How Supernova Progenitors Affect the Explosions

Similar documents
Type Ia Supernovae: Standardizable Candles and Crayons

Asymmetry in Supernovae

Bayesian Modeling for Type Ia Supernova Data, Dust, and Distances

Observational cosmology and Type Ia Supernovae, Part II

Supplementary Information for SNLS-03D3bb a super- Chandrasekhar mass Type Ia supernova

The Keck/SDSS SN Sample

Lab 2 Cosmology 2 (Hubble's Law)

New Views of Stellar Explosions: The Supernova Spectropolarimetry Project

The structure and evolution of stars. Learning Outcomes

Evolution and Final Fates of Accreting White Dwarfs. Ken Nomoto (Kavli IPMU / U. Tokyo)

The dynamical sky Two frontiers Joel Johansson, Uppsala university

Stages of a Big Project ***

Precision cosmology with Type Ia Supernovae?

CORE-COLLAPSE SUPERNOVAE

ELT Contributions to The First Explosions 1

2. Observations and data reduction

Mass loss from stars

Type Ia supernovae observable nuclear astrophysics

The Empirical Grounds of the SN-GRB Connection. M. Della Valle INAF-Napoli ICRANet-Pescara

arxiv:astro-ph/ v1 9 Jun 1999

A SALT Spectropolarimetric Survey of Supernovae ( S 4 ) K. Nordsieck Univ of Wisconsin

The Supernova/Gamma-Ray Burst Connection. Jens Hjorth Dark Cosmology Centre Niels Bohr Institute University of Copenhagen

Photometric and Spectroscopic Observations of Type Ib Supernova SN 2012au by Kanata-Telescope

Determining the distance of type II supernovae

Rapidly Fading Supernovae from Massive Star Explosions. Io Kleiser - Caltech Advisor: Dan Kasen - UC Berkeley 31 October 2013

The X-ray absorption in GRB afterglows

Multidimensional Simulations of Type Ia Supernova Explosions:

The Origin of Type Ia Supernovae

Multiwavelength observation campaign of Mrk 509: UV spectra of the X-ray Outflow!!!!Gerard Kriss!! STScI!!! (with N. Arav, J. Kaastra & the Mrk 509

Reflections on reflexions II. Effects of light echoes on the luminosity and spectra of Type Ia supernovae

Challenges of low and intermediate redshift supernova surveys

The X-ray absorption in GRB afterglows

Type II Supernovae as Standardized Candles

Supernovae and the Accelerating Universe

Cosmology of Photometrically- Classified Type Ia Supernovae

SN Ia analyses with the Nearby Supernova Factory spectrophotometric data

First results from the Stockholm VIMOS Supernova Survey

The Evolution of the Cosmic SN Rate

Type Ibn Supernovae. Type Ibn Supernovae. Andrea Pastorello (INAF-OAPd) Andrea Pastorello (INAF-OAPd) Stockholm May 28 - June 1, 2018

THE 82ND ARTHUR H. COMPTON LECTURE SERIES

The Deaths of Stars. The Southern Crab Nebula (He2-104), a planetary nebula (left), and the Crab Nebula (M1; right), a supernova remnant.

Supernova events and neutron stars

Shklovskii s predictions on SN1987A

Optical Observations of the Rapidly Expanding Type Ia Supernova 2007gi

The Progenitors of Type Ia Supernovae

Prof. Jeff Kenney Class 12 June 12, 2018

High Redshift Universe

arxiv:astro-ph/ v1 7 Mar 2005

Spectrum of the Supernova Relic Neutrino Background

Supernovae with Euclid

MEASURING TYPE IA SUPERNOVA POPULATIONS OF STRETCH AND COLOR AND PREDICTING DISTANCE BIASES

Thermonuclear shell flashes II: on WDs (or: classical novae)

Observable constraints on nucleosynthesis conditions in Type Ia supernovae

Introduction to SDSS -instruments, survey strategy, etc

Dependence of low redshift Type Ia Supernovae luminosities on host galaxies

Abundance Constraints on Early Chemical Evolution. Jim Truran

Strong gravitational lenses in the 2020s

Supernova 2005cs and the Origin of Type IIP Supernovae

Subaru telescope observes echo of the exploding star first seen in 1572, and reveals its nature

arxiv: v2 [astro-ph.he] 20 May 2014

Lecture 11: Ages and Metalicities from Observations A Quick Review

WHAT DO X-RAY OBSERVATIONS

Light and Stars ASTR 2110 Sarazin

Galaxies and Cosmology

Supernova Explosions. Novae

High Energy Astrophysics

Dust. The four letter word in astrophysics. Interstellar Emission

7. Dust Grains & Interstellar Extinction. James R. Graham University of California, Berkeley

Supernovae and possible NS-NS EM signatures. Keiichi Maeda

Supernovae. Graham Kribs University of Oregon

Type Ia SNe standardization accounting for the environment. Lluís Galbany CENTRA-IST, UTL, Lisbon

