DIFFRACTION PHYSICS THIRD REVISED EDITION JOHN M. COWLEY. Regents' Professor enzeritus Arizona State University

Similar documents
Elastic and Inelastic Scattering in Electron Diffraction and Imaging

Transmission Electron Microscopy

Transmission Electron Microscopy and Diffractometry of Materials

Crystals, X-rays and Proteins

PRINCIPLES OF PHYSICAL OPTICS

Structure and Dynamics : An Atomic View of Materials

High-Resolution. Transmission. Electron Microscopy

Weak-Beam Dark-Field Technique

The Oxford Solid State Basics

Main Notation Used in This Book

Light as Wave Motion p. 1 Huygens' Ideas p. 2 Newton's Ideas p. 8 Complex Numbers p. 10 Simple Harmonic Motion p. 11 Polarized Waves in a Stretched

Physics with Neutrons I, WS 2015/2016. Lecture 11, MLZ is a cooperation between:

(DPHY 21) 1) a) Discuss the propagation of light in conducting surface. b) Discuss about the metallic reflection at oblique incidence.

Physics of Light and Optics

Interference, Diffraction and Fourier Theory. ATI 2014 Lecture 02! Keller and Kenworthy

Lasers and Electro-optics

Roll No. :... Invigilator's Signature :.. CS/B.TECH(N)/SEM-1/PH-101/ PHYSICS - I. Time Allotted : 3 Hours Full Marks : 70

Solid Surfaces, Interfaces and Thin Films

Optics, Optoelectronics and Photonics

MODERN TECHNIQUES OF SURFACE SCIENCE

Chapter 4 Imaging. Lecture 21. d (110) Chem 793, Fall 2011, L. Ma

PHYSICS OF SEMICONDUCTORS AND THEIR HETEROSTRUCTURES

Lecture 9: Introduction to Diffraction of Light

Harald Ibach Hans Lüth SOLID-STATE PHYSICS. An Introduction to Theory and Experiment

Optical Characterization of Solids

QUANTUM WELLS, WIRES AND DOTS

Contents. 1 Basic Equations 1. Acknowledgment. 1.1 The Maxwell Equations Constitutive Relations 11

ELECTRODYNAMICS OF CONTINUOUS MEDIA

An Introduction to Diffraction and Scattering. School of Chemistry The University of Sydney

Overview of scattering, diffraction & imaging in the TEM

Lecture 11: Introduction to diffraction of light

Structure Analysis by Small-Angle X-Ray and Neutron Scattering

CHEM 681 Seminar Mingqi Zhao April 20, 1998 Room 2104, 4:00 p.m. High Resolution Transmission Electron Microscopy: theories and applications

SOLID STATE PHYSICS. Second Edition. John Wiley & Sons. J. R. Hook H. E. Hall. Department of Physics, University of Manchester

METHODS OF THEORETICAL PHYSICS

Fourier Optics - Exam #1 Review

Laser Speckle and Applications in Optics

Roger Johnson Structure and Dynamics: X-ray Diffraction Lecture 6


General theory of diffraction

Highenergy Nuclear Optics of Polarized Particles

4. Other diffraction techniques

Geometry of Crystal Lattice

The science of light. P. Ewart

b) Discuss the amplitude of electromagnetic waves on reflection and refraction at the boundary of a dielectric interface.

X-ray, Neutron and e-beam scattering

CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I

Introduction to Crystallography and Electron Diffraction

Structural characterization. Part 1

Optical Sciences Center, Rm 704 University of Arizona Tucson, AZ Office Hours: Call for appointment or see after class

Waves Part III Electromagnetic waves


LIST OF TOPICS BASIC LASER PHYSICS. Preface xiii Units and Notation xv List of Symbols xvii

is the minimum stopping potential for which the current between the plates reduces to zero.

Scattering Lecture. February 24, 2014

Physics General Physics II. Electricity, Magnetism and Optics Lecture 20 Chapter Wave Optics. Fall 2015 Semester Prof.

