VALLIAMMAI ENGINEERING COLLEGE

Similar documents
KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur

NADAR SARASWATHI COLLEGE OF ENGINEERING AND TECHNOLOGY Vadapudupatti, Theni

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

R10 JNTUWORLD B 1 M 1 K 2 M 2. f(t) Figure 1

R a) Compare open loop and closed loop control systems. b) Clearly bring out, from basics, Force-current and Force-Voltage analogies.

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad ELECTRICAL AND ELECTRONICS ENGINEERING TUTORIAL QUESTION BANK


VALLIAMMAI ENGINEERING COLLEGE

Control Systems. University Questions

(b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications:

EC 8391-CONTROL SYSTEMS ENGINEERING. Questions and Answers PART-A. Unit - I Systems Components And Their Representation

Table of Laplacetransform

FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY

EC CONTROL SYSTEM UNIT I- CONTROL SYSTEM MODELING

CHAPTER 1 Basic Concepts of Control System. CHAPTER 6 Hydraulic Control System

IC6501 CONTROL SYSTEMS

10ES-43 CONTROL SYSTEMS ( ECE A B&C Section) % of Portions covered Reference Cumulative Chapter. Topic to be covered. Part A

Contents. PART I METHODS AND CONCEPTS 2. Transfer Function Approach Frequency Domain Representations... 42

CO Statement. Book No [Page No] C C C C

Controls Problems for Qualifying Exam - Spring 2014


CONTROL SYSTEMS ENGINEERING Sixth Edition International Student Version

Subject: BT6008 Process Measurement and Control. The General Control System

ECE317 : Feedback and Control

CYBER EXPLORATION LABORATORY EXPERIMENTS

CHAPTER 7 STEADY-STATE RESPONSE ANALYSES

Root Locus Methods. The root locus procedure

Control Systems. EC / EE / IN. For

CONTROL * ~ SYSTEMS ENGINEERING

Dr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review

1 An Overview and Brief History of Feedback Control 1. 2 Dynamic Models 23. Contents. Preface. xiii

Dynamic Compensation using root locus method

Feedback Control of Linear SISO systems. Process Dynamics and Control

SAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015

Test 2 SOLUTIONS. ENGI 5821: Control Systems I. March 15, 2010

Index. Index. More information. in this web service Cambridge University Press

Step input, ramp input, parabolic input and impulse input signals. 2. What is the initial slope of a step response of a first order system?

Course roadmap. Step response for 2nd-order system. Step response for 2nd-order system

Time Response Analysis (Part II)

EEE 184: Introduction to feedback systems

EC Control Systems- Question bank

Radar Dish. Armature controlled dc motor. Inside. θ r input. Outside. θ D output. θ m. Gearbox. Control Transmitter. Control. θ D.

Introduction to Process Control

ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 2010/2011 CONTROL ENGINEERING SHEET 5 Lead-Lag Compensation Techniques

Performance of Feedback Control Systems

MAS107 Control Theory Exam Solutions 2008

Appendix A: Exercise Problems on Classical Feedback Control Theory (Chaps. 1 and 2)

ECE317 : Feedback and Control

PID controllers. Laith Batarseh. PID controllers

EE C128 / ME C134 Final Exam Fall 2014

Course Summary. The course cannot be summarized in one lecture.

FEEDBACK and CONTROL SYSTEMS

EE 3CL4: Introduction to Control Systems Lab 4: Lead Compensation

R10. IV B.Tech II Semester Regular Examinations, April/May DIGITAL CONTROL SYSTEMS JNTUK

Problem Weight Score Total 100

Feedback Control of Dynamic Systems

Bangladesh University of Engineering and Technology. EEE 402: Control System I Laboratory

SRI VENKATESWARA COLLEGE OF ENGINEERING

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BENG (HONS) IN BIOMEDICAL ENGINEERING SEMESTER 1 EXAMINATION 2017/2018 ADVANCED BIOMECHATRONIC SYSTEMS

STABILITY OF CLOSED-LOOP CONTOL SYSTEMS

(a) Find the transfer function of the amplifier. Ans.: G(s) =

CONTROL SYSTEMS LECTURE NOTES B.TECH (II YEAR II SEM) ( ) Prepared by: Mrs.P.ANITHA, Associate Professor Mr.V.KIRAN KUMAR, Assistant Professor

