How about the more general "linear" scalar functions of scalars (i.e., a 1st degree polynomial of the following form with a constant term )?

Similar documents
Lecture 18: The Laplace Transform (See Sections and 14.7 in Boas)

CH.3. COMPATIBILITY EQUATIONS. Continuum Mechanics Course (MMC) - ETSECCPB - UPC

Mechanics Physics 151

Lecture VI Regression

( ) () we define the interaction representation by the unitary transformation () = ()

. The geometric multiplicity is dim[ker( λi. number of linearly independent eigenvectors associated with this eigenvalue.

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 4

Mechanics Physics 151

Mechanics Physics 151

. The geometric multiplicity is dim[ker( λi. A )], i.e. the number of linearly independent eigenvectors associated with this eigenvalue.

Solution in semi infinite diffusion couples (error function analysis)

GENERATING CERTAIN QUINTIC IRREDUCIBLE POLYNOMIALS OVER FINITE FIELDS. Youngwoo Ahn and Kitae Kim

Lecture 6: Learning for Control (Generalised Linear Regression)

V.Abramov - FURTHER ANALYSIS OF CONFIDENCE INTERVALS FOR LARGE CLIENT/SERVER COMPUTER NETWORKS

PHYS 705: Classical Mechanics. Canonical Transformation

Ordinary Differential Equations in Neuroscience with Matlab examples. Aim 1- Gain understanding of how to set up and solve ODE s

Scattering at an Interface: Oblique Incidence

FI 3103 Quantum Physics

TSS = SST + SSE An orthogonal partition of the total SS

Notes on the stability of dynamic systems and the use of Eigen Values.

CS286.2 Lecture 14: Quantum de Finetti Theorems II

Normal Random Variable and its discriminant functions

Let s treat the problem of the response of a system to an applied external force. Again,

Online Appendix for. Strategic safety stocks in supply chains with evolving forecasts

Li An-Ping. Beijing , P.R.China

Linear Response Theory: The connection between QFT and experiments

Advanced Machine Learning & Perception

[ ] 2. [ ]3 + (Δx i + Δx i 1 ) / 2. Δx i-1 Δx i Δx i+1. TPG4160 Reservoir Simulation 2018 Lecture note 3. page 1 of 5

Density Matrix Description of NMR BCMB/CHEM 8190

CHAPTER 5: MULTIVARIATE METHODS

THE PREDICTION OF COMPETITIVE ENVIRONMENT IN BUSINESS

DEEP UNFOLDING FOR MULTICHANNEL SOURCE SEPARATION SUPPLEMENTARY MATERIAL

Comb Filters. Comb Filters

Part II CONTINUOUS TIME STOCHASTIC PROCESSES

Appendix H: Rarefaction and extrapolation of Hill numbers for incidence data

CHAPTER 10: LINEAR DISCRIMINATION

Relative controllability of nonlinear systems with delays in control

In the complete model, these slopes are ANALYSIS OF VARIANCE FOR THE COMPLETE TWO-WAY MODEL. (! i+1 -! i ) + [(!") i+1,q - [(!

Chapter 6: AC Circuits

Epistemic Game Theory: Online Appendix

Chapters 2 Kinematics. Position, Distance, Displacement

Density Matrix Description of NMR BCMB/CHEM 8190

( ) [ ] MAP Decision Rule

Chapter 6 DETECTION AND ESTIMATION: Model of digital communication system. Fundamental issues in digital communications are

On One Analytic Method of. Constructing Program Controls

F-Tests and Analysis of Variance (ANOVA) in the Simple Linear Regression Model. 1. Introduction

Variants of Pegasos. December 11, 2009

Chapter Lagrangian Interpolation

HEAT CONDUCTION PROBLEM IN A TWO-LAYERED HOLLOW CYLINDER BY USING THE GREEN S FUNCTION METHOD

John Geweke a and Gianni Amisano b a Departments of Economics and Statistics, University of Iowa, USA b European Central Bank, Frankfurt, Germany

UNIVERSITAT AUTÒNOMA DE BARCELONA MARCH 2017 EXAMINATION

Robust and Accurate Cancer Classification with Gene Expression Profiling

J i-1 i. J i i+1. Numerical integration of the diffusion equation (I) Finite difference method. Spatial Discretization. Internal nodes.

Testing a new idea to solve the P = NP problem with mathematical induction

FTCS Solution to the Heat Equation

Dynamic Team Decision Theory. EECS 558 Project Shrutivandana Sharma and David Shuman December 10, 2005

Response of MDOF systems

P R = P 0. The system is shown on the next figure:

A Principled Approach to MILP Modeling

, t 1. Transitions - this one was easy, but in general the hardest part is choosing the which variables are state and control variables

Bayes rule for a classification problem INF Discriminant functions for the normal density. Euclidean distance. Mahalanobis distance

2/20/2013. EE 101 Midterm 2 Review

On computing differential transform of nonlinear non-autonomous functions and its applications

