A GRAPH-THEORETIC APPROACH TO QUASIGROUP CYCLE NUMBERS

Similar documents
PALINDROMIC AND SŪDOKU QUASIGROUPS

On the algebraic structure of Dyson s Circular Ensembles. Jonathan D.H. SMITH. January 29, 2012

The upper triangular algebra loop of degree 4

The upper triangular algebra loop of degree 4

On certain Regular Maps with Automorphism group PSL(2, p) Martin Downs

SOME SPECIAL KLEINIAN GROUPS AND THEIR ORBIFOLDS

Self-distributive quasigroups and quandles

Course 311: Michaelmas Term 2005 Part III: Topics in Commutative Algebra

Commensurability between once-punctured torus groups and once-punctured Klein bottle groups

A CLASS OF LOOPS CATEGORICALLY ISOMORPHIC TO UNIQUELY 2-DIVISIBLE BRUCK LOOPS

Latin squares: Equivalents and equivalence

Octonions. Robert A. Wilson. 24/11/08, QMUL, Pure Mathematics Seminar

Group Theory: Math30038, Sheet 6

THE MAXIMAL SUBGROUPS AND THE COMPLEXITY OF THE FLOW SEMIGROUP OF FINITE (DI)GRAPHS

Course 2BA1: Hilary Term 2007 Section 8: Quaternions and Rotations

The upper triangular algebra loop of degree 4

φ(xy) = (xy) n = x n y n = φ(x)φ(y)

Commentationes Mathematicae Universitatis Carolinae

Exercises on chapter 1

An enumeration of equilateral triangle dissections

Groups and Symmetries

Conway s group and octonions

Representations of disjoint unions of complete graphs

DIGRAPHS WITH SMALL AUTOMORPHISM GROUPS THAT ARE CAYLEY ON TWO NONISOMORPHIC GROUPS

arxiv: v1 [math.ra] 3 Oct 2009

Decomposing oriented graphs into transitive tournaments

Houston Journal of Mathematics. c 2016 University of Houston Volume 42, No. 1, 2016

Group divisible designs in MOLS of order ten

On Linear and Residual Properties of Graph Products

HALF-ISOMORPHISMS OF MOUFANG LOOPS

Course MA2C02, Hilary Term 2010 Section 4: Vectors and Quaternions

Centralizers of Coxeter Elements and Inner Automorphisms of Right-Angled Coxeter Groups

Definitions. Notations. Injective, Surjective and Bijective. Divides. Cartesian Product. Relations. Equivalence Relations

Realizations of Loops and Groups defined by short identities

SELF-DUAL GRAPHS BRIGITTE SERVATIUS AND HERMAN SERVATIUS

GENERATING SINGULAR TRANSFORMATIONS

(d) Since we can think of isometries of a regular 2n-gon as invertible linear operators on R 2, we get a 2-dimensional representation of G for

Part V. Chapter 19. Congruence of integers

Yale University Department of Mathematics Math 350 Introduction to Abstract Algebra Fall Midterm Exam Review Solutions

Vol. 34, By g. D. H. S~rr~

Groups of Prime Power Order with Derived Subgroup of Prime Order

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

Title fibring over the circle within a co. Citation Osaka Journal of Mathematics. 42(1)

The Structure of the Tutte-Grothendieck Ring of Ribbon Graphs

Quandles and the Towers of Hanoi

Automorphism Groups of Simple Moufang Loops over Perfect Fields

A field F is a set of numbers that includes the two numbers 0 and 1 and satisfies the properties:

Group, Rings, and Fields Rahul Pandharipande. I. Sets Let S be a set. The Cartesian product S S is the set of ordered pairs of elements of S,

QUATERNIONS AND ROTATIONS

Automorphism groups of wreath product digraphs

Solutions to Assignment 4

DISTINGUISHING PARTITIONS AND ASYMMETRIC UNIFORM HYPERGRAPHS

Symmetries and Polynomials

UNIVERSAL DERIVED EQUIVALENCES OF POSETS

The Interlace Polynomial of Graphs at 1

Math 370 Homework 2, Fall 2009

Square 2-designs/1. 1 Definition

SRAR loops with more than two commutators

Operads. Spencer Liang. March 10, 2015

Belousov s Theorem and the quantum Yang-Baxter equation

Connectivity of Cayley Graphs: A Special Family

Representations of quivers

Pure Latin directed triple systems

arxiv: v2 [math.gr] 17 Dec 2017

The L 3 (4) near octagon

Finite groups determined by an inequality of the orders of their elements

Groups. 3.1 Definition of a Group. Introduction. Definition 3.1 Group

SYLOW THEORY FOR QUASIGROUPS II: SECTIONAL ACTION

Eves Equihoop, The Card Game SET, and Abstract SET

Twisted Projective Spaces and Linear Completions of some Partial Steiner Triple Systems