Homework 7 - Solutions

Solution for Mechanical Measurement & Control

Dr Ian R. Manchester

Lecture 6 Classical Control Overview IV. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore

EE3CL4: Introduction to Linear Control Systems

EEE 184 Project: Option 1

AN INTRODUCTION TO THE CONTROL THEORY

INTRODUCTION TO DIGITAL CONTROL

Frequency Response Techniques

Chapter 2. Classical Control System Design. Dutch Institute of Systems and Control

R13 SET Derive the expression for the maximum bending stress developed in the leaf spring and also the central deflection of a leaf spring.

Question paper solution. 1. Compare linear and nonlinear control system. ( 4 marks, Dec 2012)

CONTROL SYSTEM (EE0704) STUDY NOTES

Conventional Paper-I Part A. 1. (a) Define intrinsic wave impedance for a medium and derive the equation for intrinsic vy

Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam!

SRM UNIVERSITY DEPARTMENT OF BIOMEDICAL ENGINEERING ODD Semester DAY floor

Exercises for lectures 13 Design using frequency methods

Video 5.1 Vijay Kumar and Ani Hsieh

Lecture 5: Frequency domain analysis: Nyquist, Bode Diagrams, second order systems, system types

Solutions to Skill-Assessment Exercises

ME 475/591 Control Systems Final Exam Fall '99

CHAPTER 5 : REDUCTION OF MULTIPLE SUBSYSTEMS

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur

BEE501- CONTROL SYSTEM UNIT 1 SYSTEMS AND THEIR REPRESENTATION Definition of Control System A control system is a system of devices or set of

Laboratory Exercise 1 DC servo

Study Material. CONTROL SYSTEM ENGINEERING (As per SCTE&VT,Odisha new syllabus) 4th Semester Electronics & Telecom Engineering

1 Mathematics. 1.1 Determine the one-sided Laplace transform of the following signals. + 2y = σ(t) dt 2 + 3dy dt. , where A is a constant.

Transient response via gain adjustment. Consider a unity feedback system, where G(s) = 2. The closed loop transfer function is. s 2 + 2ζωs + ω 2 n

Alireza Mousavi Brunel University

EECS C128/ ME C134 Final Wed. Dec. 15, am. Closed book. Two pages of formula sheets. No calculators.

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING MSC SYSTEMS ENGINEERING AND ENGINEERING MANAGEMENT SEMESTER 2 EXAMINATION 2016/2017

7.6. LINEAR CONTROL SYSTEMS Objective and Relevance Outcome Prerequisites Syllabus. i.jntu. ii.gate. 7.6.

LABORATORY INSTRUCTION MANUAL CONTROL SYSTEM I LAB EE 593

Systems Engineering and Control

D(s) G(s) A control system design definition

Control Systems Design

Transcription:

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK V SEMESTER IC650 CONTROL SYSTEMS Regulation 203 Academic Year 207 8 Prepared by DrRArivalahan, Associate Professor/EEE, MrsRVPreetha, Assistant Professor/EEE

UNIT I SYSTEMS AND THEIR REPRESENTATION Basic elements in control systems Open and closed loop systems Electrical analogy of mechanical and thermal systems Transfer function Synchros AC and DC servomotors Block diagram reduction techniques Signal flow graphs PART A QNo Questions BTL Domain Level List the advantages of closed loop system over open loop system Define the terms (i) Physical Model (ii) Mathematical Model 3 What are the basic elements in control systems? 4 Define transfer function Give an example for it 5 List the basic elements for modeling in mechanical translational system 6 List the basic elements for modeling in mechanical rotational system 7 Distinguish the terms sink and source 8 Discuss any 2- applications of synchro 9 Give the reason for preferring negative feedback control system 0 Discuss the terms (i) Signal Flow Graph (ii) Non-touching loop Illustrate the terms (i) Block Diagram Reduction (ii) Mason;s Signal Flow Graph Method Draw the electrical analog of a thermometer with neat diagram 3 Illustrate the terms (i) Path (ii) Forward Path (iii) Loop (iv) Non-touching Loop 4 Compare Signal Flow Graph approach with block diagram reduction technique of determining transfer function 5 Compare the open loop and closed loop system 6 Analyze the need of electrical zero position of a synchro transmitter 7 Explain the aligned position of a Synchro transmitter and synchro receiver 8 Can we use servomotor for position control? Support the answer with necessary details 9 Develop Masons gain formula to find the system transfer function 20 Formulate the force balance equation for ideal dash pot and ideal spring