MEEN Handout 4a ELEMENTS OF ANALYTICAL MECHANICS

II. Light is a Ray (Geometrical Optics)

THEORETICAL AUTOCORRELATIONS. ) if often denoted by γ. Note that

The Finite Element Method for the Analysis of Non-Linear and Dynamic Systems

Volatility Interpolation

Let us start with a two dimensional case. We consider a vector ( x,

Graduate Macroeconomics 2 Problem set 5. - Solutions

Department of Economics University of Toronto

Chapter 2. First Order Scalar Equations

Lecture 11 SVM cont

Online Supplement for Dynamic Multi-Technology. Production-Inventory Problem with Emissions Trading

Existence and Uniqueness Results for Random Impulsive Integro-Differential Equation

2.1 Constitutive Theory

Lecture 2 M/G/1 queues. M/G/1-queue

Math 334 Fall 2011 Homework 11 Solutions

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still.

Name of the Student:

PHYS 1443 Section 001 Lecture #4

Two Coupled Oscillators / Normal Modes

Control Systems. Mathematical Modeling of Control Systems.

Supplementary Material to: IMU Preintegration on Manifold for E cient Visual-Inertial Maximum-a-Posteriori Estimation

Motion in Two Dimensions

Comparison of Differences between Power Means 1

Clustering (Bishop ch 9)

10. A.C CIRCUITS. Theoretically current grows to maximum value after infinite time. But practically it grows to maximum after 5τ. Decay of current :

Symmetry and Asymmetry of MIMO Fading Channels

Math 128b Project. Jude Yuen

Lecture Notes 4. Univariate Forecasting and the Time Series Properties of Dynamic Economic Models

A capacitor consists of two conducting plates, separated by an insulator. Conduction plates: e.g., Aluminum foil Insulator: air, mica, ceramic, etc

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes

ON THE WEAK LIMITS OF SMOOTH MAPS FOR THE DIRICHLET ENERGY BETWEEN MANIFOLDS

Stochastic Programming handling CVAR in objective and constraint

Set point control in the state space setting

Track Properities of Normal Chain

Survival Analysis and Reliability. A Note on the Mean Residual Life Function of a Parallel System

Lecture Notes 2. The Hilbert Space Approach to Time Series

Cubic Bezier Homotopy Function for Solving Exponential Equations

Transcription:

lmcd Lnear ransformaon of a vecor he deas presened here are que general hey go beyond he radonal mar-vecor ype seen n lnear algebra Furhermore, hey do no deal wh bass and are equally vald for any se of bass Whle some people consder ransformaon from one dmenson o anoher (say, R m R n ) or from one ype of vecor o anoher ype (say, from a column of numbers o a row of numbers), or nclude compleumbers, we shall resrc ourselves o he same ype of vecors n he same n-dmensonal real space Insrucor: Nam Sun Wang ransformaon n LVS s a rule ha maps a vecor n he LVS o anoher vecor n he same LVS An analogy s an ordnary funcon ha akes n a scalar number and assgns anoher scalar number A ransformaon s smlar o a scalar funcon, ecep akes n a vecor and assgns anoher vecor In essence, a ransformaon s a vecor funcon of vecors I s also commonly referred o as a ensor or an operaor When we speak of ransformaon, we need no resrc ourselves o jus real Eucldean space nor a LVS of fne dmenson We can make up any rules o map a vecor o anoher vecor, bu some rules are more useful han ohers here are several generally acceped noaons; below are some eamples, and and y are vecors A y A y f( ) y L( ) y Noe ha he frs noaon above does no necessarly mean A s a mar (whch s rue only for he specal case when he vecor s a column of numbers or a row of numbers and he mar A mus be a square one; n he laer case or a row of numbers, wach ou how we defne he operaon o preserve a row of numbers) here s no requremen ha we mus use a dfferen fon o denoe ransformaon o reduce confuson Furhermore, a ransformaon has nohng o do wh bass Wh he A=y noaon, we do no mply he ransformaon A s a lnear one eher Lnear ransformaon A ransformaon A s a lnear ransformaon f sasfes he followng wo properes on ) addon of wo vecors and ) mulplcaon of a vecor by a scalar hese properes mus hold for every vecor n LVS, no jus some vecors Dsrbuve A ( y ) A A y Assocave A ( ) ( A ) Eample: he "radonal," srcly lnear scalar funcons of scalars (e, a s degree polynomal of he followng form whou he consan erm) s a lnear ransformaon f( ) How abou he more general "lnear" scalar funcons of scalars (e, a s degree polynomal of he followng form wh a consan erm )? f( ) Eample: A y n y j = where and y are wo columns of real numbers he rule s defned as: a j j for, n Eample: Roaon of arrows R = or R() =

