Analysis of Planar Truss

Similar documents
Stretching of a Prismatic Bar by its Own Weight

The following syntax is used to describe a typical irreducible continuum element:

Two-Dimensional Steady State Heat Conduction

Modeling a Composite Slot Cross-Section for Torsional Analysis

Linear Static Analysis of a Simply-Supported Truss (SI)

Post Graduate Diploma in Mechanical Engineering Computational mechanics using finite element method

Non-linear and time-dependent material models in Mentat & MARC. Tutorial with Background and Exercises

DISPENSA FEM in MSC. Nastran

Results Combination Using Restart

Project. First Saved Monday, June 27, 2011 Last Saved Wednesday, June 29, 2011 Product Version 13.0 Release

Level 7 Postgraduate Diploma in Engineering Computational mechanics using finite element method

A two-dimensional FE truss program

CAEFEM v9.5 Information

Application of pseudo-symmetric technique in dynamic analysis of concrete gravity dams

As an example, the two-bar truss structure, shown in the figure below will be modelled, loaded and analyzed.

4 Finite Element Method for Trusses

Leaf Spring (Material, Contact, geometric nonlinearity)

3. Overview of MSC/NASTRAN

Module 2: Thermal Stresses in a 1D Beam Fixed at Both Ends

Finite Element Method in Geotechnical Engineering

Sstan builds the global equation R = KG*r starting at the element level just like you did by hand

Contents as of 12/8/2017. Preface. 1. Overview...1

Settlement and Bearing Capacity of a Strip Footing. Nonlinear Analyses

1 Nonlinear deformation

Example 37 - Analytical Beam

Stress Analysis Report

Workshop 8. Lateral Buckling

Procedure for Performing Stress Analysis by Means of Finite Element Method (FEM)

Stress analysis of deflection analysis flexure and obif Vertical Load orientation

2D Liquefaction Analysis for Bridge Abutment


Due Tuesday, September 21 st, 12:00 midnight

Tutorial for the heated pipe with constant fluid properties in STAR-CCM+

13 Step-Path Failure of Rock Slopes

Alvaro F. M. Azevedo A. Adão da Fonseca

Linear Static Analysis of a Cantilever Beam (SI Units)

Stress analysis of a stepped bar

ME 475 Modal Analysis of a Tapered Beam

1 Slope Stability for a Cohesive and Frictional Soil

Geometric Misfitting in Structures An Interval-Based Approach

FEA CODE WITH MATLAB. Finite Element Analysis of an Arch ME 5657 FINITE ELEMENT METHOD. Submitted by: ALPAY BURAK DEMIRYUREK

Response Spectrum Analysis Shock and Seismic. FEMAP & NX Nastran

Reg. No. : Question Paper Code : B.Arch. DEGREE EXAMINATION, APRIL/MAY Second Semester AR 6201 MECHANICS OF STRUCTURES I

The University of Melbourne Engineering Mechanics

Mechanical Properties of Materials

Geometric Nonlinear Analysis of a Cantilever Beam

Simulation of FEA_ES00187

Internet Parallel Structure Analysis Program (IPSAP) User's Guide

1 Slope Stability for a Cohesive and Frictional Soil

Elmer :Heat transfert with phase change solid-solid in transient problem Application to silicon properties. SIF file : phasechange solid-solid

Linear Static Analysis of a Cantilever Beam (CBAR Problem)

Permafrost Thawing and Deformations

Tutorial 2. SSMA Cee in Compression: 600S F y = 50ksi Objective. A the end of the tutorial you should be able to

JEPPIAAR ENGINEERING COLLEGE

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown.

Engine-Gasket HPC trial and Suspension NVH analysis using Linear_Perturbation ANSYS Japan Mechanical BU Toru Hiyake

Thermal Stress Analysis of a Bi- Metallic Plate

Project Engineer: Wesley Kinkler Project Number: 4.14 Submission Date: 11/15/2003. TAMUK Truss Company Trusses Made Simple

Using MATLAB and. Abaqus. Finite Element Analysis. Introduction to. Amar Khennane. Taylor & Francis Croup. Taylor & Francis Croup,

ON EFFECTIVE IMPLICIT TIME INTEGRATION IN ANALYSIS OF FLUID-STRUCTURE PROBLEMS

Calculating Mechanical Transfer Functions with COMSOL Multiphysics. Yoichi Aso Department of Physics, University of Tokyo

Theoretical Manual Theoretical background to the Strand7 finite element analysis system

Content. Department of Mathematics University of Oslo

Depletion Analysis of an Oilfield

Cable Tension APPENDIX D. Objectives: Demonstrate the use of elastic-plastic material properties. Create an enforced displacement on the model.