Maximal non-commuting subsets of groups

Algebra SEP Solutions

Another algorithm for nonnegative matrices

Generators of certain inner mapping groups

Math 121 Homework 5: Notes on Selected Problems

CHAPTER 12 Boolean Algebra

Possible orders of nonassociative Moufang loops by

Homotopy and homology groups of the n-dimensional Hawaiian earring

arxiv: v2 [math.rt] 3 Mar 2014

FUNCTORS AND ADJUNCTIONS. 1. Functors

Chapter 5. Modular arithmetic. 5.1 The modular ring

FORMAL GROUPS OF CERTAIN Q-CURVES OVER QUADRATIC FIELDS

A GENERAL THEORY OF ZERO-DIVISOR GRAPHS OVER A COMMUTATIVE RING. David F. Anderson and Elizabeth F. Lewis

Selected Topics in AGT Lecture 4 Introduction to Schur Rings

Tilburg University. Strongly Regular Graphs with Maximal Energy Haemers, W. H. Publication date: Link to publication

CONTINUITY. 1. Continuity 1.1. Preserving limits and colimits. Suppose that F : J C and R: C D are functors. Consider the limit diagrams.

arxiv: v3 [math.ac] 29 Aug 2018

Congruence Boolean Lifting Property

LOOPS OF BOL-MOUFANG TYPE WITH A SUBGROUP OF INDEX TWO

Chapter 1. Latin Squares. 1.1 Latin Squares

Semigroup, monoid and group models of groupoid identities. 1. Introduction

An eightfold path to E 8

The geometry of k-transvection groups

C 7 -DECOMPOSITIONS OF THE TENSOR PRODUCT OF COMPLETE GRAPHS

Math 451, 01, Exam #2 Answer Key

Basic Definitions: Group, subgroup, order of a group, order of an element, Abelian, center, centralizer, identity, inverse, closed.

Reducibility of generic unipotent standard modules

Latin square determinants and permanents Ken Johnson Penn State Abington College (Joint work with D. Donovan and I. Wanless)

Quantum Information & Quantum Computing

THE VOLUME OF A HYPERBOLIC 3-MANIFOLD WITH BETTI NUMBER 2. Marc Culler and Peter B. Shalen. University of Illinois at Chicago

Transcription:

A GRAPH-THEORETIC APPROACH TO QUASIGROUP CYCLE NUMBERS BRENT KERBY AND JONATHAN D. H. SMITH Abstract. Norton and Stein associated a number with each idempotent quasigroup or diagonalized Latin square of given finite order n, showing that it is congruent mod to the triangular number T n). In this paper, we use a graph-theoretic approach to extend their invariant to an arbitrary finite quasigroup. We call it the cycle number, and identify it as the number of connected components in a certain graph, the cycle graph. The congruence obtained by Norton and Stein extends to the general case, giving a simplified proof with topology replacing case analysis) of the well-known congruence restriction on the possible orders of general Schroeder quasigroups. Cycle numbers correlate nicely with algebraic properties of quasigroups. Certain well-known classes of quasigroups, such as Schroeder quasigroups and commutative Moufang loops, are shown to maximize the cycle number among all quasigroups belonging to a more general class.. Introduction In a remarkable paper published in 956, D.A. Norton and S.K. Stein defined a certain numerical invariant of each finite idempotent quasigroup or diagonalized Latin square [8]. Although they did not give a name to this invariant, it will be convenient to refer to it as the cycle number. By associating an oriented surface or -dimensional complex with each idempotent quasigroup of given finite order n, they showed that the cycle number of such a quasigroup is congruent modulo to the triangular number T n) = nn + )/. Recently, the results of Norton and Stein were extended to arbitrary finite quasigroups, and used to show that certain permutation cycle types cannot be realized as quasigroup automorphisms [6]. The aim of the current paper is to present an alternative, graphtheoretic approach to the specification of the cycle number and - complex associated with a finite quasigroup. In Section, we begin 000 Mathematics Subject Classification. 0N05, 05B5. Key words and phrases. Latin square, quasigroup, triangle number, Schroeder quasigroup, triple tournament, totally symmetric, Moufang loop.