Wave properties of matter & Quantum mechanics I. Chapter 5

Electronic and Optoelectronic Properties of Semiconductor Structures

Photoelectron Spectroscopy

Fundamentals of Nanoscale Film Analysis

Concepts in Surface Physics

This content has been downloaded from IOPscience. Please scroll down to see the full text.

School on Pulsed Neutrons: Characterization of Materials October Neurton Sources & Scattering Techniques (1-2)

CHEM-E5225 :Electron Microscopy Imaging

arxiv: v3 [nucl-ex] 18 May 2018

Vibrational Spectroscopy of Molecules on Surfaces

Quantum Condensed Matter Physics Lecture 5

MODERN PHYSICS Frank J. Blatt Professor of Physics, University of Vermont

Determining Protein Structure BIBC 100

Name :. Roll No. :... Invigilator s Signature :.. CS/B. Tech (New)/SEM-1/PH-101/ PHYSICS-I

Which of the following can be used to calculate the resistive force acting on the brick? D (Total for Question = 1 mark)

Dynamical diffraction of atomic matter waves by crystals of light

Diode Lasers and Photonic Integrated Circuits

With Modern Physics For Scientists and Engineers

Spin Dynamics Basics of Nuclear Magnetic Resonance. Malcolm H. Levitt

Chapter 20: Convergent-beam diffraction Selected-area diffraction: Influence of thickness Selected-area vs. convergent-beam diffraction

EC 577 / MS 577: Electrical Optical and Magnetic Properties of Materials Professor Theodore. D. Moustakas Fall Semester 2012

31. Diffraction: a few important illustrations

B.Tech. First Semester Examination Physics-1 (PHY-101F)

DRONACHARYA COLLEGE OF ENEGINEERING DEPARTMENT OF APPLIED SCEINCE AND HUMANITIES SHORT ANSWER QUESTIONS: Unit-I. Chapter I: Interference

Surface Analysis - The Principal Techniques

Optics. n n. sin c. sin

The Basic of Transmission Electron Microscope. Text book: Transmission electron microscopy by David B Williams & C. Barry Carter.

The University of Hong Kong Department of Physics

Structure analysis: Electron diffraction LEED TEM RHEED

Understanding. Solid State Physics. Sharon Ann Holgate. CRC Press Taylor & Francis Group Boca Raton London NewYork

Fourier Analysis and Imaging Ronald Bracewell L.M. Terman Professor of Electrical Engineering Emeritus Stanford University Stanford, California

A Brief Introduction to Medical Imaging. Outline

Wave Motion and Electromagnetic Radiation. Introduction Jan. 18, Jie Zhang

12 주 /15 주 작은구멍이나장애물을만나면넘어가거나돌아간다. 원거리에돌이 ( 프라운호퍼에돌이 ) 에돌이 ( 회절 )- 불확정성의원리 근거리에돌이 ( 프레스넬에돌이 )

A beam of coherent monochromatic light from a distant galaxy is used in an optics experiment on Earth.

Book Review published on American Scientist Vol. 84, 406 (1996).

QUANTUM MECHANICS. Franz Schwabl. Translated by Ronald Kates. ff Springer

X-ray Diffraction. Diffraction. X-ray Generation. X-ray Generation. X-ray Generation. X-ray Spectrum from Tube

The science of light. P. Ewart

OPTICS. Learning by Computing, with Examples Using Mathcad, Matlab, Mathematica, and Maple. K.D. Möller. Second Edition. With 308 Illustrations

QUANTUM PHYSICS. Limitation: This law holds well only for the short wavelength and not for the longer wavelength. Raleigh Jean s Law:

Detecting strain in scanning transmission electron microscope images. Part II Thesis

X-Ray Scattering Studies of Thin Polymer Films

Contents. xiii. Preface v

Transcription:

DIFFRACTION PHYSICS THIRD REVISED EDITION JOHN M. COWLEY Regents' Professor enzeritus Arizona State University 1995 ELSEVIER Amsterdam Lausanne New York Oxford Shannon Tokyo

