Material removal, correction and laboratory X-ray diffraction

Similar documents
Mech Eng Dept, University of Bristol, UK

Integral method coefficients and regularization procedure for the ringcore residual stress measurement technique

Plane Strain Test for Metal Sheet Characterization

DEVELOPMENT OF MEASURING SYSTEM FOR STRESS BY MEANS OF IMAGE PLATE FOR LABORATORY X-RAY EXPERIMENT

5. STRESS CONCENTRATIONS. and strains in shafts apply only to solid and hollow circular shafts while they are in the

Effect of Plasticity on Residual Stresses Obtained by the Incremental Hole-drilling Method with 3D FEM Modelling

Chapter Objectives. Copyright 2011 Pearson Education South Asia Pte Ltd

Stress-Strain Behavior

Discrete Element Modelling of a Reinforced Concrete Structure

TMHL TMHL (Del I, teori; 1 p.) SOLUTION I. II.. III. Fig. 1.1

Available online at ScienceDirect. 5th Fatigue Design Conference, Fatigue Design 2013

RESIDUAL CHARACTERISTIC OF BENDING MOMENT ON REPEATED FOLDING MOTION OF COATED PAPERBOARD CREASED BY ROUND-EDGE KNIFE

The Simulation of Dropped Objects on the Offshore Structure Liping SUN 1,a, Gang MA 1,b, Chunyong NIE 2,c, Zihan WANG 1,d

Engineering Science OUTCOME 1 - TUTORIAL 4 COLUMNS

Veveri 331/95, Brno, Czech Republic

Residual Stresses in Cold Rolled Narrow Strips: Experimental Measurement FEM Simulation Nebojša Tadić 1,a, Mitar Mišović 1,b

LONG-TERM RELIABILITY OF CRT MONITORS

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts.

RESIDUAL STRESSES IN COLD ROLLED NARROW STRIPS: EXPERIMENTAL MEASUREMENT FEM SIMULATION

CHAPTER 3 THE EFFECTS OF FORCES ON MATERIALS

A Portable Optical DSPI System for Residual Stresses Measurement by Hole Drilling Using the Integral Method in Terms of Displacement

Initiation de fissure dans les milieux fragiles - Prise en compte des contraintes résiduelles

STANDARD SAMPLE. Reduced section " Diameter. Diameter. 2" Gauge length. Radius

Part 1 is to be completed without notes, beam tables or a calculator. DO NOT turn Part 2 over until you have completed and turned in Part 1.

ABSTRACT INTRODUCTION

Deflections and Strains in Cracked Shafts due to Rotating Loads: A Numerical and Experimental Analysis

Drilling in tempered glass modelling and experiments

Fatigue Life. The curve may be plotted as semilogarithmic

ENGINEERING SCIENCE H1 OUTCOME 1 - TUTORIAL 4 COLUMNS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 H1 FORMERLY UNIT 21718P

7.6 Stress in symmetrical elastic beam transmitting both shear force and bending moment

RESIDUAL STRESS MEASUREMENT IN STEEL BEAMS USING THE INCREMENTAL SLITTING TECHNIQUE

Mechanics of Solids. Mechanics Of Solids. Suraj kr. Ray Department of Civil Engineering

Laboratory 4 Bending Test of Materials

[8] Bending and Shear Loading of Beams

The effect of restraints type on the generated stresses in gantry crane beam

Project PAJ2 Dynamic Performance of Adhesively Bonded Joints. Report No. 3 August Proposed Draft for the Revision of ISO

PURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC.