B. KERBY AND J.D.H. SMITH with the free product G of three cyclic groups of order that are generated by respective involutions t, t, and t. The group G acts on the disjoint union.) of three copies of the multiplication table of an arbitrary quasigroup Q. The undirected Cayley graph of this action with respect to the involutory generating set {t, t, t } is denoted by Γ Q. Certain so-called stabilizing edges.5) are then removed from Γ Q to yield a graph C Q known as the cycle graph of the quasigroup Q. The constructions of Γ Q and C Q yield functors from the category of quasigroup homomorphisms to the category of graph homomorphisms Theorem.6). For a finite quasigroup Q, the cycle number is defined as the number σc Q ) of connected components in the cycle graph C Q Definition.). Section analyzes the structure of the cycle graph in the general case, and shows that its connected components are either cycles or doubly infinite paths. In Section 4, bounds for the cycle number of a finite quasigroup are given in terms of its algebraic properties. The cycle number of a quasigroup Q of finite order n is bounded above by n, and this bound is attained precisely by the Schroeder quasigroups, i.e., quasigroups satisfying the identity xy yx = x Theorem 4.). The cycle number of a commutative quasigroup Q of finite order n is bounded below by n / Proposition 4.). The cycle number of a quasigroup Q of order n is equal to the triangular number T n) if Q is totally symmetric Proposition 4.6), or if Q is a commutative diassociative loop Proposition 4.7). Indeed, commutative diassociative loops of a given finite order are characterized among all diassociative loops of that order by maximization of the cycle number Theorem 4.9). Restrictions of the theorem similarly characterize abelian groups among all groups, or commutative Moufang loops among all Moufang loops. The remainder of the paper constructs a -complex, associated with a finite quasigroup, that is dual to the complex previously studied by Norton, Stein, and the authors [6, 8]. This dual complex turns out to be somewhat easier to handle, allowing a more direct labeling of its elements. Using the new complex, we recover the result of Norton and Stein for finite idempotent quasigroups, and extended to general finite quasigroups by the authors, that the cycle number of a quasigroup of order n is congruent mod to the triangular number T n) Theorem 7.). A sample application of this theorem gives a simple proof that the order of a general finite Schroeder quasigroup must be congruent to 0 or modulo 4 Corollary 7.5). Since this result was previously obtained by a detailed case analysis, we believe that our proof

QUASIGROUP CYCLE NUMBERS may serve as a prototype for the use of topological techniques in combinatorics, either as a substitute for case analysis, or for the derivation of new results. For concepts and conventions that are not otherwise explicitly given in this paper, see [0, ]. Consider the free product. Marked triples G = t, t, t t = t = t = of three copies of the group of order two. The group G acts on the set = {,, } by the transpositions t = ), t = ), t = ). Let Q,, /, \) be a quasigroup. Define the marked multiplication table.) M Q = {x, y, z, i) Q xy = z}. The elements of M Q are called the marked triples of Q. It will often prove convenient to denote the respective marked triples x, y, z, ), x, y, z, ), and x, y, z, ) by xyz, xyz, and xyz. In a marked triple x, x, x, i), the element x i is called the marked element. An action of G on M Q is defined by.).).4) x, y, z, i)t = y/z, z, y, it ) ; x, y, z, i)t = z, z\x, x, it ) ; x, y, z, i)t = y, x, y x, it ). Let Γ Q denote the undirected Cayley graph of this action. In actual figures, it suffices to label edges with,, rather than t, t, t.) We now define a subgraph of Γ Q on the vertex set M Q, known as the cycle graph C Q of the quasigroup Q. An edge of Γ Q labeled t i between marked triples of the form x, y, z, i) is said to be a stabilizing edge:.5),,, i) i,,, i) The subgraph C Q of Γ Q is obtained by removing all the stabilizing edges. The fundamental definition is as follows. Definition.. Let Q be a possibly infinite) quasigroup. a) For an element q of Q, a cycle of q is defined as a connected component of C Q containing a marked triple in which q is the marked element. We let C q denote the union of all cycles of q. b) The cycle number of Q is the possibly infinite) number σc Q ) of connected components in the cycle graph C Q.

4 B. KERBY AND J.D.H. SMITH Remark.. For finite Q, Proposition.c) below will show that the connected components of C Q are actual cycles. If Q is infinite, the cycles of Definition. may be infinite paths compare Corollary 4.5). Nevertheless, the term cycle is retained here to correlate with the usage of Norton and Stein [9]. Example.. Suppose that e is an idempotent element of Q. Then the fragment eee eee eee of Γ Q is a cycle of e. Such a cycle is described as an idempotent cycle. Example.4. Suppose that ef = f and fe = e in Q. In this case, the pair {e, f} is said to form a left couplet in Q. As a mnemonic, note that e is a left unit for f, and vice versa.) The fragment fee eff fee of Γ Q is a cycle of e, a so-called left-couplet cycle. Right couplets, and right-couplet cycles, are defined dually. Proposition.5. A quasigroup homomorphism θ : Q Q induces graph homomorphisms Γ θ : Γ Q Γ Q and C θ : C Q C Q. Proof. The quasigroup homomorphism θ : Q Q induces a map.6) M θ : M Q M Q ; x, y, z, i) xθ, yθ, zθ, i). In order to establish the proposition, we will show that the map M θ is G-equivariant. Consider elements x, y, z of Q. By.), one has z/y,y, z, i)t M θ = y/z, z, y, it )M θ = y/z)θ, zθ, yθ, it ) = yθ/zθ, zθ, yθ, it ) = zθ/yθ, yθ, zθ, i)t = z/y)θ, yθ, zθ, i)t = z/y, y, z, i)m θ t.