lmcd Eample: Dfferenaon, Wha s he subjec of hs operaor? In oher words, hs dfferenaon operaor operaes on wha knds of vecors? Arrows? Columns of numbers? Connuous funcons wh s dervaves? D f D( f ) d d f( ) D D f D ( D f ) D f d d d d f( ) d d anoher noaon for a dfferenal operaor We can show ha he ransformaon D sasfes he wo lnear properes hus, D s a lnear ransformaon Dsrbuve D d ( f g) d ( f( ) g( ) ) d d f( ) d d g( ) D f D g Assocave D ( f) f( ) d d ( f( ) ) d d f( ) ( D f) Eample: A more general dfferenal operaor Here s a second-order ODE operaor L d f a( ) d b( ) d d c( ) f( ) a( ) d f( ) d b( ) d d f( ) c( ) y( ) ODE( f ) anoher noaon for a dfferenal operaor Bessel dfferenal operaor: ODE( y ) d d d d y D D y We can show ha he ransformaon ODE sasfes he wo lnear properes hus, ODE s a lnear ransformaon Dsrbuve ODE( f g ) d d d d ( f g ) d d d d f d d d d g ODE f ODE g Assocave ODE( f ) d d d d ( f ) d d Eample: Le he LVS be he space of all polynomals of degree n or less P n ( ) a a a a n n Defne a lnear ransformaon D such ha D P d d f( ) We can show ha D sasfes he wo lnear properes d d ( ODE( f) ) Non-Eample: Wha f he LVS s composed of all real funcons? Answer: No, because he dervave may no es Wha f we ghen he membershp requremen of he LVS so ha he LVS s composed of all real, connuous funcons ha possess he s dervaves? Answer: No, because he resulng funcon may ge kcked ou from he LVS for no havng a s dervave

3 lmcd Eample: Inegraon We can show ha he negral operaor s a lnear one (Wha s he LVS n whch he negral operaor s defned n? In oher words, wha are he membershp requremens?) L f L( f ) f( ) anoher noaon for an negral operaor Wha f he LVS s he space of all polynomals of degree n or less? Answer: No, L s no a lnear ransformaon for hs LVS, because he resulng funcon s a polynomal of degree n+, whch s ecluded from he membershp P n ( ) a a a a n n L P n a P n ( ) a a a n 3 3 n n Wha f he LVS s he space of all polynomals of degree n or less, as before, bu now wh a slghly dfferen negral operaor, lke he one defned below? Answer: Yes, because he resul of he lnear ransformaon now les whn he same LVS Defne L P n P n ( ) a L a P n a a n 3 n Eample: Convoluon negral L f f( ) g(, ) or L f Eample: Laplace ransform L f n s f( ) d F L( f( ) ) F( s ) e Eample: Fourer Sne ransform f( ) g( ) anoher common noaon F f sn( ) f( ) d F( ) f( ) e sn( ) e d Eample: Fourer Cosne ransform F f cos( ) f( ) d F( ) cos( ) e d Eample: Fourer ransform magnary number F f F( f( ) ) F( ) e f( ) d F F( f) F anoher common noaon

4 lmcd Eample: Projecor operaor Consder any real Eucldean space R Le P be a projecor ha projecs a vecor n any Eucldean space ono a fne dmensonal subspace of R y P Noe ha hs s jus a noaon I does no mply mulplcaon of by an operaor P, whch makes no sense he usual algebrac operaons beween wo lnear ransformaons (equaly, addon of wo ransformaons, mulplcaon of a ransformaon by a scalar, mulplcaon of wo ransformaons) are defned n erms of he resul of he ransformaon, never jus he ransformaons Remember, he resul of ransformaon s anoher vecor Srcly speakng, ransformaons all by hemselves has no meanng ransformaons are no objecs/hngs/anmals lke he way vecors are wo lnear ransformaons A and B are equal f for every vecor n he LVS, we have, A B hus, when we speak of wo equal lnear ransformaons, we are really referrng o he wo equal vecors ha resul from applyng he ransformaons o he same vecor he sum/addon of wo lnear ransformaons A and B s defned as C A B f for every vecor n he LVS, we have, C A B he produc/mulplcaon of a ransformaon A by a scalar s defned, f for every vecor n he LVS, we have ( A) A ( ) he produc/mulplcaon of wo lnear ransformaons A and B s defned as C A B f for every vecor n he LVS, we have, C A ( B ) In general, ensor producs are no commuave: ABBA!!! A ( B ) B ( A ) We can demonsrae ABBA wh marces We can also demonsrae hs fac wh any one of he eamples of lnear ransformaons menoned above Eample Change one column of numbers o anoher column of numbers (e, he usual mar) We can easly show ABBA o be rue Eample All polynomals of degree n or less Defne wo lnear ransformaons A and B A P d d P( ) B P P( ) Apply wo lnear ransformaons n wo dfferen sequences A ( B P) d d P( ) P( ) P( ) B ( A d P) P( P( ) d P P( ) P( ) B ( A P ) A ( B P ) ( P( ) P( ) ) P( ) P( ) A ( B P ) B ( A P ) A B B A

Eample All polynomals of degree n or less Defne wo lnear ransformaons A and B 5 lmcd A P d d P( ) B P P( ) Apply wo lnear ransformaons n wo dfferen sequences A ( B d P) P( ) P( ) P( ) d B ( A P ) d P( ) P( ) P( ) dp B ( A P ) A ( B P ) P( ) P( ) A ( B P ) B ( A P ) A B B A