PART B (i) Compare the open and closed loop control systems is distinguished with closed loop system (ii) Write the differential equations governing the mechanical rotational system as shown in figure (i) Compose the given block diagram shown in fig to signal flow graph and determine the closed loop transfer function C(s)/R(s) (8) (ii) Differentiate DC and AC servomotor 3(i) Explain open loop and closed loop control systems with examples (ii) Derive the transfer function of an armature controlled DC servomotor (5) 4 For the mechanical system given in Fig Show the mechanical network diagram and hence write the differential equations describing the behaviour of the system Show the force voltage and force current analogous electrical circuits 5 (i) With neat diagrams, Discuss the working of AC servo motor (ii) Estimate the Transfer function of field Controlled DC servo motor 6 Calculate the transfer function for the given mathematical model BTL2

7 Identify the overall gain C(s) / R(s) for the signal flow graph shown below 8 (i) Arrange the differential equation for the Mechanical system as shown in Fig And also find the transfer function X2(S)/F(S) 9 (i) Develop the transfer function using Mason s Gain formula for the system given (ii) Describe the construction and working principle of Synchro with neat sketch(7+6) Formulate the transfer function for the block diagram shown in Figure 0 (i) (ii) using the block diagram reduction technique using Mason s Gain Formula (7+6)

(i) Develop the transfer function of AC servo motor (ii) With neat diagram, explain the working principle of field Controlled DC servo motor (i) Illustrate the Transfer Function of thermal system consists of a thermometer inserted in a liquid bath (ii) Compare DC motor and DC Servomotor and list out the applications of DC servomotor (i) Describe the Mathematical Modelling of fundamental component of mechanical 3 rotational system (ii) Describe how a Synchro works as error detector with neat diagram What is meant by servo mechanism? Explain the construction, working and 4 also obtain the mathematical expression for (i) DC Servo Motor (ii) AC Servo Motor PART C Identify and obtain the electrical current analogy for the Mechanical system as shown in Fig and also draw the circuit diagram (5) (i) What is meant by Synchros? Explain the following parts of synchros (i) Syncro Transmitter (ii) Synchro Receiver (iii) Error detector (iv) Position Control applications with suitable diagram for each 3 (5) In block diagram reduction explain the following terms(i) Block diagram (ii) Error Detector (iii) Take off Point (iv) Forward Path (v) Feedback path And also express the rules for block diagram technique with suitable tabulation 4 (i) (5) Create the Mathematical Model for (i) Mechanical Translational System (ii) Mechanical Rotational System (iii) Series RLC Circuit (iv) Parallel RLC Circuit with suitable diagram and expression (5)

UNIT II - TIME RESPONSE Time response Time domain specifications Types of test input I and II order system response Error coefficients Generalized error series Steady state error Root locus construction- Effects of P, PI, PID modes of feedback control Time response analysis PART - A QNo Questions For the system described by BT Level Competence 3 4 5 Show the nature of the time response Classify the time domain specifications Define Delay time, Rise time, peak time Define step, ramp & parabolic signal Calculate the acceleration error coefficient for BTL3 6 Evaluate the type and order of the system 7 Discuss the term resonant peak and resonant frequency 8 Give the type and order of the following system 9 Express the three constants associated with a steady state error? 0 Distinguish between type and order of the system List the drawback of static coefficients Give the relation between static and dynamic error coefficients 3 Explain the need for a controller and different types of controller 4 State the basic properties of root locus 5 Give the transfer function G(s) of a PID controller 6 Generalize the effect of PI and PD controller on the system performance