By.), one has QUASIGROUP CYCLE NUMBERS 5 x,x\z, z, i)t M θ = z, z\x, x, it )M θ = zθ, z\x)θ, xθ, it ) Finally, by.4), = zθ, zθ\xθ, xθ, it ) = xθ, xθ\zθ, zθ, i)t = xθ, x\z)θ, zθ, i)t = x, x\z, z, i)m θ t. x,y, xy, i)t M θ = y, x, yx, it )M θ = yθ, xθ, yx)θ, it ) = yθ, xθ, yθ xθ, it ) = xθ, yθ, xθ yθ, i)t = xθ, yθ, xy)θ, i)t = x, y, xy, i)m θ t. The graph homomorphism Γ θ acts by sending an edge of Γ Q to the edge v i vt i vm θ i vt i M θ = vm θ t i of Γ Q for i ), while C θ is just restricted from Γ θ. Given the form of the induced map.6), and the definitions of Γ θ and C θ in the proof of Proposition.5, it is straightforward to conclude: Theorem.6. The respective assignments of the graph homomorphisms Γ θ : Γ Q Γ Q and C θ : C Q C Q to a quasigroup homomorphism θ : Q Q yield functors Γ : Q Graph and C : Q Graph from the category Q of quasigroup homomorphisms to the category Graph of graph homomorphisms.. Structure of the cycle graph Proposition.. Let Q be a quasigroup. a) The cycle graph of Q is a disjoint union C Q = q Q C q of the subgraphs C q. b) Each connected component of C Q is composed of fragments of the form.),,, ),,, ),,, ),,, ) Now suppose that Q has finite order n. c) For each element q of Q, the graph C q is a disjoint union of nontrivial cycles, the cycles of q in the sense of. Thus the graph C Q is planar.

6 B. KERBY AND J.D.H. SMITH d) The length of each cycle of C Q is a multiple of. e) Each cycle of C Q is oriented by defining the positive direction to be from left to right along each fragment.) f) For each element q of Q, the graph C q has n vertices and n edges. Proof. a): The subgraph C q is induced on the set of marked triples in which the marked element is q. Note that in Γ Q, the only edges that might connect marked triples with different marked elements are the stabilizing edges.5) compare.).4). These edges are excluded from C Q. b): Since the stabilizing edges.5) are excluded from C Q, just the fragments.) remain. c): By b), each vertex of the finite graph C q has degree. d) and e) follow from b). f): For each of the three possible positions of q as the marked element of a marked triple, there is a unique such triple for each of the n elements of Q. Thus C q has n vertices. Then by c), C q has as many edges as vertices. Example.. According to Proposition.e), the cycles displayed in Examples. and.4 are oriented in the counterclockwise direction. Remark.. For an element q of a quasigroup Q, let Γ Q,q denote the subgraph of Γ Q induced on the vertex set of marked triples with q as the marked element. It may happen that a single connected component of Γ Q,q breaks up into distinct connected components of C q. This is the case, for example, with the element 0 of the quasigroup Q displayed by the following multiplication table: The stabilizing edge Q 0 0 0 0 0 0,, 0, ),, 0, ) in Γ Q,0 connects marked triples lying on distinct cycles in C 0.