6 lmcd Mar o characerze lnear ransformaon n n-dmensonal LVS If we know how a lnear ransformaon acs on a se of bass vecors, we can easly fnd how acs on any vecors (obvously hey mus belong o he same LVS) In a n-dmensonal LVS, a lnear ransformaon urns a se of n lnearly ndependen bass vecors {,,, } no a new se of n vecors {y,y,,y n } (whch, agan, mus connue o belong o he same LVS) hese oupu vecors from he lnear ransformaon, n urn, can be epressed as a lnear combnaon of he bass vecors {,,, } Any lnear ransformaon A n n-dmensonal LVS can be epressed as a mar A mar (Noe ha he las saemen s rue for a fne dmensonal LVS; s no rue for LVS of an nfny dmenson, eg, all connuous funcons, because we need an nfne number of bass o descrbe a random connuous funcon) Lnear ransformaon on he bass vecors (hs formulaon does no work for -dmenson) A y a a a n A y a a n : a a A y n a n a nn a n In a compac maroaon (some people abhor hs, because we are mng vecors and columns rows of vecors & also vecors ha are recangular-wse arranged se of numbers and marces) hus, he acon of a lnear ransformaon can be characerzed by a mar A mar compac form wh vecors & y lsed n a column A A A y y y n a a a n a a n A A mar compac form wh vecors & y lsed n a row a a a n A A A y y y n a a n A n A mar Here, "A" symbolzes lnear ransformaon; whereas, "A mar " s a mar ha characerzes he lnear ransformaon

7 lmcd Any vecor n he LVS can be represened as a lnear combnaon of he n bass vecors {,,, } n he acon of he lnear ransformaon on an arbrarly chosen vecor s descrbed as y A A n n A A n A n y y n y n y a a n a n y a a a n n n j a j A mar compac maroaon wh vecors & y lsed n a column (agan, remember, some people abhor hs compac noaon because we are mng a column row of vecors wh a column row of scalars) y a a a n y A n y n a A mar y n a n compac maroaon wh vecors & y lsed n a row a a a n y A y y y n a A mar n a n n he choce of bass s no unque he same LVS can be epressed based on anoher se of bass {', ',, ' n }, whch s relaed o he frs se as ' ' mar ' n n ' ' n where mar n ' ' ' n n n nn n n nn ' n Lnear ransformaon on he bass vecors (hs formulaon does no work for -dmenson) A ' y' a' ' a' ' a' n ' n A ' y' a' ' a' ' a' n ' n A: ' n y' n a' n ' a' n ' a' : nn ' n a' ' a' ' a n '

8 lmcd In a compac maroaon wh vecors & y lsed n a column A ' y' a' a' a' n ' a' a' a' n n A ' A ' n y' y' n a' a' n a' a' n a' n a' nn ' ' n a' a' n a' a' n a' n a' nn n n n nn A ' A n n A n a a a n A ' A ' n A n A n n n n nn A A n n n nn a a n a' a' a' n n n a a a n a' a' n a' a' n a' n a' nn n n A' mar mar mar A mar n nn n n In a compac maroaon wh vecors & y lsed n a row n nn a a n If & ' are wo orhonormal ses, hen mar s orhogonal a' a' a' n A ' A ' A ' n y' y' y' n ' ' ' n a' a' a' n a' n a' n a' nn n a' a' a' n n a' n n nn a' n a' a' n a' n a' nn A ' A ' A ' n A n n A n A n n n a a a n n A A A n a n hus, n n nn a n n n nn a a a n n n a' a' a' n a n n a' a' a' n a n n n nn n n nn a' n a' n a' nn

A mar 9 lmcd mar mar A' mar A' mar mar mar A mar smlary ransform equaon compac form wh vecors & y lsed n a column Eample Dervave of polynomals (bass=power seres) All polynomals of degree n or less P() AWe can use y power a seres a f as ahe n n+ bass funcons vecors he dervave operaor acng on hese power seres produce anoher se of polynomals If he LVS s all polynomals of any A degree, here y s a no fne a se a of bass funcons n and a compac noaon does no es D P d A y n d P( y ) n a n compac maroaon wh funcons f lsed n a column f' f' f' f n f' prme f n f f f f n compac maroaon wh funcons f lsed n a row f' f' f' f' n f f f f n f' f prme Any funcon vecor n he LVS (ha s, any polynomals of degree n or less) can be represened as a lnear combnaon of he n+ bass funcons y f f n f n generally acceped D y D f f n f n D f D f n D f n f' f' n f' n compac maroaon wh vecors f n a column f' D y n f' ( prme f ) prme f f' n compac maroaon wh vecors f n a row