The Swift GRB Host Galaxy Legacy Survey

arxiv: v2 [astro-ph] 21 Aug 2007

Supernova Explosions and Neutron Stars Bruno Leibundgut (ESO)

Supernova Surveys. Julien GUY PPC2010, Torino, July LPNHE - IN2P3 - CNRS - Universités Paris 6 et Paris 7

arxiv:astro-ph/ v1 20 Jan 2005

Explosion Geometry of Supernovae Revealed by Spectropolarimetry with Subaru/FOCAS

Chapter 7: From theory to observations

Infrared Light Curves of Type Ia Supernovae

Internal conversion electrons and SN light curves

Doppler Shift. a. In which situation will the observer receive light that is shifted to shorter wavelengths?

The Impact of Positional Uncertainty on Gamma-Ray Burst Environment Studies

The Light Curve in Supernova Modeled by a Continuous Radioactive Decay of 56 Ni

Lecture 11: Ages and Metalicities from Observations. A Quick Review. Multiple Ages of stars in Omega Cen. Star Formation History.

20. Stellar Death. Interior of Old Low-Mass AGB Stars

6. Star Colors and the Hertzsprung-Russell Diagram

THE NATURE AND GEOMETRY OF THE LIGHT ECHO FROM SN 2006X 1

Lecture 8: Stellar evolution II: Massive stars

Monte Carlo Radiative Transfer and Type Ia Supernovae

Galaxies 626. Lecture 5

PESSTO The Public ESO Spectroscopic Survey for Transient Objects

arxiv:astro-ph/ v2 13 Oct 2005

The Supernova Spectropolarimetry Project: Probing the Evolution of Asymmetries in Supernovae

Chemical Enrichment History Of Abell 3112 Galaxy Cluster Out To The Virial Radius

Supernovae. Supernova basics Supernova types Light Curves SN Spectra after explosion Supernova Remnants (SNRs) Collisional Ionization

Cold gas at high redshifts. R. Srianand Inter-University Center for Astronomy & Astrophysics, Pune - India

Spectroscopy!in!the!Era!of!LSST!

Supernova Remnant Science with AXIS. Brian Williams & Hiroya Yamaguchi

Near-infrared line imaging of supernova remnant

Constraining Dark Energy: First Results from the SDSS-II Supernova Survey

Transcription:

How Supernova Progenitors Affect the Explosions Progenitor System Single vs. Double Degenerate Circumstellar Material Progenitor Composition Metal Abundance

Sullivan et al. 21

Sullivan et al. 21

Patat et al. 27 Time

High-Resolution Spectra Probe Gas A 1.2 B 1.2 1 1 Normalized Flux.8.6.4.2 Blue SN28ec Na D2 Jul 18, 28 Na D1 Jul 18, 28 Normalized Flux.8.6.4.2 SN27sa Na D2 Jan 23, 28 Na D1 Jan 23, 28 Red 2 15 1 5 5 1 15 2 2 15 1 5 5 1 15 2 C 1.2 1 D 1 Normalized Flux.8.6.4.2 Single SN27sr Na D2 Jan 17, 28 Na D1 Jan 17, 28 Normalized Flux.8.6.4.2 Sym SN27fs Na D2 Jul 19, 27 Na D1 Jul 19, 27 2 15 1 5 5 1 15 2 Relative Velocity [km s 1 ] 2 15 1 5 5 1 15 2 Relative Velocity [km s 1 ] 1 Sternberg et al. 211

Equal Blue/Redshifted Fraction for ISM

Many SN Ia Progenitors Have Winds SNe Ia Blueshifted Redshifted Single/Symmetric 22.7% 54.6% 22.7% Sternberg et al. 211

Optical Spectrum to Measure Velocity 1 8 High Velocity Flux + Constant 6 4 2 Low Velocity 4 45 5 55 6 65 7 Rest Wavelength (Å) Silicon

Measure Silicon Velocity 1 High Velocity: ~ -13, km s -1 8 Flux + Constant 6 4 2 Low Velocity: ~ -1, km s -1 Wider Lines With Higher Velocity 59 6 61 62 63 Rest Wavelength (Å)