QUASIGROUP CYCLE NUMBERS 7 4. Cycle numbers This section examines bounds on the cycle number for certain classes of finite quasigroups. We begin with the case of general quasigroups. Recall that a quasigroup satisfying the identity xy yx = x is described as a Schroeder quasigroup [, 7.] [4, p.4]. The identity xy yx = x itself is known as Schroeder s second law [4,.6)].) Theorem 4.. Let Q be a quasigroup of finite order n. a) The cycle number of Q satisfies the inequality 4.) σc Q ) n. b) Equality obtains in 4.) iff Q is a Schroeder quasigroup. Proof. By Proposition.d), the length of each cycle is at least. Since there are n marked triples altogether, the bound 4.) follows. Note that the bound is attained iff each cycle has length. Now consider elements x and y of Q. The cycle in C x with the marked triple x, y, xy, ) includes the following fragment: x, y, xy, ) xy, xy\x, x, ) y, x, yx, ) x/yx, yx, x, ) The cycle closes to a cycle of length iff the equivalent conditions a) xy = x/yx, b) xy yx = x, and c) yx = xy\x obtain. In particular, each cycle has length iff b) holds identically in Q, i.e., iff Q is a Schroeder quasigroup. A quaternion construction shows that the bound of Theorem 4. is attainable whenever n is a power of 8: Proposition 4.. Suppose n = 4k for some natural number k. Then there is a quasigroup Q of order n such that the bound 4.) is attained. Proof. Let A be an elementary abelian group of order k. Consider the automorphisms 0 0 0 0 0 0 i = 0 0 0 0 0 0 and j = 0 0 0 0 0 0 0 0 0 0 0 0

8 B. KERBY AND J.D.H. SMITH of A 4 compare [, p.57]. Define a quasigroup multiplication x y = xi + yj on A 4 compare [0,.5)]. Since ij = ji and i + j = mod, we have xy yx = xi + yj)i + yi + xj)j = xi + j ) + yji + ij) = x for x and y in Q = A 4, ), so σc Q ) = n by Theorem 4.b). For a given finite order n, R.D. Baker demonstrated the co-existence of idempotent Schroeder quasigroups and triple tournaments of that order []. As a contrast to the quaternion construction presented in Proposition 4., there are purely combinatorial constructions, primarily due to C.C. Lindner et al., of Schroeder quasigroups for almost all finite orders n congruent to 0 or modulo 4 [7], compare [, 7.] [4, II..5, 7.]. Corollary 7.5 below shows the necessity of the congruence restriction. Although this section is mainly concerned with maximization of the cycle number, as in Theorem 4., it is worth pointing out that a result of Norton and Stein yields a lower bound for the cycle number of a finite commutative quasigroup. Proposition 4.. Let Q be a quasigroup of finite order n. Then if Q is commutative. σc Q ) n Proof. If Q is commutative, then each cycle has length or 6 [9, Th.6.]. Note that we measure the length of a cycle in the graph-theory sense, as the number of edges, while the length according to Norton and Stein is one third as large.) Thus the number of cycles is no less than one sixth the total number n of vertices in C Q. A direct analysis of the cycles may be carried out for semisymmetric quasigroups, defined by the identity xy)x = y or Rx) = Lx) [0,.4]. For a given integer r, note that and x yrx) r = yrx) r Lx) = yrx) r Rx) = yrx) r x / yrx) r+) = xr yrx) r+) = xl yrx) r+ ) = yrx) r+ within a semisymmetric quasigroup. Inductions on r and r then yield the following result.

QUASIGROUP CYCLE NUMBERS 9 Proposition 4.4. Let Q be a possibly infinite) semisymmetric quasigroup. Let x and y be elements of Q. Then the cycle of x that contains the marked triple x, y, xy, ) = x, yrx) 0, yrx), ) is constructed from fragments of the form x, yrx) r, yrx) r, ) yrx) r, x, yrx) r+, ) yrx) r+, yrx) r+, x, ) x, yrx) r+, yrx) r+, ) for an integer r. Corollary 4.5. Let x and y be distinct generators of a free semisymmetric quasigroup. Then the cycle that contains the marked triple x, y, xy, ) is a doubly infinite path. We now exhibit two classes of quasigroups, namely totally symmetric quasigroups and commutative diassociative loops, in which each member Q of finite order n has the triangular number T n) as its cycle number. The respective enumerations are similar in general pattern, but differ in the specific details. First recall that a quasigroup is totally symmetric if it satisfies the identities xy = yx = x/y = y/x = x\y = y\x. Proposition 4.6. Let Q be a totally symmetric quasigroup of finite order n. Then the cycle number σc Q ) of Q is the triangular number T n). Proof. Since Q has n elements y, there are n pairs x, y) in Q that satisfy the equivalent conditions a) x = y y, b) x = y/y, c) xy = y, and d) yx = y. For each such pair, there is a -cycle xyy yxy yyx in C x. For the remaining n n pairs x, y) in Q, there is a 6-cycle