D y f' f' f' n f prme f prme lmcd n Eample Dervave of polynomals (bass=legendre polynomals) All polynomals of degree n or less We can use Legendre polynomals P as he n+ bass funcons vecors We fnd he dervave operaor acng on hese power seres produce anoher se of polynomals Noe ha he choce of a se of bass vecors s no unque he represenaon of a gven vecor depends on he choce of bass vecors (see change-of-bass formula) he represenaon of he acon of a lnear ransformaon as a mar depends on he choce of bass vecors and s no unque compac maroaon wh vecors f & P n a column P f A f P P n f P( ) A f( ) P'( ) A prme f( ) A prme A P( ) Pprme P( ) where Pprme A prme A f n compac maroaon wh vecors f & P n a row D P P P P n f f f n A P( ) f( ) A D P P'( ) f prme A P( ) A prme A P( ) Pprme where hus, he mar ha characerzes he acon of dervave on Legendre bass funcons s Pprme A prme A Pprme A prme A Noe ha he same dervave operaor s characerzed by dfferen marces, dependng on he bass funcons vecors Eample Inegraon of polynomals All polynomals P of degree n or less We can use power seres {,,,, } as he n+ bass funcons vecors he negraon operaor acng on hese power seres produce anoher se of polynomals B P P( ) Any members n he LVS (ha s, any polynomals of degree n or less) can be represened as a lnear combnaon of he n+ bass funcons P f f n f n generally acceped B P B f f n f n B f B f n B f n compac maroaon wh vecors f n a column B f B f f f

B f g B f B f n 3 n lmcd f B f f n

compac maroaon wh vecors f n a row B f g B f B f B f B f n f f f f n lmcd Eample Projecon of a gven vecor y n n-dmensonal space ono bass vecor y, P y projecon of y along, Acon of P on each of he bass vecors acon of P on, P y proj, acon of P on, P y proj, : : acon of P on n, n P y projn, compac maroaon wh vecors & y proj n a column,, P P P P y proj y proj y projn,,,, compac maroaon wh vecors & y proj n a row P P P P y proj y proj y projn,,,, 3 n y proj A mar where only one column of A ma s nonzero,,

3 lmcd Any vecor y n he LVS can be represened as a lnear combnaon of he n bass vecors {,,, } y n he acon of he lnear ransformaon on an arbrarly chosen vecor y s descrbed as y proj P y P n n P P n P y proj y proj n y projn y, proj, n, n,,,,, n, n,,, compac maroaon wh vecors y and y proj lsed n a column (agan, remember, some people abhor hs compac noaon because we are mng a column row of vecors wh a column row of scalars) y proj P y n y proj y proj y projn n compac maroaon wh vecors y & y proj lsed n a row,,,,,, A mar y proj P y y proj y proj y projn A mar n,,,,,, If he bass are orhonormal, hen A mar,,,,,,

4 lmcd Eample Projecon of a gven vecor y n n-dmensonal space ono n bass vecors {,,, } y, projecon of y along P y,, n, n,,,, y, projecon of y along P y,, n, n ( F,,,, Pr he pr : : y, projecon of y along n n P n y, n, n, n,,,, Combnng he above n projecon operaors n a column y, P y P y P n y, y,, y,, ( P Ap Pr P y P P P y proj y proj y projn P y P n y P P n P P n P P n n y proj y projn y proj y projn y projn y projnn n,,,,,,,,,,,,,,,,,, n y,,,, y,,,, y,,,, n

5 lmcd y X where y s a column of scalar producs beween y and he bass vecors {,,, } and X s a mar of scalar producs of he bass vecors X y y, If he bass vecors are orhogonal, X dagonal, If he bass vecors are orhonormal, X I mar y, Combnng he above n projecon operaors n a row y, P y P y P y, y, n y,,, P y P y P n y n P P P P P P P n P n P n y proj y proj y projn n y proj y proj y projn y projn y projn y projnn,,,,, n,,,,,,,,,,,,,,,, y, y, y, n n,,,,,, y X where y s a row of scalar producs beween y and he bass vecors {,,, } and X s a mar of scalar producs of he bass vecors

6 lmcd Eample Projecon of a gven vecor y n n-dmensonal space ono anoher vecor {,,, } P ( y, ) y projecon of y along (, ) Any vecor y n n-dmensonal LVS can be represened as a lnear combnaon of he bass vecors y n n P ( y, ) y n, n (, ) n, n n Addon sum of wo ransformaons A & B ( A B) A B C A B C mar A mar B mar Mulplcaon of a ransform A by a scalar A ( A ) C A C mar A mar Mulple lnear ransformaons n sequence: B followed by A A ( B ) ( A B) C C A B C mar A mar B mar A followed by B B ( A ) ( B A) D D B A D mar B mar A mar In general, he order of operaon maers: A B B A A mar B mar B mar A mar