7 Infer why derivative controller is not used in control systems 8 Explain about the PI controller 9 Express the PID controller Equation 20 Generalize the effect of PI controller on the system performance PART - B Describe the time domain specifications of a second order system (i) Identify the expression for the unit step response of a second order ()underdamped (2)undamped system (8) (ii) Explain briefly the PID controller action with block diagram and obtain the transfer function model (5) 3 (i) The open loop transfer function of a unity feedback system is given by The input to the system is described by r(t)=4+6tfind the generalised error coefficient and steady state error (ii) For a unity feedback control system the open loop transfer function is given by (a) Find the position,velocity and acceleration error coefficients (b) Also find steady state error when the input is 4 (i) Measurements conducted on a Servomechanism show the system response to be c(t)=+02 ê-60t -2 ê 0 t when subjected to a unit step Give the expression for closed loop transfer function (ii) What is the response c(t) to the unit step input Given that ς =05and also calculate rise time, peak time, Maximum overshoot and settling time

5 (i)the open loop transfer function of a unity feedback system is given by where k and T are positive constants By what factor should the amplifier gain reduced so that the peak overshoot of unit step response of the closed loop system is reduced from 75% to 25% (ii) For a closed loop system with and H(s) =5 calculate the generalized error coefficients and find error 6 Evaluate the expression for dynamic error coefficients of the following system 7 A unity feedback system is characterised by an open loop transfer function Analyse and determine the gain K so that the system will have a damping ratio of 05 For this value of K determine settling time, peak overshoot and time to peak over shoot for a unit step input 8 The open loop transfer function of a servo system with unity feedback is Evaluate the static error constants for the system Obtain the steady state error of the system when subjected to an input given by the polynomial 9 Develop the time response of a typical under damped second order system for a unit step input 0 Draw the root locus of the following system (i) Sketch the root locus of the system whose open loop transfer function is Find the value of K so that damping ratio is 05 (ii) A unity feedback system has an amplifier with gain KA=0 and gain ratio in the feed forward path A derivative feedback,h(s)=s KO is introduced as a minor loop around(s)estimate the derivative feedback constant,ko,so that the system damping factor is 06

(i) Explain the rules to construct root locus of a system (ii) With a neat diagram explain the effect of PD detail controller in 3 Explain the effect by adding P,PI, PD and PID controllers in feedback control systems 4 (i) For a servomechanisms with open loop transfer function (S)=0/(S+2)(S+3)What type of input signal gives constant steady state error and calculate its value (ii) Compute the static error coefficients for a system whose G(s) H(s) =0/ s (+s) (+2s) and also find the steady state error for r(t)=+ t + t2/ PART - C Evaluate the expression for dynamic error coefficients of the following system (i) The overall transfer function of a control system is given by (5) It is desired that the damping ratio is 08Determine the derivative rate feedback constant Ki and compare rise time, peak time, maximum overshoot and steady state error for unit ramp input function without and with derivative feedback control (9) (ii) Compare P,I and D controller 3 Draw the root locus for a system is given by 4 (5) A positional control system with velocity feedback is shown in fig Give the response of the system for unit step input (5)

UNIT III FREQUENCY RESPONSE Frequency response Bode plot Polar plot Determination of closed loop response from open loop response - Correlation between frequency domain and time domain specifications- Effect of Lag, lead and lag-lead compensation on frequency response- Analysis PART A Questions BTL Level Domain Define the terms (i) Phase margin (ii) Gain margin (iii) Gain Cross-over frequency (iv) Phase Cross-over Frequency List any 4-advantages of Frequency domain analysis 3 Identify for +20db/sec slope change in Bode Plot 4 Define the terms: Resonant peak and Resonant frequency 5 Why is frequency response analysis important in control BTL QNo applications? 6 Define the following methods of frequency response plot (i) Bode Plot (ii) Polar Plot (iii) Nyquist Plot (iv) Nichol s Chart 7 What is starting and ending point of a polar plot identified for the system Explain with suitable diagram 8 Summarize frequency domain specifications 9 Mention the uses of Nichol s Chart 0 Express the relationship between speed and frequency Draw the polar plot of Find the corner frequency of G(s) 3 Draw the circuit of lead compensator and its pole zero diagram 4 Draw the approximate polar plot for a Type 0 second order 0 s( 05s) system 5 Compare Lead Lag and Lead-Lag compensator with suitable example 6 Differentiate non-minimum phase and minimum phase systems 7 Evaluate the frequency domain specification of a second order system when closed loop transfer function is given by