TORSION TEST. Figure 1 Schematic view of torsion test

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA SCIENCE FOR TECHNICIANS OUTCOME 1 - STATIC AND DYNAMIC FORCES TUTORIAL 3 STRESS AND STRAIN

Bending Load & Calibration Module

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 4, No 1, 2013

Ultrasonic Non-destructive Testing and in Situ Regulation of Residual Stress

Simulation of a Two-Roll Straightening Process and Analysis of Residual Stress After Straightening

A novel technique of friction and material property measurement by tip test in cold forging

Modified Symmetry Cell Approach for Simulation of Surface Enhancement Over Large Scale Structures

Effective stress assessment at rectangular rounded lateral notches

Influence of residual stresses in the structural behavior of. tubular columns and arches. Nuno Rocha Cima Gomes

Coupled CFD-FE-Analysis for the Exhaust Manifold of a Diesel Engine

The Ultimate Load-Carrying Capacity of a Thin-Walled Shuttle Cylinder Structure with Cracks under Eccentric Compressive Force

Stresses Analysis of Petroleum Pipe Finite Element under Internal Pressure

Unit Workbook 1 Level 4 ENG U8 Mechanical Principles 2018 UniCourse Ltd. All Rights Reserved. Sample

Elastic Properties of Solids (One or two weights)

FRACTURE MECHANICS FOR MEMBRANES

Optimization of contact stress distribution in interference fit

Observation of Magnetic Flux Density Distribution around Fatigue Crack and Application to Non-Destructive Evaluation of Stress Intensity Factor

On the nonlinear anelastic behaviour of AHSS

Frequently Asked Questions

Estimation of the Residual Stiffness of Fire-Damaged Concrete Members

FEM model of pneumatic spring assembly

Attempt ALL QUESTIONS IN SECTION A and ANY TWO QUESTIONS IN SECTION B Linear graph paper will be provided.

A rate-dependent Hosford-Coulomb model for predicting ductile fracture at high strain rates

THE USE OF PEARSON VII DISTRIBUTION FUNCTIONS IN X-RA Y DIFFR ACTION RESIDUAL STRESS MEASUREMENT

N = Shear stress / Shear strain

Case Study: Residual Stress Measurement

SANDWICH COMPOSITE BEAMS for STRUCTURAL APPLICATIONS

Finite Element Modelling with Plastic Hinges

Application of the Barkhausen effect probe with adjustable magnetic field direction for stress state determination in the P91 steel pipe

6. Bending CHAPTER OBJECTIVES

MITOCW MITRES2_002S10nonlinear_lec15_300k-mp4

Finite Element Method in Geotechnical Engineering

OPTIMIZATION OF THE COMPOSITE MATERIALS OF TANKS USING FINITE ELEMENT METHOD AND STRAIN GAUGES

On The Temperature and Residual Stress Field During Grinding

Expansion of circular tubes by rigid tubes as impact energy absorbers: experimental and theoretical investigation

A Study on the Effective Long Type Coil Shape by Multidisciplinary Method in Induction Heating

Overview of High Temperature and Thermo-mechanical Fatigue (TMF)

Advanced Structural Analysis EGF Cylinders Under Pressure

Fig. 1. Different locus of failure and crack trajectories observed in mode I testing of adhesively bonded double cantilever beam (DCB) specimens.

NUMERICAL AND EXPERIMENTAL METHOD TO ALIGN 2500 TF PRESS COLUMNS

Thermal loads on optical glass

The objective of this experiment is to investigate the behavior of steel specimen under a tensile test and to determine it's properties.

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 3 LOADED COMPONENTS

Lectures on. Constitutive Modelling of Arteries. Ray Ogden

Osaka University, 2-1, Yamada-oka, Suita, Osaka , Japan. Naka-gun, Ibaraki , Japan

Finite element simulation of residual stresses in laser heating

ISO 178 INTERNATIONAL STANDARD. Plastics Determination of flexural properties. Plastiques Détermination des propriétés en flexion

7.4 The Elementary Beam Theory

Stress Test Based on Planar Flexible Eddy Current Sensor

CRACK FORMATION AND CRACK PROPAGATION INTO THE COMPRESSION ZONE ON REINFORCED CONCRETE BEAM STRUCTURES

Hardened Concrete. Lecture No. 16

Consideration of Viscoelasticity in Time Step FEM-Based Restraint Analyses of Hardening Concrete

INFLUENCE OF TEMPERATURE ON BEHAVIOR OF THE INTERFACIAL CRACK BETWEEN THE TWO LAYERS

STRUCTURAL ANALYSIS CHAPTER 2. Introduction

STRESS AND TEXTURE MEASUREMENT USING BARKHAUSEN NOISE AND ANGULAR SCANNING OF DRIVING MAGNETIC FIELD

Vane pump theory for mechanical efficiency

THREE DIMENSIONAL FINITE ELEMENT CALCULATIONS OF CRACK TIP PLASTIC ZONES AND K IC SPECIMEN SIZE REQUIREMENTS

Computational models of diamond anvil cell compression

TINIUS OLSEN Testing Machine Co., Inc.