7 lmcd Ideny ransformaon An deny ransformaon s a ransformaon ha does no modfy he gven vecor, e, smply do nohng! I hus, he acon of he deny ransformaon on n lnearly ndependen bass vecors {,,, } s compacly epressed as: (Agan, remember, some people abhor hs compac noaon) Rule for deny ransformaon: y I y I y n I compac maroaon wh vecors n a column y I y y y n I mar compac maroaon wh vecors n a row I y y y y n I mar Here, "I" symbolzes deny ransformaon; whereas, "I mar " s an deny mar ha characerzes he deny ransformaon Inverse ransformaon Gven a lnear ransformaon A n a LVS, an nverse ransformaon reverses he ransformaon performed on any vecor by A In oher words, he lnear ransformaon B s an nverse of he ransformaon A f, for every vecor n he LVS, we have, A ( B ) B ( A ) Noe ha boh relaonshps have o hold, as ABBA n general A B B A I If B s an nverse of A, hen A s an nverse of B We commonly use he superscrp " - " o denoe he nverse ransformaon of A: B or A - If nverse ess, s unque If a lnear ransformaon A has an nverse, s sad o be non-sngular Oherwse, s sngular Agan, hs ermnology s a very general one We do no even have o be concerned abou a real Eucldean space, fne dmenson, mar represenaon, ec If A has an nverse, hen A A y mples y In fac, hs s a necessary condon for A o be non-sngular In plan Englsh, gven wo dencal vecors z & z ha resul from he same lnear ransformaon A, (z =A and z =Ay), f we race back he lnear ransform by akng B=A - o see where each has orgnaed from, we should end up a eacly he same sarng vecor (meanng =y) A A A y n y y y n a a a n a a n A y A y A y n a a a n a a n y y y n

8 lmcd A common ms-concepon When we reverse he vecor drecon, we urn a vecor no a reversed nvered (e negave) vecor, and we denoe hs wh a mnus sgn: - he process of reversng vecor drecon s no an nverse ransform Conversely, an nverse ransformaon s no "-A" he noaon "-A" all by self has no meanng; "-A", whch s a common abbrevaon for "-(A)" mahemacally means he negave of he oupu vecor " A", jus as -f(), whch s an abbrevaon for "-(f())", no "(-f)()", means he negave of he oupu from he funcon f Eample Roaons of arrows have nverses (e, he orgnal roaon can be undone) Eample Column of numbers (eg, a pon vecor n Caresan coordnae) Do no confuse " " here (whch s a number) wh " " n he prevous pages (whch s a vecor) n Defne A y n he usual way y a a a n = Acon of ransformaon A epressed n a compac maroaon y a a a n a j j for, n a a a n A y y a A mar A mar a y n a n a n he frs "" s lnear operaon; he second "" s mar mulplcaon We can hnk of ec as one of he bass vecors (raher han a number embedded n a column compac maroaon wh vecors n a column (has he same form as he he lnear algebrac equaon bu & y n each column represens a bass vecor) y a a a n A y y a A mar y n a n compac maroaon wh vecors n a row a a a n A y y y y n a A mar a n

9 lmcd he lnear ransformaon A has nverse only f we can fnd from gven y hus, A s non-sngular f and only f de(a mar ) Do no confuse " " here (whch s a number) wh Eample Row of numbers " " n he prevous pages (whch s a vecor) n Defne A y n he non-usual way y a a a n a j j for, n In compac maroaon = a a a n A y y y y n a A mar a n Eample Projecon of arrows has no nverse (e, sngular) Reason: Many arrows yeld he same projecon; hus, we canno ge back he orgnal arrow Eample All polynomals of degree n or less Defne wo lnear ransformaons A and B A P d d ( P( ) ) B P P( ) Apply wo lnear ransformaons n sequence A ( B P) d d P( ) d d P( ) P( ) B ( A P ) d ( P( ) ) d( P( ) ) ( P( ) ) P( ) Snce A ( B P ) B ( A P) P he above wo lnear ransformaons A and B are nverse of each oher Eample: Laplace ransform (Snce he LVS s composed of connuous funcons; he dmenson s nfny, and here s no compac mar represenaon of he acon of he ransformaon on bass vecors) A f( ) s f( ) d F( s) e A F( s ) s F( s ) ds f( ) e Co F d r F

Eample: Fourer Sne ransform F f sn( ) f( ) d F( ) F F( ) Eample: Fourer Cosne ransform F f Eample: Fourer ransform F f( ) F F( ) cos( ) f( ) d F( ) F F( ) e f( ) d F( ) e F( ) f( ) lmcd sn( ) F( ) f( ) cos( ) F( ) f( ) F Null Space he null space of a lnear ransformaon A s he se of of all vecors n he LVS such ha A Naurally, hese specal se of vecors le whn he same LVS n whch he lnear ransformaon A s defned hus, he null space s a subspace of he LVS Noe ha A does no need o have an nverse n order for us o speak of he null space re sp D g fro ( F ( F An G bu