CONTENTS Preface to the first edition Preface to the second edition Preface to the third edition V VI VI Section I - PHYSICAL OPTICS Chapter 1. Fresnel and Fraunhofer diffraction 3 1.1. Introduction 3 1.2. Wave equations and waves 5 1.2.1. Wave functions 5 1.2.2. Electromagnetic waves 6 1.2.3. Particle waves 7 1.3. Superposition and coherence 8 1.3.1. Superposition 8 1.3.2. Independent point sources 9 1.4. Huygen's principle 11 1.4.1. Kirchhoff's formulation 11 1.4.2. Application of the Kirchhoff formula 12 1.5. Scattering theory approach 13 1.5.1. Integral form of wave equation 13 1.5.2. Born series 14 1.6. Reciprocity 16 1.7. Fresnel diffraction 16 1.7.1. Small angle approximation 16 1.7.2. Fresnel integrals 17 1.7.3. Periodic objects - "Fourier images" 19 1.8. Fraunhofer diffraction 21 Problems 24 Chapter 2. Fourier transform and convolutions 25 2.1. Preliminaries 25 2.1.1. Delta-functions and discontinuities 25 2.1.2. Convolutions 26 2.1.3. Examples of convolutions 27 2.2. Fourier transforms: general 30 2.2.1. Definitions 30

viii CONTENTS 2.2.2. Properties of Fourier transforms 31 2.2.3. Multiplication and convolution 33 2.2.4. Space and time 34 2.3. Fourier transforms and diffraction: examples 35 2.3.1. Point source or point aperture 35 2.3.2. A plane wave: the inverse of 2.3.1. 35 2.3.3. Translation of an object 36 2.3.4. Slit function 36 2.3.5. Slit function-alternative 37 2.3.6. Straight edge 37 2.3.7. Rectangular aperture 38 2.3.8. Circular aperture 39 2.3.9. Two very narrow slits 39 2.3.10. Two slits of appreciable width 40 2.3.11. Finite wave train 40 2.3.12. Periodic array of narrow slits 42 2.3.13. Arbitrary periodic function 43 2.3.14. Diffraction grating: thin slits 43 2.3.15. Diffraction grating: general 44 2.3.16. Gaussian function 45 2.3.17. Row of circular holes 46 2.3.18. Complementary objects-babinet's principle 47 2.3.19. Total intensities: Parseval's theorem 48 Problems 48 Chapter 3. Imaging and diffraction 51 3.1. Wave theory of imaging 51 3.1.1. Coherent wave optics 51 3.1.2. Incoherent wave imaging 54 3.2. Abbe theory 55 3.3. Small angle approximation 56 3.4. Phase contrast 59 3.4.1. Phase and amplitude objects 59 3.4.2. Out-of-focus contrast 60 3.4.3. Aperture limitation 62 3.4.4. Zernike phase contrast 62 3.5. Holography 63 3.6. Multi-component systems 67 3.7. Partial coherence 69 Problems 72 Section II - KINEMATICAL DIFFRACTION Chapter 4. Radiations and their scattering by matter 77 4.1. X-rays 77 4.1.1. X-ray sources 77 4.1.2. Scattering by electrons 78