0 B. KERBY AND J.D.H. SMITH xyz zyx zxy yxz yzx xzy with xy = z y. Since the same cycle also corresponds to the pair x, z) = x, xy), there will be n n)/ such 6-cycles altogether. The cycle number σc Q ) is n + n n)/ = n + n)/ = T n). A loop is said to be diassociative if the subloop generated by each pair of elements is associative and thus forms a group). The study of cycles in a diassociative loop may be conducted as if the diassociative loop were a group. For example, in Proposition 4.8 below, we use the conjugation notations x y = y xy and x y = y x y for elements x and y of a diassociative loop. Proposition 4.7. Suppose that Q is a commutative diassociative loop of finite order n. Then the cycle number σc Q ) of Q is the triangular number T n). Proof. Since Q has n elements y, there are n pairs x, y) in Q with x = y. For each such pair, there is a -cycle yxy xyy y y x in C x. For the other n n pairs x, y) in Q, there is a 6-cycle xyz zy x z xy yxz y zx xz y in C x note that z = xy y y = y ). Since the same cycle also corresponds to the pair x, z ) = x, xy) ), there will be n n)/ such 6-cycles altogether. Thus the cycle number σc Q ) is the total n + n n)/ = n + n)/ = T n).

QUASIGROUP CYCLE NUMBERS The following result describes the cycles of a given element of a general diassociative loop. Proposition 4.8. Suppose that x and y are elements of a possibly infinite) diassociative loop Q. Then the cycle of x that contains the marked triple x, y, xy, ) consists of fragments of the form x, y x r, xy xr, ) y x r, x, y xr x, ) y x r, y xr x, x, ) x, x y xr, y xr, ) x y xr, x, y xr+, ) ) ) xy xr+, y xr+, x, x, y xr+, xy xr+, for an integer r. Proof. Use induction on r and r. Theorem 4.9. Let Q be a diassociative loop of finite order n. a) The cycle number of Q satisfies the inequality 4.) σc Q ) T n). b) Equality obtains in 4.) if and only if Q is commutative. Proof. First, note that if Q is commutative, then equality holds in 4.) by Proposition 4.7. Now consider the general case. Proposition.b) shows that each cycle of Q contains a triple of the form,,, ). By Proposition 4.8 with r = 0), there is a -cycle including x, y, xy, ) for elements x and y of Q if and only if y = x y or x = y. Since Q contains only n pairs x, y) with x = y, there are just n such cycles. These cycles comprise n of the total number n of marked triples. By Proposition.d), the length of each remaining cycle is at least 6. Thus 4.) σc Q ) n + n n = T n), 6 proving a). Finally, suppose that equality holds in 4.). Then by 4.), each cycle is of length or 6. Let x, y) be a pair of elements of Q. There are two cases to consider: a) If the marked triple x, y, xy, ) lies in a cycle of length, then x = y and xy = yx in this case; b) If the marked triple x, y, xy, ) lies in a cycle of length 6, setting r = 0 in Proposition 4.8 shows that y = x yx, so again xy = yx.

B. KERBY AND J.D.H. SMITH Let n be a given finite order. Theorem 4.9 characterizes the abelian groups among all groups of order n by maximization of the cycle number, at T n). Similarly, recalling Moufang s Theorem that Moufang loops are diassociative [, VII.4], Theorem 4.9 serves to characterize commutative Moufang loops among all Moufang loops of order n by maximization of the cycle number, again at T n). 5. The unmarked multiplication table The unmarked multiplication table of a quasigroup Q is defined as K 0 Q = {x, y, z) Q xy = z}. The unmarking projection is defined as M Q K 0 Q; x, y, z, i) x, y, z). As for the marked multiplication table, it is sometimes convenient to write an element x, y, z) of the unmarked table simply as xyz. From now on, suppose that Q is a quasigroup of finite order n. In this case, KQ 0 = n. Consider a cycle of C Q which is not an idempotent cycle in the sense of Example.. Its vertices are certain marked triples. Unmarking these vertices induces a quotient graph with loops. Deletion of the loops leaves a cycle, known as a collapsed cycle, which inherits the orientation provided by Proposition.e). Example 5.. Consider the couplet cycle of Example.4. It collapses to fee γ e eff with the inherited counterclockwise orientation. A loop labeled has been deleted from the unmarked vertex f ee. Define KQ to be the union of the set of all collapsed cycles with the set of all idempotents of Q. By convention, the idempotents may also be considered as degenerate) collapsed cycles. Note that KQ = σc Q). The unmarking projection induces a quotient graph of C Q on the vertex set KQ 0. Delete all loops from this quotient graph, and let K Q denote the set of remaining edges. These remaining edges inherit labels t, t or t from C Q again just written as,, or in actual figures). Lemma 5.. Consider an edge 5.) x, x, x, i) k y, y, y, j)