lmcd Orhogonal ransformaon An orhogonal ransformaon s a lnear ransformaon A ha acs on a vecor and does no change s lengh In oher words, s a ransformaon ha merely "roae" a vecor (hus, change s angle bu no s lengh) A common ms-concepon: an orhogonal ransformaon does no mean he npu vecor and he oupu vecor y=a are orhogonal o each oher! In oher words, he angle of "roaon" beween he npu vecor and he ou vecor y=a does no need o be 9 degrees Anoher common ms-concepon: do no confuse orhogonal vecors wh orhogonal lnear ransformaons! Bass vecors ha we use o descrbe a gven vecor n LVS do no need o be orhogonal hus, we can alk abou orhogonal ransformaons n LVS ha s represened by non-orhogonal bass vecors Conversely, n a LVS represened by orhogonal bass vecors, he lnear ransformaon can be anyhng (ceranly no lmed by orhogonal ransformaons) Snce we are referrng o vecor lengh, we need o defne a scalar produc and we are workng wh real Eucldean space defnon of orhogonal ransformaon A scalar produc afer ransformaon = scalar produc before ransformaon ( A, A ) (, ) "Orhogonal" s a way o descrbe he "before" and he "afer" of a lnear ransformaon A on An orhogonal ransformaon preserves scalar produc (no jus for, bu for any & y pars) ( A, A y ) (, y) Proof Le z be he sum of wo vecors & y z y Apply ransformaon A o z; snce A s orhogonal, by defnon of A beng "orhogonal" we have for z ( A z, A z ) ( z, z) We subsue z no he above defnon ( A ( y ), A ( y ) ) ( ( y ), ( y) ) ( A, A ) ( A, A y ) ( A y, A ) ( A y, A y ) (, ) (, y ) ( y, ) ( y, y) Agan, by defnon of A beng "orhogonal" we have for & y: ( A, A ) (, ) ( A y, A y ) ( y, y) (, ) ( A, A y ) ( y, y ) (, ) (, y ) ( y, y) Comparng he LHS & RHS, we have ( A, A y ) (, y) Acon of A on each of he bass vecors {,,, } acon of A on A y a a a n acon of A on : A y a a a n : acon of A on A y n a n a n a nn Acon of ransformaon A epressed n a compac maroaon wh vecors & y n a column A A A A y A mar y y y y n a a a n a a n A mar A mar a a a n a a n An op ev me

lmcd compac maroaon wh vecors & y n a row a a a n A A A A y y y n a a n Mar of varous scalar producs beween bass vecors (A,A j )=(, j ) A, A A, A A, A a a a n,,, a a A, A A, A A, A A, A A, A A, A a a n,,,,,, a a n,,,,,,,,, A mar X A mar X where X s a mar of scalar producs of he bass vecors If A s an orhogonal lnear ransformaon, by defnon of "orhogonal", he above relaonshp holds; follows he smlary ransform equaon beween A mar and he nverse of s ranspose, (A mar ) -, wh he mar of scalar producs of bass X as he smlary ransform mar A mar X X A mar A mar A mar for general bass vecors ha are no necessarly orhogonal (bass need o be lnearly ndependen, bu do no need o be orhogonal) for orhonormal bass vecors {,,, } X I mar A mar A mar or equvalenly A mar A mar A mar A mar I mar As shown above, he columns n A mar are orhogonal (A mar A mar =I mar ) ; he rows n A mar oo are orhogonal (A mar A mar =I mar ) (Bu each column n A mar s no he same ype of vecor ha he lnear ransformaon A acs on -- agan, hs s a consan source of confuson, and many are agans he compac "mar" noaon) Eample Roaon n a plane wh Defne a lnear ransformaon A A Defne scalar produc (, y ) y y ( ) cos( ) sn( ) sn( ) cos( ) ( A ) cos( ) sn( ) sn( ) cos( ) hus, A s an orhogonal ransformaon Show ha he scalar produc s preserved ( )

( A, A y) 3 lmcd cos( ) sn( ) cos( ) y sn( ) y + sn( ) cos( ) sn( ) y cos( ) y y y (, y) Symmerc ransformaon A symmerc ransformaon s a lnear ransformaon A wh he followng propery for every par of vecors and y n real Eucldean space defnon of symmerc ransformaon ( A, y ) (, A y) scalar produc afer A acs on = scalar produc afer A acs on y In oher words, gven any wo vecors and y, swappng he operaon, wheher A acs on or on y, does no change he resulng scalar produc beween hem, meanng he relaonshp (eg, angle) A common ms-concepon: a symmerc ransformaon does no mean he npu vecor s symmerc, nor he oupu from he ransformaon y=a s symmerc! Anoher common ms-concepon: do no confuse orhogonal bass vecors wh symmerc lnear ransformaons! Bass vecors ha we use o descrbe a gven vecor n LVS do no need o be orhogonal; hey can be anyhng as long as hey are lnearly ndependen hus, we can alk abou symmerc ransformaons n LVS ha s represened by non-orhogonal bass vecors Snce we are referrng o scalar produc, he same ransformaon can be symmerc wh respec o one scalar produc defnon, bu no symmer wh a dfferen scalar produc defnon hs s analogous o he orhogonaly beween wo vecors: wo same vecors are orhogonal wh one scalar produc defnon, bu non-orhogonal wh a dfferen scalar produc defnon Bascally, s an "equal opporuny" ransform "Symmercal" s a way o descrbe ha applyng lnear ransformaon Ao a vecor, n erms of s relaonshp o all he oher vecors y as quanfed by he scalar produc (A,y), does no depend on whch vecor A acs on Had A aced on a dfferen vecor y, he resulng scalar produc (Ay,) would have been dencal o acng on, e, (A,y) he change brough abou by A acng on a random vecor s ndependen of he vecor ha we pu hrough A Each and every vecor s capable of causng he same resul "Orhogonal" deals wh "before" and "afer"; whereas, "symmercal" deals wh laerally swappng an npu vecor wh anoher npu vecor y Acon of A on each of he bass vecors {,,, } acon of A on A y a a a n acon of A on : A y a a a n : acon of A on A y n a n a n a nn Acon of ransformaon A epressed n a compac maroaon wh vecors & y n columns A A A A y A mar y y y y n a a a n a a n A mar A mar a a a n a a n