CONTENTS ix 4.1.3. Scattering by atoms 80 4.1.4. Dispersion corrections 81 4.2. Electrons 81 4.2.1. Sources of electrons 81 4.2.2. Atom scattering amplitudes 82 4.2.3. Phase object approximation 84 4.2.4. Failure of first Born approximation 85 4.2.5. "Absorption" effects 86 4.3. Neutrons 88 4.3.1. Atomic scattering factors 88 4.3.2. Nuclear spin scattering 89 4.3.3. Isotopic disorder 90 4.3.4. Thermal and magnetic scattering 91 Problems 92 Chapter 5. Scattering from assemblies of atoms 93 5.1. The kinematical approximation 93 5.2. Real and reciprocal space 95 5.2.1. Reciprocal space distribution 95 5.2.2. The reciprocal lattice 96 5.2.3. Friedel's law and the phase problem 97 5.3. The generalized Patterson function 98 5.4. Examples of correlation functions 101 5.4.1. Finite volume limitations 101 5.4.2. Finite crystals 102 5.5. Correlation in space and time 104 5.5.1. Four-dimensional Patterson 104 5.5.2. Special cases 105 5.5.3. Ideal monatomic gas or liquid 106 5.5.4. Real monatomic gases and liquids 109 5.5.5. The hydrogen atom 112 5.6. Diffraction geometry and intensities 113 5.7. Practical considerations 115 5.7.1. Finite sources and detectors 115 5.7.2. Wavelength spread 117 5.7.3. Integrated intensities 118 5.8. Sections and projections 119 Problems 121 Chapter 6. Diffraction from crystals 123 6.1. Ideal crystals 123 6.2. Diffraction geometry 126 6.2.1. Laue and Bragg diffraction conditions 126 6.2.2. Shape transforms 127 6.2.3. Special cases for electron diffraction 128

x CONTENTS 6.3. Crystal structure analysis 131 6.3.1. The phase problem 131 6.3.2. Supplementary information 133 6.4. Structure analysis methods 134 6.4.1. Trial and error 134 6.4.2. Patterson function 135 6.4.3. Heavy-atom & isomorphous replacement methods 135 6.4.4. Direct methods 136 6.5. Neutron diffraction structure analysis 138 6.5.1. Nuclear scattering 138 6.5.2. Magnetic scattering 139 6.6. Electron diffraction structure analysis 141 Problems 142 Chapter 7. Diffraction from imperfect crystals 145 7.1. Formulation of the diffraction problem 145 7.1.1. Types of defects 145 7.1.2. General diffraction formulation 146 7.2. Patterson function approach 147 7.2.1. Patterson with average periodic structure 147 7.2.2. Patterson with no average structure 149 7.3. Deviations from an average lattice 150 7.3.1. Random vacancies: no relaxation 150 7.3.2. Clustered vacancies 152 7.3.3. Lattice relaxation 154 7.3.4. Thermal vibrations - Einstein model 156 7.4. Imperfect crystals with no average lattice 157 7.4.1. Uneven separation of lattice planes 157 7.4.2. Disordered orientations 160 Problems 163 Section III - DYNAMICAL SCATTERING Chapter 8. Diffraction by perfect crystals 167 8.1. Multiple coherent scattering 167 8.2. Theoretical approaches 168 8.3. Bethe theory 170 8.3.1. The dispersion equations 170 8.3.2. Solutions of the equations 172 8.3.3. Boundary conditions 173 8.4. Two-beam approximation 175 8.4.1. Bloch waves and dispersion surfaces 175 8.4.2. Conduction electrons-energy representation 177 8.4.3. X-ray diffraction; polarization 178

CONTENTS xi 8.5. The Laue (transmission) case 178 8.5.1. Electron diffraction for a thin crystal 178 8.5.2. Small angle approximation 181 8.5.3. Laue case with absorption 182 8.6. Bethe potentials 182 8.7. The Bragg case 184 Chapter 9. Dynamical diffraction effects 189 9.1. Thickness fringes, rocking curves-electron diffraction 189 9.1.1. Intensity formulas 189 9.1.2. Real space picture 189 9.1.3. Rocking curves 191 9.1.4. Extinction contours 191 9.1.5. Convergent beam diffraction 193 9.1.6. Diffraction and imaging of crystal wedges 195 9.1.7. Absorption effects for wedges 197 9.2. Dynamical effects of X-ray and neutron diffraction 199 9.2.1. Techniques for X-ray diffraction 199 9.2.2. Energy flow 202 9.2.3. Dispersion surface picture 203 9.2.4. Neutron diffraction 204 9.3. Borrmann effect 205 Problems 207 Chapter 10. Extension to many beams 209 10.1. Dynamical n-beam diffraction 209 10.2. Extension of Bethe theory - transmission 211 10.2.1. Matrix formulation 211 10.2.2. Small angle approximation 213 10.2.3. Bloch waves and boundary conditions 214 10.2.4. The scattering matrix 216 10.2.5. Derivation of the two-beam approximation 218 10.3. The Darwin-type approach 220 10.4. Special cases - beam reduction 222 10.5. Computing methods 224 10.6. Column approximation 227 Problems 229 Chapter 11. Multi-slice approaches 231 11.1. Propagation of electrons in crystals 231 11.1.1. Transmission through thin slices 231 11.1.2. Three-dimensional objects 233 11.1.3. Diffraction by a crystal 234 11.1.4. General expression; excitation errors 236