Implementation of a user-defined time integration in FEAP: Wilson-Θ

Plane and axisymmetric models in Mentat & MARC. Tutorial with some Background

1 Exercise: Linear, incompressible Stokes flow with FE

Transient Thermal Analysis of a Fin

Converting Plane Stress Statics to 2D Natural Frequencies, changes in red

Stresses Analysis of Petroleum Pipe Finite Element under Internal Pressure

ALASKA ENERGY AUTHORITY AEA ENGINEERING FEASIBILITY REPORT. Appendix B8. Finite Element Analysis

Structural Dynamics. Spring mass system. The spring force is given by and F(t) is the driving force. Start by applying Newton s second law (F=ma).

ME FINITE ELEMENT ANALYSIS FORMULAS

The Finite Element Method for Mechonics of Solids with ANSYS Applicotions

Nonlinear bending analysis of laminated composite stiffened plates

MITOCW MITRES2_002S10nonlinear_lec15_300k-mp4

Chapter 5 Structural Elements: The truss & beam elements

A Pile Pull Out Test

Sensitivity and Reliability Analysis of Nonlinear Frame Structures

MATERIAL MECHANICS, SE2126 COMPUTER LAB 4 MICRO MECHANICS. E E v E E E E E v E E + + = m f f. f f

To initiate a dynamic analysis in FormWorks, the Analysis Mode in the JOB CONTROL tab of DEFINE JOB window has to be set to one of the two Dynamic

8 Lined Circular Tunnel in an Elastic Medium with Anisotropic Stresses

Tutorial for the supercritical pressure pipe with STAR-CCM+

A.0 IDUKKI ARCH DAM - ANALYSIS FOR VARIOUS LOAD CASES AND DISCRETISATIONS

ENGN 2290: Plasticity Computational plasticity in Abaqus

-SQA-SCOTTISH QUALIFICATIONS AUTHORITY HIGHER NATIONAL UNIT SPECIFICATION GENERAL INFORMATION MECHANICAL ENGINEERING PRINCIPLES: STATICS AND DYNAMICS

Nonlinear analysis in ADINA Structures

A Simple Problem Which Students Can Solve and Check Using an Inexpensive Calculator

BE Semester- I ( ) Question Bank (MECHANICS OF SOLIDS)

Methods of Analysis. Force or Flexibility Method

Nonlinear Static - 1D Plasticity - Isotropic and Kinematic Hardening Walla Walla University

Development of finite element tools for assisted seismic design

Multi-Point Constraints

Computational Simulation of Dynamic Response of Vehicle Tatra T815 and the Ground

Due Monday, September 14 th, 12:00 midnight

σ = F/A ε = L/L σ ε a σ = Eε

Theory at a Glance (for IES, GATE, PSU)

2008 International ANSYS Conference

EXPERIMENT 4: AN ELECTRICAL-THERMAL ACTUATOR

Transcription:

Analysis of Planar Truss Although the APES computer program is not a specific matrix structural code, it can none the less be used to analyze simple structures. In this example, the following statically determinate, planar truss is analyzed. 20 kn 10 kn b d f h 12 kn j 6 m a c e 6 kn 6 kn g i 8 m 8 m 8 m 8 m The mathematical model used has the following appearance. 20 kn 10 kn 2 2 4 6 6 10 8 14 12 kn 1 3 5 7 9 11 13 15 10 17 1 4 3 8 5 12 7 16 9 6 kn 6 kn A copy of the input data file used is shown below. This is followed by the associated output file. 1