8 What is meant by frequency response? Summarize the advantages of it 9 Create the suitable diagram for the (i) Starting Point (ii) Ending point of Polar Plot for identify the system 20 Formulate the expression for (i) Resonant Peak (ii) Resonant Frequency PART B (i) Describe the use of Nichol s chart to obtain closed loop frequency response from open loop frequency response of a unity feed back system (ii) Describe the correlations between time and frequency domain specifications With Mathematical expression define the following Frequency Domain specifications (i) Gain Margin (ii) Phase Margin (iii) Gain Cross over Frequency (iv) Phase Cross over Frequency (v) Resonant Peak (vi) Resonant Frequency (vii) Bandwidth 3 Draw and show the Bode plot for the open loop transfer function of a unity feedback system G(s)=0(S+3)/S(S+2)(S2+3S+25) and Determine : (i) Gain Margin (ii) Phase Margin (iii) Gain Cross Over Frequency (iv) Phase Cross Over Frequency 4 The Open Loop Transfer Function G(S)=K/S(+05S)(+4S) Determine the values manually calculate (i) Gain Margin (ii) Phase Margin (iii) Gain Cross Over Frequency (iv) Phase Cross Over Frequency(v) Stability range K 5 What is meant by Compensator? Summarize the following effects of compensator (i) Lead Compensator (ii) Lag Compensator (iii) lead Lag compensator withy suitable transfer function 6 Draw and show the Bode diagram for the given transfer function and Estimate the G(S)H(S)=0/S(04S+)(0S+) : (i) Gain Margin (ii) Phase Margin (iii) Gain Cross Over Frequency (iv)

Phase Cross Over Frequency(v) Stability 7 Develop the Bode plot for the open loop transfer function of a unity feedback system G(S)=0/S(S+2)(S+6) and Determine : (i) Gain Margin (ii) Phase Margin (iii) Gain Cross Over Frequency (iv) Phase Cross Over Frequency 8 Draw and show the polar plot of the system open loop transfer function with unity feedback system given by G(S)=0/S(S+)(S+4) Determine the phase and gain margin 9 The given transfer function C(S)/R(S)=0(S+2)/(S2+4S+5) Evaluate (i) Magnitude (ii) Phase Angle (iii) Band width 0 The Open Loop Transfer Function G(S)=K/(S+)3 Determine and Calculate the (i) Gain Margin (ii) Phase Margin (iii) Gain Cross Over Frequency (iv) Phase Cross Over Frequency(v) Stability range K Draw the Polar plot for the open loop transfer function of a unity feedback system G(S)=0(S+3)/S(S+2)(S2+3S+25) and Determine and Point out : (i) Gain Margin (ii) Phase Margin (iii) Stability Write the Estimation Procedure for Polar Plot and obtaining (i)gain Margin (ii) Phase Margin And also point out the stability of the system 3 Construct bode plot for the system G(S)=5(S+0)/S(S+2)(S+7) whose open loop transfer function is given below and evaluate (i)gain margin (ii) Phase Margin (iii) Gain Cross-over Frequency (iv) Phase Cross over Frequency (v) Stability 4 The Second Order System has the closed loop transfer function C(S)/R(S)=8/(S2+4S+8) Calculate the following Frequency Domain specifications (i) Resonant Peak (ii) Resonant Frequency (iii) Bandwidth

PART C (i) Evaluate the expression for(i) Resonant Peak (ii) Resonant Frequency (iii) Bandwidth (8) (ii) Obtain the expression for the correlation between time domain and frequency domain analysis Develop the Polar plot sketch approximation manually and also write the expression for each (i)type 0 and Order (ii) Type and Order 2 (iii)type 2 and Order 4 (iv)type 2 and Order 5(5) 3 Construct Polar plot for the system G(S)=5(S+0)/S(S+2)(S+6) whose open loop transfer function is given below and Calculate (i)gain margin (ii) Phase Margin (iii) Gain Cross-over Frequency (iv) Phase Cross over Frequency (v) Stability (5) 4 (i) Evaluate the correlations between time and frequency domain specifications (ii) With Mathematical expression define the following Frequency Domain specifications (i) Gain Margin (ii) Phase Margin (iii) Gain Cross over Frequency (iv) Phase Cross over Frequency (8) UNIT IV - STABILITY AND COMPENSATOR DESIGN Characteristics equation Routh Hurwitz criterion Nyquist stability criterion- Performance criteria Lag, lead and lag-lead networks Lag/Lead compensator design using bode plots PART - A QNo Questions BT Level Competence Illustrate Nyquist stability criterion And also write the formula for stability analysis Define BIBO Stability 3 Express Routh s Hurwitz criterion 4 How are the roots of the characteristic equation of a system related to stability? 5 Solve and find the range of K for closed loop stable behaviour of the system with characteristic equation 4S4+24S3+44S2+24S+K using Routh Hurwitz stability criterion