xii CONTENTS 11.2. Multiple-scattering series 237 11.2.1. Zero-order scattering 237 11.2.2. Single scattering-kinematical approximation 238 11.2.3. Multiple scattering 238 11.3. General double-summation solution 240 11.3.1. General series solution 240 11.3.2. Phase grating approximation 241 11.4. Computing methods 243 11.4.1. "Slice method u calculations 243 11.4.2. Steps in a computation 245 11.4.3. Possible errors 246 11.4.4. Consistency tests 247 11.4.5. Computing times 248 11.5. Intensities from non-periodic objects 248 11.6. Real-space formulations 250 11.6.1. High-energy approximation 250 11.6.2. Useful approximations 252 11.6.3. A real-space basis for computing 253 Problem 254 Section IV - APPLICATIONS TO SELECTED TOPICS Chapter 12. Diffuse scattering and absorption effects 257 12.1. Thermal diffuse scattering 257 12.1.1. Phonons and vibrational waves 257 12.1.2. Scattering for a longitudinal wave 258 12.1.3. Diffuse scattering component 259 12.1.4. Dispersion curves 261 12.1.5. Three-dimensional generalizations 262 12.2. Static atom displacements 262 12.2.1. Relaxation around point defects 262 12.2.2. Diffraction intensities for displaced atoms 263 12.2.3. The Bragg peaks 265 12.2.4. The diffuse scattering 266 12.3. Electron excitations 269 12.3.1. Inelastic X-ray scattering 269 12.3.2. Electron excitation by electrons-plasmons 270 12.3.3. Single-electron excitations 272 12.4. Dynamical effects in diffuse scattering 274 12.4.1. Scattering and re-scattering 274 12.4.2. Coherent and incoherent scattering 276 12.4.3. Analysis of diffuse scattering 278 12.5. Absorption effects 279 12.5.1. The nature of absorption parameters 279 12.5.2. Absorption of X-rays and neutrons 280 12.5.3. "Absorption" for electrons 281 12.5.4. Absorption due to thermal vibrations 282 12.5.5. Absorption from electron excitations 284 12.5.6. Values of absorption coefficients 285