Outline. Tensile-Test Specimen and Machine. Stress-Strain Curve. Review of Mechanical Properties. Mechanical Behaviour

Modelling and numerical simulation of the wrinkling evolution for thermo-mechanical loading cases

Because the third wire carries practically no current (due to the voltmeter's extremely high internal resistance), its resistance will not drop any

Transcription:

Advanced Materials Research Online: 2014-08-11 ISSN: 1662-8985, Vol. 996, pp 181-186 doi:10.4028/www.scientific.net/amr.996.181 2014 Trans Tech Publications, Switzerland Material removal, correction and laboratory X-ray diffraction Eric Wasniewski 1,a *, Baptiste Honnart 1, Fabien Lefebvre 1,b, Eric Usmial 1,c 1 CETIM, laboratoire d'analyses physiques, 52 avenue Felix Louat 60300 Senlis, France a eric.wasniewski@cetim.fr, b fabien.lefebvre@cetim.fr, c eric.usmial@cetim.fr Keywords: Material removal; Laboratory X-ray diffraction ; correction Abstract Laboratory X-ray diffraction is commonly used for surface residual stresses determination. Nevertheless, the in-depth residual stress gradient also needs to be known. Chemical or electro-polishing method is generally used for material removal. However, material removal may seek a new equilibrium and stress field may change in such a way that experimental residual stress values must be corrected. Different methods exist to account for the residual stress relaxation associated with the material removal operation and will be discussed in this paper. 1. Introduction X-ray diffraction allows determining residuals stresses in surface. When we need to know stress gradients in depth, we have to use electropolishing layer removal. After this operation, material seeks a new equilibrium, stress fields change and then stress measurements must be corrected. Strangely, few articles talk about the subject in the literature. The first one is the well-known Moore & Evans theory [1]. The second one is the Pedersen & Hansson theory [2] and recently the Savaria- Bridier-Bocher theory [3]. In the following article, we will firstly expose a review of these different theories with a modification of the Pedersen-Hansson theory motivated by ours experiments. Then, we will compare theoretical/experimental results obtained on ladders. To finish, we will put side by side results obtained with the three different theories and results obtained thanks to the experiment. 2. Review on residual stress relaxation associated with the material removal operation 1.1 Moore-Evans theory [2] Moore & Evans works were published in 1958. This method is the most used nowadays in the industry because it allows easy and fact results correction from X-ray diffraction method. Moreover, this method is recommended in the SAE HS-784 2003 standard. The theory is based on the following analytical formula which is easily computed: σy(z1) =. + 2-6z1. (1) ² Where z is the thickness of the plate, and z1 the distance from the lower surface to the point of interest. 1.2 Pedersen-Hansson theory and modification [2] a. Initial theory reminder After Moore & Evans work, two Danish researchers used Finite Element Method (FEM) at the end of the 80 s in order to simulate a material removal neither for an entire layer but only for a groove. Figure 1 shows a schematic drawing used for the FE simulation. It is a block of 200x100x100mm 3 with a symmetrical groove in the center. With the symmetry, it is considered only half of the block. The applied stress is considered as linear on the thickness. This is an open access article under the CC-BY 4.0 license (https://creativecommons.org/licenses/by/4.0/)