Si II Velocity at Maximum Brightness (1 3 km s 1 ) 16 14 12 1 8 1. 1.5 2. Δm 15 (B) (mag) Foley, Sanders, & Kirshner 211

2 Values of RV? -2-19 High Velocity Low Velocity AV -18-17 -16 Figure 4. Wang et al. 29 Vol. 699 RV = AV/E(B-V)

2 Values of RV? M V.75(Δm 15 1.1) (mag) 19.6 19.4 19.2 19. 18.8 18.6 Normal SNe Ia High Velocity SNe Ia 121 SNe 2 Classes Raises RV (More like Milky Way) 18.4.1..1.2.3.4 E(B V) host (mag) Foley & Kasen 211

B V Color.4.2 App.Color Inferred.Intr.Locus Inferred.Intr.Color.2.6 B R Color.4.2.2.5 B I Color.5 1 11 12 13 Si II velocity (1 km/s) 14 15 16

Si II Linear Function versus Constant Mean Color Si II vel (1 km/s) 1 12 14 16 2 Number of SN Ia 15 1 5.2.1.1 Change in Modal A V Estimate

B V Color.4.2 Inferred.Intr.Locus App.Color Inferred.Intr.Color B R Color.2.6.4.2.2.5 B I Color.5 1 11 12 13 Si II velocity (1 km/s) 14 15 16

9 Si II Step Function versus Constant Mean Color 1 Si II vel (1 km/s) 11 12 13 14 15 16 17 2 Number of SN Ia 15 1 5.14.12.1.8.6.4.2.2.4.6 Change in Modal A V Estimate

2 Values of RV? -2-19 High Velocity Low Velocity AV -18-17 -16 Figure 4. Wang et al. 29 Vol. 699 RV = AV/E(B-V)

Si II Velocity at Maximum (1 3 km s 1 ) 16 14 12 1 Full SN Ia Sample Blueshifted Redshifted..5 1. 1.5 B Max V Max (mag) Foley et al., 212a

Ca II Velocity at Maximum (1 3 km s -1 ) -2-15 -1 2.4 σ Result Low High Mass 8 9 1 11 12 Host-Galaxy Mass (log M O ) 2 4 6 8 1 Number Foley 212b

Wang et al. 213

Wang et al. 213

Wang et al. 213

Outer and Inner Layers Linked a 21 Expectation b 21 v Si (km s 1 d 1 ) 18 15 12 9 6 4dt Faint 7on 86G 94D 9N 9ab 4eo 2er 6X HVG 2bo 97bp 7sr 2dj 18 15 12 9 6 Redshift 3 3hv 98aq 98bu 5cf 3du cx LVG 1el 3 Blueshift Low c 6 3 2 1 1 2 3 2 4 6 8 Number Velocity Gradient Number 4 2 LVG HVG 3 2 1 1 2 3 v neb (1 3 km s 1 ) High Velocity Gradient

Metallicity Changes 56 Ni Yield Timmes et al. 23

Metallicity a (Big?) Systematic Different Metallicity, Same Light-Curve Shape, Different Luminosity Increased Scatter Bias with Redshift? Mazzali & Podsiadlowski 26

Metallicity Changes UV, Not Optical 15.5 15 14.5 14 13.5 Log F λ 13 12.5 12 11.5 11 1.5 ζ=1 ζ=3 ζ=1 ζ=1/3 ζ=1/1 ζ=1/3 1 1 2 3 4 5 6 7 8 λ (Angstroms) Lentz et al. 2

Twin SNe Same in Optical 1 8 SN 211fe SN 211by Relative f λ 6 4 2 3 4 5 6 7 8 9 Rest Wavelength (Å) Foley & Kirshner 213

Twin SNe Same in Optical 8 9 I 2 Apparent Brightness (mag) 1 11 12 13 14 R 1 V B + 1 15 2 1 1 2 3 4 5 Rest frame Days Relative to B Maximum Foley & Kirshner 213

Twin SNe Different in UV 3. 2.5 Relative log(f λ ) 2. 1.5 1..5 2 4 6 8 Rest Wavelength (Å) Foley & Kirshner 213

Twin SNe Different in UV 3. 2.5 Relative f 2. 1.5 1. SN 211fe SN 211by.5 2 25 3 35 4 Rest Wavelength (Å) Foley & Kirshner 213

Different Metallicity Progenitors 4 1 / 2 =1/1 Flux Ratio 3 2 1 1 / 2 =1/3 1 / 2 =1/1 1 / 2 =1/3 11fe/11by 2 25 3 35 4 Rest Wavelength (Å) Foley & Kirshner 213