CONTENTS xiii Chapter 13. Electron microscope imaging 287 13.1. Electron microscopes 287 13.1.1. Conventional transmission e. m. 287 13.1.2. Scanning transmission electron microscopes 289 13.2. Image formation 292 13.3. Contrast for thin specimens 294 13.3.1. Phase-object approximation 294 13.3.2. Weak-phase object approximation 296 13.3.3. Failure of weak-phase object approximation 299 13.3.4. Dark-field images 300 13.4. The imaging of crystals 301 13.4.1. Imaging of thin crystals; structure images 301 13.4.2. Calculation of images of crystals: envelope 305 13.4.3. Imaging of crystals - inelastic scattering 307 13.4.4. Lattice fringe imaging 309 13.4.5. Crystal imaging without lattice resolution 312 13.. Image contrast in STEM 313 13.5.1. STEM imaging of thin crystals 313 13.5.2. STEM imaging of thicker crystals 317 13.6. Electron holography 318 13.7. Combining high-resolution imaging with diffraction 326 Problems 328 Chapter 14. K-line patterns and channelling 32 9 14.1. Kossel lines 329 14.1.1. Geometry of Kossel lines 329 14.1.2. Dynamical theory of Kossel intensities 330 14.1.3. Kossel lines with limited resolution 332 14.2. Kikuchi lines 335 14.3. External sources of divergent radiation 339 14.4. Information from K-line patterns 341 14.5. Channelling 343 14.6. Secondary radiations 346 Chapter 15. Application of dynamical effects in single crystals 349 15.1. Dependence of dynamical effects an crystal parameters 349 15.2. X-ray interferometry 349 15.3. n-beam and 2-beam dynamical diffraction 351 15.4. Accurate determinations of structure amplitudes 354 15.4.1. Measurements of thickness fringes 355 15.4.2. Structure amplitudes from rocking curves 357 15.4.3. Convergent beam electron diffraction method 358 15.4.4. The use of critical voltages 359 15.4.5. Intersecting K-lines 362 15.5. The determination of crystal symmetries 363 15.6. Coherent convergent-beam electron diffraction 367

xiv CONTENTS Chapter 16. Mosaic crystals and polycrystalline materials 3 69 16.1. General 369 16.2. Mosaic crystals 370 16.2.1. The mosaic crystal model 370 16.2.2. Kinematical integrated intensities 370 16.2.3. Extinction effects 372 16.2.4. Dynamical electron diffraction intensities 374 16.3. Polycrystalline material 374 16.3.1. Idealized models 374 16.3.2. Kinematical diffraction intensities 377 16.3.3. Line profile analysis 377 16.3.4. Rietveld refinements 379 16.3.5. Dynamical diffraction intensities 380 16.3.6. fl-beam diffraction effects 383 Chapter 17. Ordering of atoms in crystals 385 17.1. The nature and description of disordered states 385 17.2. Order parameters 387 17.2.1. Short-range order 387 17.2.2. Long-range order 389 17.3. Patterson function 389 17.4. Size effects 390 17.5. Kinematical diffraction 392 17.5.1. Diffraction with ordering only 392 17.5.2. Diffraction with ordering and size effects 395 17.6. Relationship with ordering energies 400 17.7. Dynamical scattering from disordered crystals 401 17.7.1. Dynamical effects in diffuse scattering 401 17.7.2. Calculations of diffuse scattering 402 17.7.3. Strong scattering, multi-atom correlations 403 17.7.4. High resolution imaging disordered crystals 404 17.8. Out-of-phase domains 405 17.8.1. Ordered out-of-phase superlattices 405 17.8.2. Out-of-phase domains in disordered alloys 407 17.8.3. Modulated structures 408 Problems 410 Chapter 18. Extended defects 411 18.1. introduction 411 18.2. Stacking faults-statistical, kinematical theory 412 18.2.1. Patterson method for a simple case 412 18.2.2. A general treatment 414 18.2.3.?aults in close-packed structures 420 18.3. Dynamical diffraction by stacking faults 422 18.4. Dislocations 424 18.4.1. Diffraction effects 424

CONTENTS xv 18.4.2. The imaging of dislocations 426 18.4.3. Averaging over angles of incidence 427 18.4.4. n-beam diffraction effects 427 Chapter 19. Diffraction from surfaces 433 19.1. Introduction 433 19.2. Surface imaging and diffraction with electrons 435 19.2.1. Phase-contrast imaging 435 19.2.2. Crystal terminations and superlattices 436 19.2.3. Structure analysis of surface superlattices 438 19.2.4. Crystal profile imaging 439 19.3. Reflection from surfaces: grazing incidence 440 19.3.1. Kinematical approximation: x-rays, neutrons 440 19.3.2. Standing wave techniques 443 19.3.3. RHEED and REM 444 19.4. Reflection at normal incidence: LEED 451 19.5. Diffraction of emitted electrons 453 References 457 Index 477