182 Residual Stresses IX Removed material Applied stress Fig.1 Schematic drawing of material removal in a block of 200x100x100mm 3. Pedersen and Hansson compare the correction in per cent to add to the residual stress measurement in function of the material removal depth. b. Theory modification In our case, some changes have been made to take into account a more realistic geometry of material removal. Experimentally we use an electropolishing machine to remove a square or rectangle shape of few cm² (between 1 and 5 cm²) of material. The X-ray analyses are always carried out at the center of the removed shape. Then, concerning the electropolishing profile, Figure 2 illustrates the shape of the bottom of the groove considering an angle different to 90. This is pertinent if the attack depth and the attack width are in the same units or same scales. In our case, it is not the case as presented in Figure 3. The attack width is roughly 15mm whilst the attack depth is 100 µm. So, the depth attack is too tiny compare to the width attack to have an influence. The shape of the bottom for our model is considered with an angle equal to 90. In terms of boundary conditions, it has been decided to keep the same boundary conditions than Pedersen et al. which are linear stresses profile on the thickness from 0 to +100MPa. Fig.2 Zoom at the bottom of the groove used by Pedersen et al. [2] 1.3 Savaria-Bridier-Bocher theory [3] Savaria et al. published in June 2012 in the International Journal of Mechanical Sciences and developed a theory to take into account the stress relaxation in a tube. In their theory, different calculation assumptions are used: Relaxation is elastic; no plasticity is introduced by residual stress relaxation/redistribution during removal layers. - Removal layers technique do not introduced new residual stress. - Residual stresses in the material are considered as uniforms on the entire specimen surface. - Residual stresses in the material are considered as uniforms on the entire layer. - Specimen and removal window geometry corresponding to material removal are the same for the simulation and the experimental part.

Advanced Materials Research Vol. 996 183 - Stresses are uncoupled; it means that the relaxation and redistribution in one direction are only affected by previous stresses removed in that same direction. As for the authors, the correction depends strictly on both factors below: - the geometry (specimen and removed layer) - the magnitude of previously removed stress in the direction of interest. The authors claims that local stress variation observed at a depth d after a material removal step s is: ( σd)s = (σd)s - (σd)s-1 = - Kdsσms. (2) With Kds the correction coefficient at depth d associated to a material removal step s (this coefficient is not the same in all stresses directions and must be re-calculate regardless of each direction), ( σd)s - ( σd)s-1 are stresses in a direction at a depth d after material removals s and s-1. σms is the measured stress on the surface of the layer s. For all the others depths d, corrected stress σcd are calculated using measured stresses σmd for all the previous materials removed. σcd = σmd + σ. (3) We can write the previous equation (Eq. 3) in the form of matrix: σc = [I + K] σm. (4) With σc and σm are columns matrices containing corrected and measured stresses components σcd et σmd for depths from 1 to n. I and K are respectively identity matrix and correction matrix (dimension n). 3. Results and discussion 3.1 Four point bending test To evaluate the stress relaxation induced by material removal, it has been considered to load a specimen of 130x15x10mm 3. The sample in S690 has suffered a tempered at 550 C during 1 hour to remove the initial residual stresses. The sample has been checked in the beginning of bending testing and considered as free stress sample (see Figure 5). The bending test device allows applying a load of +550MPa on the surface monitored by a strain gauge localized in the opposite face of interest for X-ray analyses. So X-ray stress measurements are in compression. The measurement has been made in longitudinal direction of the sample.

184 Residual Stresses IX Fig. 5 X-ray analyses on bending bar. Polishing with a hydrofluoric acid is made on the sample in bending for each removal layer with a metrological control. The sample stays in bending during all removal layer. At each material removal, stress analysis is carried out by X-ray diffraction. Table 1 presents the results of theoretical stress profile when +550MPa are applied on a face of the sample in flexion in relation with the experimental results obtained by X-ray diffraction without correction and with the 3 methods presented above: Moore Evans, Pedersen-Hansson modified and Savaria et al. Figure 6 illustrates this table. It may be noted that corrected profiles of Moore-Evans theory and Pedersen-Hansson modified are closed to the theoretical profile however the Savaria corrected profile do not present enough correction. These last results look strange because all assumptions and parameters developed by Savaria et al. are in agreement with the experimentation whilst Moore Evans and Pedersen-Hansson modified theories present more simplification. Depth (mm) Table 1 Comparison between theoretical/experimental/corrected profiles Residual stress - Theoretical profile (MPa) Residual stress - Experimental measurements (MPa) Corrected profile (Moore Evans theory) Corrected profile (Pedersen- Hansson modified) Corrected profile (Savaria- Bridier- Bocher's theory) 0-550 -510-510 -510-510 0,07-542,3-502 -492-488 -508 0,09-540,1-560 -539-542 -575 0,22-525,8-531 -490-484 -537 0,39-507,1-601 -507-516 -596 0,58-486,2-599 -457-470 -573 0,81-460,9-633 -430-449 -599 1,02-437,8-648 -385-412 -587

