1 (log x 1, log x 2 ) + x1 D x2 D 2 φ 2 (log x 1, log x 2 ) t + ±x u i 1 x v i 2 ψ i(log x 1, log x 2 ) + O(x1 A ε x2 B ε ) i=1 where φ 1, φ 2, ψ i are non zero almost periodic functions. 24 / 27

Step 4: Perron formula - if Latticelike ξ = (ξ, ξ) R 2 set (ξ) := (ξ) (ξ). Then ξ > D(= e(f) + 2) = H(x 1, x 2 ) := = {m i F : m i <x i i} (ξ) (ζ 1 + ζ 2 2ζ 3 ) m 1 m 2 2 i x s i i s i (s i + 1) ds 1ds 2 Next: Iterate Cauchy residue method. For ζ 1 resp. ζ 2 move to (Q 1 η) resp. (Q 2 η) (η 1) etc. = A, B s.t. A + B < 2D 2 and i ( 1 m i x i ) H(x 1, x 2 ) = x1 D 2 x2 D φ 1 (log x 1, log x 2 ) + x1 D x2 D 2 φ 2 (log x 1, log x 2 ) t + ±x u i 1 x v i 2 ψ i(log x 1, log x 2 ) + O(x1 A ε x2 B ε ) i=1 where φ 1, φ 2, ψ i are non zero almost periodic functions. 24 / 27

Step 5: Monomialisation-if Latticelike Polygon from H monomials: vertices at Q 1, Q 2. Choose, say, Q 1 = (D 2, D). κ > κ > 1 show: x k = (x k,1, x k,2 ) s.t. xk,1 κ < x k,2 < xk,1 κ, φ ( log x k,1, log x k,2 ) ) 1 and xk,1 D x D 2 k,2 + i x u i k,1 x v i D 2 k,2 = o(xk,1 x k,2 D ) = o(xq 1 k ) H(x k,1, x k,2 ) = x Q 1 k φ(log x k,1, log x k,2 ) + o(x Q 1 k ) xq 1 k. A(x) ε x 2e(F)+2 ε (1) Non latticelike case: Variant of monomialisation proves (1) but uses screens - needed due to possible pole clustering on σ = D, D 2. 25 / 27

Step 5: Monomialisation-if Latticelike Polygon from H monomials: vertices at Q 1, Q 2. Choose, say, Q 1 = (D 2, D). κ > κ > 1 show: x k = (x k,1, x k,2 ) s.t. xk,1 κ < x k,2 < xk,1 κ, φ ( log x k,1, log x k,2 ) ) 1 and xk,1 D x D 2 k,2 + i x u i k,1 x v i D 2 k,2 = o(xk,1 x k,2 D ) = o(xq 1 k ) H(x k,1, x k,2 ) = x Q 1 k φ(log x k,1, log x k,2 ) + o(x Q 1 k ) xq 1 k. A(x) ε x 2e(F)+2 ε (1) Non latticelike case: Variant of monomialisation proves (1) but uses screens - needed due to possible pole clustering on σ = D, D 2. 25 / 27

Step 5: Monomialisation-if Latticelike Polygon from H monomials: vertices at Q 1, Q 2. Choose, say, Q 1 = (D 2, D). κ > κ > 1 show: x k = (x k,1, x k,2 ) s.t. xk,1 κ < x k,2 < xk,1 κ, φ ( log x k,1, log x k,2 ) ) 1 and xk,1 D x D 2 k,2 + i x u i k,1 x v i D 2 k,2 = o(xk,1 x k,2 D ) = o(xq 1 k ) H(x k,1, x k,2 ) = x Q 1 k φ(log x k,1, log x k,2 ) + o(x Q 1 k ) xq 1 k. A(x) ε x 2e(F)+2 ε (1) Non latticelike case: Variant of monomialisation proves (1) but uses screens - needed due to possible pole clustering on σ = D, D 2. 25 / 27

Step 5: Monomialisation-if Latticelike Polygon from H monomials: vertices at Q 1, Q 2. Choose, say, Q 1 = (D 2, D). κ > κ > 1 show: x k = (x k,1, x k,2 ) s.t. xk,1 κ < x k,2 < xk,1 κ, φ ( log x k,1, log x k,2 ) ) 1 and xk,1 D x D 2 k,2 + i x u i k,1 x v i D 2 k,2 = o(xk,1 x k,2 D ) = o(xq 1 k ) H(x k,1, x k,2 ) = x Q 1 k φ(log x k,1, log x k,2 ) + o(x Q 1 k ) xq 1 k. A(x) ε x 2e(F)+2 ε (1) Non latticelike case: Variant of monomialisation proves (1) but uses screens - needed due to possible pole clustering on σ = D, D 2. 25 / 27

Forthcoming article proves Erdös distinct distance problem for x balls of any self-similar subset of Z 2. Need use Ingham s Tauberian theorem (1965) instead of Cauchy Residues and screens if non latticelike. 26 / 27

Angles For any m 1, m 2 F set: θ(m 1, m 2 ) := angle formed between m 1, m 2. Ang(x) := #{cos ( θ(m 1, m 2 ) ) ; m 1, m 2 F x }. Find bound on e(f) s.t. Ang(x) +. Theorem 8 [PLMS 2015]. e(f) > n 2 and n 4 = Uses Angle Zeta function: n 2 1 Ang(x) ε [#F(x)] e(f) ε (x 1). ζ ang (F; s 1, s 2 ) := m 1,m 2 F m1 m 1, m 2 2 m 2 m 1 s 1 m2 s. 2 27 / 27

Angles For any m 1, m 2 F set: θ(m 1, m 2 ) := angle formed between m 1, m 2. Ang(x) := #{cos ( θ(m 1, m 2 ) ) ; m 1, m 2 F x }. Find bound on e(f) s.t. Ang(x) +. Theorem 8 [PLMS 2015]. e(f) > n 2 and n 4 = Uses Angle Zeta function: n 2 1 Ang(x) ε [#F(x)] e(f) ε (x 1). ζ ang (F; s 1, s 2 ) := m 1,m 2 F m1 m 1, m 2 2 m 2 m 1 s 1 m2 s. 2 27 / 27