ana title "statically determinate truss analyzed using L2P0 bar elements" analysis type mechanical anal ideal plane_stress anal temp transient analysis description linear dim max material isotropic elastic 1 dim max nodes 10 dim max l2p0 17 fin sett mat elastic isotropic number 1 & desc "hypothetical material for bar elements" & modulus 3.0e+09 nodes line number 1 nodes line number 9 x1 32.0 incr 2 nodes line number 2 x2 6.0 nodes line number 10 x1 32.0 x2 6.0 incr 2 element bar_mech type "l2p0" nodes 1 2 mat 1 area 1.0 element bar_mech type "l2p0" nodes 2 4 mat 1 area 1.0 element bar_mech type "l2p0" nodes 1 4 mat 1 area 1.0 element bar_mech type "l2p0" nodes 1 3 mat 1 area 1.0 element bar_mech type "l2p0" nodes 3 4 mat 1 area 1.0 element bar_mech type "l2p0" nodes 4 6 mat 1 area 1.0 element bar_mech type "l2p0" nodes 3 6 mat 1 area 1.0 element bar_mech type "l2p0" nodes 3 5 mat 1 area 1.0 element bar_mech type "l2p0" nodes 5 6 mat 1 area 1.0 element bar_mech type "l2p0" nodes 6 8 mat 1 area 1.0 element bar_mech type "l2p0" nodes 6 7 mat 1 area 1.0 element bar_mech type "l2p0" nodes 5 7 mat 1 area 1.0 element bar_mech type "l2p0" nodes 7 8 mat 1 area 1.0 element bar_mech type "l2p0" nodes 8 10 mat 1 area 1.0 element bar_mech type "l2p0" nodes 8 9 mat 1 area 1.0 element bar_mech type "l2p0" nodes 7 9 mat 1 area 1.0 element bar_mech type "l2p0" nodes 9 10 mat 1 area 1.0 specification conc mech nodes 1 1_disp specification conc mech nodes 2 1_disp 2_disp specification conc mech nodes 3 2_hist 0 2_forc 2_value -6.0 specification conc mech nodes 6 2_hist 0 2_forc 2_value -20.0 specification conc mech nodes 7 2_hist 0 2_forc 2_value -6.0 specification conc mech nodes 10 1_hist 0 1_forc 1_value 12.0 & 2_hist 0 2_forc 2_value -10.0 finish data solution time final 1.0 increments 1 output 1:10:1 finished loading 2

apes : version 3.10 : 11.03.98 DATE OF ANALYSIS :: day:20 month:03 year:98 ANALYSIS INITIATED AT TIME :: 11:37:04 statically determinate truss analyzed using L2P0 bar elements WARNING: no INTEGRATION commands specified <<< D Y N A M I C S T O R A G E A L L O C A T I O N Largest NODE number which can used in the mesh = 10 Max. no. of ISOTROPIC, LINEAR ELASTIC materials = 1 Max. no. of 2-node line (L2P0) elements = 17 = G E N E R A L A N A L Y S I S I N F O R M A T I O N = -- MECHANICAL analysis shall be performed -- Fluid flow is NOT accounted for in the analysis -- Thermal effects are NOT accounted for in analysis -- TWO-DIMENSIONAL solution domain assumed (PLANE STRESS idealization) -- Nodal coordinates will NOT be updated -- solver type used : SKYLINE -- storage type : SYMMETRIC 3

-- "Isoparametric" mesh generation scheme used = I N T E G R A T I O N O P T I O N S = In approximating time derivatives, the value of "THETA" = 6.667E-01 = G R A V I T A T I O N A L I N F O R M A T I O N = NOTE: no gravity specifications have been made ; the following DEFAULT values are thus assumed: Initial value of gravitational acceleration, "g" = 0.000E+00 History function number associated with "g" = -2 Angle (in degrees) that "g" makes with the x1-axis = -9.000E+01 Angle (in degrees) that "g" makes with the x2-axis = 1.800E+02 Angle (in degrees) that "g" makes with the x3-axis = -9.000E+01 History function number associated w/these angles = -2 = N O N L I N E A R A N A L Y S I S I N F O R M A T I O N = -- LINEAR analysis = H I S T O R Y F U N C T I O N I N F O R M A T I O N = <<< NONE = I N I T I A L S T A T E I N F O R M A T I O N = <<< NONE 4

= M A T E R I A L I D E A L I Z A T I O N S = -- Material number: 1 ~~~~~~~~~~~~~~~ type : isotropic linear elastic info. : hypothetical material for bar elements Modulus of Elasticity = 3.000E+09 Poisson's ratio = 3.000E-01 Elastic bulk modulus of the solid phase = 0.000E+00 Material density of the solid phase = 0.000E+00 Combined bulk modulus for solid/fluid = 0.000E+00 = N O D A L C O O R D I N A T E S = node : 1 x1 = 0.000E+00 x2 = 0.000E+00 node : 2 x1 = 0.000E+00 x2 = 6.000E+00 node : 3 x1 = 8.000E+00 x2 = 0.000E+00 node : 4 x1 = 8.000E+00 x2 = 6.000E+00 node : 5 x1 = 1.600E+01 x2 = 0.000E+00 node : 6 x1 = 1.600E+01 x2 = 6.000E+00 node : 7 x1 = 2.400E+01 x2 = 0.000E+00 node : 8 x1 = 2.400E+01 x2 = 6.000E+00 node : 9 x1 = 3.200E+01 x2 = 0.000E+00 node : 10 x1 = 3.200E+01 x2 = 6.000E+00 = E L E M E N T I N F O R M A T I O N = -- number : 1 (type : L2P0 ) (kind : BAR_MECH ) ~~~~~~ nodes : 1 2 -- number : 2 (type : L2P0 ) (kind : BAR_MECH ) ~~~~~~ nodes : 2 4 5