Advanced Materials Research Vol. 996 185 ladder in four-point bending Residual stresses (MPa) 0-100 -200-300 -400-500 -600-700 depth (mm) 0 0.2 0.4 0.6 0.8 1 1.2 theorical profile Analysed profile Profile corrected (Savaria) Profile corrected (our model) Profile corrected (Moore Evans) Standard deviation Fig. 6 Graphical comparison between theoretical/experimental/corrected profiles. So it may be seen in Figure 6 that the correction of our model which means the modified Pedersen- Hansson model may be validated. 3.2 Influence of sample dimensions on the correction factor First of all, it is interesting to investigate the influence of sample dimensions on the correction factor. Residual stress profile was obtained by X-ray diffraction with several electropolishing steps on a sample with different surface treatments. To evaluate the effect of removal layers on the initial profile, 6 geometry of specimen are considered : - Block of 200x100x100mm 3 - Block of 200x100x50mm 3 - Block of 200x50x50mm 3 - Block of 200x15x5mm 3 - Sheet of 130x50x2.2mm 3 - Sheet of 130x50x1.8mm 3 - Sheet of 130x50x1.4mm 3 Figure 4 presents the initial profile without correction (analysed profile) and the 6 profiles in function of the geometry of the sample for block's correction. The corrections are provided by the modified Pederson et al. theory. It may be seen that smaller and thinner is the sample, stronger is the correction which is also shown by Savaria et al. in their research [3]. Knowing that the real shape of analyzed sample looks like a big block of 200x100x50mm 3, the good profile should be used in consequence and in this case, material removal does not influence the stress gradient which means that the stress relaxation is not sensible to material removal.

186 Residual Stresses IX Corrected profile in fonction of dimension's sample Residual stresses (MPa) -300-350 -400-450 -500-550 -600-650 -700 0 0.2 0.4 0.6 0.8 1 1.2 Depth (mm) Fig.4 Influence of the sample's size. Analysed profile 200x100x100 200x100x50 200x50x50 200x15x5 130x50x2,2 130x50x1,8 130x50x1,4 Standard deviation 4. Conclusions It has been seen that the correction depends strongly on the size of the sample. The simulation must be as closed as possible to the real shape of the analyzed sample in terms of sample dimension and removal layer dimension. Automatic program with multiple choices of basic geometry has been made to give easy correction profile to the technician in charge of residual stress analyses. It seems that the Moore Evans or Pedersen-Hansson modified theories present the best results in comparison with the theoretical stress profile however Furthers investigations can be required to improve the model: - Change the size of the sample. - Increase or decrease the initial bending stress Consider service stresses as residual stresses but their behavior may be different. - Compare the corrected profile with a profile made by synchrotron. References [1] Moore, M. and Evans, W., "Mathematical Correction for Stress in Removed Layers in X-Ray Diffraction Residual Stress Analysis," SAE Technical Paper 580035, 1958, doi:10.4271/580035. [2] Pedersen TF, Hansson ILH." Finite element calculations for correction of residual stress profiles of coated and uncoated materials measured by X-ray diffraction." NDT Int 1989;22:347-52 [3] Savaria V., Bridier F. and Bocher, P., "Computational quantification and correction of the errors induced by layer removal for subsurface residual stress measurements", International Journal of Mechanical Sciences, Volume 64 (1) Nov 1, 2012