QUASIGROUP CYCLE NUMBERS of C Q. The following conditions are equivalent: a) x i = x j ; b) y i = y j ; c) The edge 5.) unmarks to a loop. Proof. Since 5.) is not a stabilizing edge, one has t k = i j). Thus a) and b) are equivalent. If they hold, then x, x, x ) = y, y, y ), so 5.) unmarks to a loop. Conversely, if c) holds, then x, x, x ) = y, y, y ). Since x i = y itk = y j and x j = y jtk = y i, a) and b) follow. Corollary 5.. Let 5.) x, x, x, i) k y, y, y, j) be an edge of C Q that does not unmark to a loop. Then 5.) {x i, x j } = {y i, y j } with x j = y i y j = x i. Proposition 5.4. Let Q be a finite quasigroup of order n. a) KQ = σc Q). b) KQ = nn )/. c) KQ 0 = n. Proof. Since a) and c) have already been noted, it remains to verify b). Consider an edge 5.) of C Q which survives the unmarking process to appear in KQ. There are three choices for k. For each such choice, there are nn )/ choices for the doubleton 5.). 6. The dual complex Let ZKQ r denote the free abelian group on Kr Q, for 0 r. We will define group homomorphisms : ZKQ ZK Q and : ZKQ ZK0 Q to yield an oriented) complex 6.) K Q K Q K 0 Q known as the dual) Norton-Stein complex K Q of the quasigroup Q. The orientation of the edges in KQ is based on a well-ordering Q, ) of the underlying set of Q. Consider an element of KQ, obtained by unmarking an edge 5.) of C Q. Its orientation is defined as 6.) x x x k y y y with y k+ < y k+ using addition modulo for the suffixes). Of course, by Corollary 5., one then has x k+ < x k+. It is convenient to write

4 B. KERBY AND J.D.H. SMITH k, y k+ < y k+ ) for the oriented edge. The group homomorphism takes k, y k+ < y k+ ) to the signed sum y y y x x x. The group homomorphism maps a non-degenerate collapsed cycle to a signed sum of the edges that constitute it. An edge takes a positive sign if its orientation 6.) is consistent with the inherited orientation of the cycle, and a negative sign if the edge is oriented in the opposite direction to the cycle. Degenerate collapsed cycles corresponding to idempotents of Q are sent to 0 by. Example 6.. For a left couplet {e, f} of Q, consider the collapsed cycle γ e of Example 5.. Suppose that e < f. The cycle becomes fee γ e eff when its edges are oriented. It is sent to, e < f) +, e < f) by the group homomorphism. Now consider the corresponding couplet cycle γ f. It becomes eff γ f fee when its edges are oriented, and maps to, e < f) +, e < f) under. The fragment 6.) {γ e, γ f } {, e < f),, e < f)} {eff, fee} of the Norton-Stein complex corresponds to the connected component eff fee fee eff fee eff of Γ Q. Geometrically, the complex 6.) is realized by a sphere. In geographical terms, one might say that γ e is the southern hemisphere,

QUASIGROUP CYCLE NUMBERS 5 and γ f is the northern hemisphere. Then, e < f) is the eastern half of the equator, while, e < f) is the western half. The hemispheres are oriented by normals emerging from the center of the earth. The orientation of the equator lines corresponds to the direction of rotation of the earth. The Gulf of Guinea contains eff, while fee lies somewhere in Kiribati. Remark 6.. In the sense of [5, p.0], the complex 6.) is dual to the original Norton-Stein construction [8] as extended in [6]. In order to distinguish the two complexes, it is sometimes convenient to refer to the latter as the primal complex, while 6.) is the dual complex. 7. The depleted complex Let Q be a finite quasigroup, with set E Q of idempotents. Let K Q denote the set of non-degenerate collapsed cycles of Q. Note that 7.) K Q = K Q + E Q. Set K Q = K Q. Let K Q 0 be the complement in K0 Q E Q }. Again, note that of the set {eee e 7.) K 0 Q = K 0 Q + E Q. The depleted Norton-Stein complex K Q or 7.) K Q K Q K0 Q of Q is defined from 6.) by restriction. Proposition 7.. Let Q be a finite quasigroup. Then the depleted Norton-Stein complex of Q is realized geometrically by an orientable surface. Proof. As a disjoint union of cycles, the set K Q of non-degenerate collapsed cycles forms a planar graph, which may be drawn on the plane so that each of the disjoint) cycles is oriented in the counterclockwise direction. Each cycle bounds a disc. The geometric realization of K Q is then obtained from the union of these discs by identifying the bounding edges from the set K Q. Each edge 6.) appears twice, once on each of a pair of discs. As these discs are stitched together along the edge by the identification process, the orientations of the discs on each side of the edge are consistent. Compare Figure for an illustration.)