4 lmcd compac maroaon wh vecors & y n rows a a a n A A A A y y y n a a n Mar of varous scalar producs beween bass vecors and he oupu of A on bass vecors (A, j )=(,A j ) A, A, A,, A, A, A A, A, A,, A, A, A X A, A, A,, A, A, A A mar a a a n A mar X a,,, a n,,,,,,,,,,,, a a a n a,,, where X s a mar of scalar producs of he bass vecors If A s a symmerc lnear ransformaon, by defnon of "symmerc", he above wo equaons are equal he resulng relaonshp follows he smlary ransform equaon beween A mar and s ranspose A mar, wh he mar of scalar producs of bass X as he smlary ransform mar A mar X X A mar for general bass vecors ha are no necessarly orhogonal (bass need o be lnearly ndependen, bu do no need o be orhogonal) A mar A mar for orhonormal bass vecors {,,, } X I mar a n a j a j Eample columns of numbers Defne a lnear ransformaon A A a a a a Defne scalar produc (, y ) y y ( A, y ) (, A y ) requremen for a symmerc ransformaon a a y a y a y a y a y y a a y y hus, he requremen for a symmercal ransformaon s a a

5 lmcd Eample Convoluon Inegral Le he LVS be all connuous funcons n =[, ] Defne a lnear ransformaon A (convoluon negral), where K s a connuous funcon A f K(, ) f( ) K Defne scalar produc ( f, g) f( ) g( ) ( A f, g ) ( f, A g ) requremen for a symmerc ransformaon K K(, ) f( ) g( ) d f( ) K(, ) g( ) K(, ) f( ) g( ) d K(, ) f( ) g( ) d he ( K(, ) K(, ) ) f( ) g( ) d F hus, he requremen for a symmercal ransformaon s K(, ) K(, ) Skew-Symmerc ransformaon A skew-symmerc ransformaon s a lnear ransformaon A wh he followng propery for every par of vecors and y n real Eucldean space ( A, y ) (, A y) compac maroaon A mar X X A mar A mar for general bass vecors no necessarly orhogonal A mar for orhonormal bass vecors {,,, } d In K a j a j

6 lmcd ranspose Any lnear ransformaon A n n-dmensonal LVS has a unque ranspose he ranspose of a lnear ransformaon A has he followng propery for every par of vecors and y n real Eucldean space B s he ranspose of A, and A s he ranspose of B ("he", and no "a", means ha he ranspose of A ess and s unque) Noaon: A ( A, y ) (, B y ) ( A, y ), A y Specal case f A s a symmercal lnear ransformaon, by defnon we have, ( A, y ) (, A y) A A for symmercal lnear ransformaon Some properes of ranspose (ncludng, bu no lmed o, he radonal "mar" ype) ( A B) A ( A ) A ( A B ) B A B Acon of A on each of he bass vecors {,,, } acon of A on A y a a a n acon of A on : A y a a a n : acon of A on A y n a n a n a nn Acon of ransformaon A epressed n a compac maroaon wh vecors & y n a column A A A A y A mar y y y y n a a a n a a n compac maroaon wh vecors & y n a row A mar A mar a a a a a n a a n a n A A A A y y y n Mar of varous scalar producs beween bass vecors (A, j )=(,B j ) A, A, A, A, A, A, A, A, A, a a a n A mar X a a n a a n,,,,,,,,,

7 lmcd, A, A, A,,, a' a' a' n, A, A, A, A, A,,,, A,, n X A' mar X B mar b j a' j where X s a mar of scalar producs of he bass vecors and, B mar A' mar descrbes he acon of ranspose of A A =B on each of he bass vecors {,,, } acon of A =B on B y' a' a' a' n b b b n acon of A =B on : B y' a' a' a' n b b b n : acon of A =B on B y' n a' n a' n a' nn b n b n b nn A mar X X A' mar X B mar A mar a j a' j b j a' a' n a' a' n for general bass vecors ha are no necessarly orhogonal (bass need o be lnearly ndependen, bu do no need o be orhogonal) B mar for orhonormal bass vecors {,,, } X I mar Because we can always fnd an orhonormal se of bass vecors n n-dmensonal space (Gram-Schmd assures us ha hs can always be done), a lnear ransform A can ac on he bass {,,, }, hen we can always defne anoher lnear ransform B=A ha acs on he bass {,,, } accordng o he above rule hus, rrespecve of he lnear ransformaon (no need o be orhogonal or symmerc, ec), here s always a unque ranspose B=A a' n a' nn