-- number : 3 (type : L2P0 ) (kind : BAR_MECH ) ~~~~~~ nodes : 1 4 -- number : 4 (type : L2P0 ) (kind : BAR_MECH ) ~~~~~~ nodes : 1 3 -- number : 5 (type : L2P0 ) (kind : BAR_MECH ) ~~~~~~ nodes : 3 4 -- number : 6 (type : L2P0 ) (kind : BAR_MECH ) 6

~~~~~~ nodes : 4 6 -- number : 7 (type : L2P0 ) (kind : BAR_MECH ) ~~~~~~ nodes : 3 6 -- number : 8 (type : L2P0 ) (kind : BAR_MECH ) ~~~~~~ nodes : 3 5 -- number : 9 (type : L2P0 ) (kind : BAR_MECH ) ~~~~~~ nodes : 5 6 7

-- number : 10 (type : L2P0 ) (kind : BAR_MECH ) ~~~~~~ nodes : 6 8 -- number : 11 (type : L2P0 ) (kind : BAR_MECH ) ~~~~~~ nodes : 6 7 -- number : 12 (type : L2P0 ) (kind : BAR_MECH ) ~~~~~~ nodes : 5 7 -- number : 13 (type : L2P0 ) (kind : BAR_MECH ) ~~~~~~ nodes : 7 8 8

-- number : 14 (type : L2P0 ) (kind : BAR_MECH ) ~~~~~~ nodes : 8 10 -- number : 15 (type : L2P0 ) (kind : BAR_MECH ) ~~~~~~ nodes : 8 9 -- number : 16 (type : L2P0 ) (kind : BAR_MECH ) ~~~~~~ nodes : 7 9 -- number : 17 (type : L2P0 ) (kind : BAR_MECH ) ~~~~~~ nodes : 9 10 9

= N O D E P O I N T S P E C I F I C A T I O N S = Node Number s p e c i f i c a t i o n: ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ 1 : 2 : 3 : 6 : 7 : 10 : displacement-1 = 0.000E+00 ; history no. = -2 force-2 = 0.000E+00 ; history no. = -2 displacement-1 = 0.000E+00 ; history no. = -2 displacement-2 = 0.000E+00 ; history no. = -2 force-1 = 0.000E+00 ; history no. = -2 force-2 = -6.000E+00 ; history no. = 0 force-1 = 0.000E+00 ; history no. = -2 force-2 = -2.000E+01 ; history no. = 0 force-1 = 0.000E+00 ; history no. = -2 force-2 = -6.000E+00 ; history no. = 0 force-1 = 1.200E+01 ; history no. = 0 force-2 = -1.000E+01 ; history no. = 0 At time 1.000E+00 (step no. 1) NO iteration was required = E L E M E N T S T R A I N S & S T R E S S E S = -- element 1 ( type = L2P0 ) : @(x1 = 0.000E+00, x2 = 3.000E+00, x3 = 0.000E+00) : eps_11 = 1.400E-08 ; sig_11 = 4.200E+01 ; axial force = 4.200E+01 -- element 2 ( type = L2P0 ) : @(x1 = 4.000E+00, x2 = 6.000E+00, x3 = 0.000E+00) : eps_11 = 5.022E-08 ; sig_11 = 1.507E+02 ; axial force = 1.507E+02 10

-- element 3 ( type = L2P0 ) : @(x1 = 4.000E+00, x2 = 3.000E+00, x3 = 0.000E+00) : eps_11 = -2.333E-08 ; sig_11 = -7.000E+01 ; axial force = -7.000E+01 -- element 4 ( type = L2P0 ) : @(x1 = 4.000E+00, x2 = 0.000E+00, x3 = 0.000E+00) : eps_11 = -2.756E-08 ; sig_11 = -8.267E+01 ; axial force = -8.267E+01 -- element 5 ( type = L2P0 ) : @(x1 = 8.000E+00, x2 = 3.000E+00, x3 = 0.000E+00) : eps_11 = 1.400E-08 ; sig_11 = 4.200E+01 ; axial force = 4.200E+01 -- element 6 ( type = L2P0 ) : @(x1 = 1.200E+01, x2 = 6.000E+00, x3 = 0.000E+00) : eps_11 = 3.156E-08 ; sig_11 = 9.467E+01 ; axial force = 9.467E+01 -- element 7 ( type = L2P0 ) : @(x1 = 1.200E+01, x2 = 3.000E+00, x3 = 0.000E+00) : eps_11 = -2.000E-08 ; sig_11 = -6.000E+01 ; axial force = -6.000E+01 -- element 8 ( type = L2P0 ) : @(x1 = 1.200E+01, x2 = 0.000E+00, x3 = 0.000E+00) : eps_11 = -1.156E-08 ; sig_11 = -3.467E+01 ; axial force = -3.467E+01 -- element 9 ( type = L2P0 ) : @(x1 = 1.600E+01, x2 = 3.000E+00, x3 = 0.000E+00) : eps_11 = -1.728E-15 ; sig_11 = -5.184E-06 ; axial force = -5.184E-06 -- element 10 ( type = L2P0 ) : @(x1 = 2.000E+01, x2 = 6.000E+00, x3 = 0.000E+00) : eps_11 = 8.444E-09 ; sig_11 = 2.533E+01 ; axial force = 2.533E+01 -- element 11 ( type = L2P0 ) : @(x1 = 2.000E+01, x2 = 3.000E+00, x3 = 0.000E+00) : eps_11 = 8.889E-09 ; sig_11 = 2.667E+01 ; axial force = 2.667E+01 11

-- element 12 ( type = L2P0 ) : @(x1 = 2.000E+01, x2 = 0.000E+00, x3 = 0.000E+00) : eps_11 = -1.156E-08 ; sig_11 = -3.467E+01 ; axial force = -3.467E+01 -- element 13 ( type = L2P0 ) : @(x1 = 2.400E+01, x2 = 3.000E+00, x3 = 0.000E+00) : eps_11 = -3.333E-09 ; sig_11 = -1.000E+01 ; axial force = -1.000E+01 -- element 14 ( type = L2P0 ) : @(x1 = 2.800E+01, x2 = 6.000E+00, x3 = 0.000E+00) : eps_11 = 4.000E-09 ; sig_11 = 1.200E+01 ; axial force = 1.200E+01 -- element 15 ( type = L2P0 ) : @(x1 = 2.800E+01, x2 = 3.000E+00, x3 = 0.000E+00) : eps_11 = 5.556E-09 ; sig_11 = 1.667E+01 ; axial force = 1.667E+01 -- element 16 ( type = L2P0 ) : @(x1 = 2.800E+01, x2 = 0.000E+00, x3 = 0.000E+00) : eps_11 = -4.444E-09 ; sig_11 = -1.333E+01 ; axial force = -1.333E+01 -- element 17 ( type = L2P0 ) : @(x1 = 3.200E+01, x2 = 3.000E+00, x3 = 0.000E+00) : eps_11 = -3.333E-09 ; sig_11 = -1.000E+01 ; axial force = -1.000E+01 = N O D A L Q U A N T I T I E S = node : 1 ( x1 = 0.000E+00, x2 = 0.000E+00 ) u_1 = -1.387E-18, u_2 = -8.400E-08 node : 2 ( x1 = 0.000E+00, x2 = 6.000E+00 ) u_1 = 1.507E-18, u_2 = -8.400E-28 node : 3 ( x1 = 8.000E+00, x2 = 0.000E+00 ) u_1 = -2.204E-07, u_2 = -1.093E-06 node : 4 ( x1 = 8.000E+00, x2 = 6.000E+00 ) u_1 = 4.018E-07, u_2 = -1.009E-06 12

node : 5 ( x1 = 1.600E+01, x2 = 0.000E+00 ) u_1 = -3.129E-07, u_2 = -2.592E-06 node : 6 ( x1 = 1.600E+01, x2 = 6.000E+00 ) u_1 = 6.542E-07, u_2 = -2.592E-06 node : 7 ( x1 = 2.400E+01, x2 = 0.000E+00 ) u_1 = -4.053E-07, u_2 = -4.153E-06 node : 8 ( x1 = 2.400E+01, x2 = 6.000E+00 ) u_1 = 7.218E-07, u_2 = -4.173E-06 node : 9 ( x1 = 3.200E+01, x2 = 0.000E+00 ) u_1 = -4.409E-07, u_2 = -5.816E-06 node : 10 ( x1 = 3.200E+01, x2 = 6.000E+00 ) u_1 = 7.538E-07, u_2 = -5.836E-06 apes - end of analysis........ 13