6 B. KERBY AND J.D.H. SMITH 0 0 0 0 0 γ 0 0 γ 0 0 0 γ 0 0 0 0 0 / / Scale Figure. A toral component in the complex of Z/Z. Example 7.. Let Q be the group Z/Z, +) of integers modulo under negated addition, with the natural order 0 < <. Take the complex cube root of unity ω = + i )/. The depleted complex of Q has a geometric realization which includes a connected component given by the real) torus or complex elliptic curve) C/ Z + Zω), i.e., identifying points of the complex plane that differ by an integral multiple of or an integral multiple of ω. This is illustrated in Figure, with 0 located at / + Z + Zω) on the torus and 0 at ω/ + Z + Zω). For each element x of Q, the corresponding cycle in C x is labeled γ x, drawn with its orientation. The real and imaginary axes of the complex plane, and the scale, are also indicated. The following result is the counterpart of [8, Th. II], as extended from the idempotent to the general finite case in [6]. Theorem 7.. Suppose that Q is a quasigroup of finite order n. Then the cycle number σc Q ) of Q is congruent modulo to the triangular number T n) = nn + )/. Proof. Proposition 7. shows that the Euler characteristic K Q K Q + K 0 Q

QUASIGROUP CYCLE NUMBERS 7 of the oriented geometric realization of KQ is even. Thus by 7.), 7.), and Proposition 5.4, the integer σc Q ) nn )/ + n = K Q K Q + K 0 Q = K Q + E Q K Q + K 0 Q + E Q is even. The result follows, since nn )/ n T n) mod. The first application of Theorem 7. gives a simplified proof of a result of Stein [], compare [6]. Corollary 7.4. Suppose that Q is a quasigroup of finite order n, with a transitive group of automorphisms. Then n is congruent to 0,, or modulo 4. Proof. Suppose that n = 4k+ for some natural number k. Since Q has a transitive automorphism group, Proposition.5 shows that there is a constant c such that C x has c connected components for each x Q. Hence σc Q ) = x Q c = 4k+)c 0 mod. However, Theorem 7. implies σc Q ) k + )4k + ) mod, a contradiction. As a second application of Theorem 7., we give a direct proof of a congruence condition on the possible orders of general Schroeder quasigroups that was obtained by Lindner et al. using a combinatorial analysis [7, Th. ]. Our method extends the alternate proof proposed by Norton and Stein for the idempotent case [9, Th.4.]. Corollary 7.5. If Q is a Schroeder quasigroup of finite order n, then n is congruent to 0 or modulo 4. Proof. By Theorem 4., σc Q ) = n, while by Theorem 7., σc Q ) nn + )/ mod. However, n nn + )/ mod if and only if n is congruent to 0 or modulo 4. References [] R.D. Baker, Quasigroups and tactical systems, Aequationes Math. 8 978), 96 0. [] F.E. Bennett and L. Zhu, Conjugate-orthogonal Latin squares and related structures, pp. 4 96 in Contemporary Design Theory J.H. Dinitz and D.R. Stinson, eds.), Wiley, New York, NY, 99. [] R.H. Bruck, A Survey of Binary Systems, Springer, Berlin, 958. [4] O. Chein et al., Quasigroups and Loops: Theory and Applications, Heldermann, Berlin, 990. [5] H.S.M. Coxeter and W.O.J. Moser, Generators and Relations for Discrete Groups, Springer, Berlin, 957. [6] B. Kerby and J.D.H. Smith, Quasigroup automorphisms and the Norton-Stein complex, Proc. Amer. Math. Soc. 8 00), 079 088.

8 B. KERBY AND J.D.H. SMITH [7] C.C. Lindner, N.S. Mendelsohn and S.R. Sun, On the construction of Schroeder quasigroups, Discrete Math. 980), 7 80. [8] D.A. Norton and S.K. Stein, An integer associated with Latin squares, Proc. Amer. Math. Soc. 7 956), 4. [9] D.A. Norton and S.K. Stein, Cycles in algebraic systems, Proc. Amer. Math. Soc. 7 956), 999 004. [0] J.D.H. Smith, An Introduction to Quasigroups and Their Representations, Chapman and Hall/CRC, Boca Raton, FL, 007. [] J.D.H. Smith and A.B. Romanowska, Post-Modern Algebra, Wiley, New York, NY, 999. [] S.K. Stein, Homogeneous quasigroups, Pac. J. Math. 4 964), 09 0. Department of Mathematics, University of Utah, Salt Lake City, Utah 84, U.S.A. Department of Mathematics, Iowa State University, Ames, Iowa 500, U.S.A. E-mail address: kerby@math.utah.edu E-mail address: jdhsmith@iastate.edu URL: http://www.orion.math.iastate.edu/jdhsmith/