6 Point out the techniques used for determination of closed loop response from open loop response 7 What are two motions of system stability to be satisfied for a linear time-invariant system to be stable? 8 Judge the effect of adding zeros in the compensators Evaluate 9 State the necessary and sufficient condition for stabiliry 0 What is characteristic equation? List the advantages and disadvantages of phase lag BTL- network Summarize the effect of pole on the system response Evaluate 3 Define compensator and list the types of compensators 4 Quote the need of compensator 5 Formulate the transfer function of lag compensator and 6 draw the electric lag network and its pole-zero plot Point out the properties of Lag compensator 7 What is meant by Lead compensator? Give example for it 8 Formulate the transfer function of lead compensator and 9 draw and show pole-zero plot Why frequency domain compensation is normally carried out using the Bode plot 20 Define the terms (i) Asymptotic stable (ii) Marginally stable PART - B Construct Routh s array and estimate the stability analysis of the system represented by the characteristic equation and comment on the location of roots (i) (ii)

(i) Use R-H criterion to determine the location of the roots and stability for the system represented by characteristic equation (ii) Write the procedure for the design of Lag compensator using Bode plot (i) Obtain Routh s array for the system whose characteristic polynomial equation is 3 Test the stability (ii) Define Nyquist stability criterion and explain the different situations of it Draw the Nyquist plot for the system whose open loop transfer function 4 Determine the range of K for which closed loop system is stable UNIT V STATE VARIABLE ANALYSIS Concept of state variables State models for linear and time invariant Systems Solution of state and output equation in controllable canonical form Concepts of controllability and observability Effect of state feedback PART A QNo BTL Level Questions model Point out the drawbacks in transfer function model analysis? The x x2 x3 given 2 0 0 2 0 state 0 0 3 x 0 4 U x 2 x 5 3 space ; y=[ 0 0] Domain x x 2 x 3 Point out whether the given is controllable 3 Give the general form of the state space model for continuous system And also write the state diagram 4 Define the following terms such as (i) State (ii) State Variable (iii) State Vector (iv) State Space Model

5 What is the state transition matrix? List any two methods for finding state transition matrix 6 Formulate the state space model with state diagram for observable canonical form 7 Consider a system whose transfer function is given by Y(S)/U(S) = 0(S+)/S3+6s2+5s+0 Solve and obtain a state model for this this system 8 Obtain the state space model for the given differential equation d3y d2y dy 6 6 Y U(t) 2 2 dt dt dt Evaluate the transfer function model 9 Consider a system whose transfer function is given by Y(S)/U(S) = 0(S+)/S3+6s2+5s+0 Evaluate the state model for the system 0 Express any 2-methods for the conversion of transfer functional model into state space model List the applications of state space model for the different system Illustrate the condition for Controllability and Observability by Kalman s method 3 Express the necessary condition to be satisfied for the design of state observer? Also Write the Ackermann s formula to find the state observer gain matrix,g 4 Write and explain the Formula in which the general form of state space model into transfer functional approach 5 Illustrate Cayley-Hamilton theorem 6 Define state model of nth order system 7 Define (i) Controllability of a system (ii) Observability of the system 8 Express any 2-methods for the conversion of transfer functional model into state space model Formulate the state space model with state diagram for controllable canonical form List the applications of state space model for the different system 9 20

PART B Obtain and examine the state space model for the mechanical system as shown in Fig Where u(t) is input and y(t) is output Also derive the transfer function from the state space equations Obtain and examine the state model of the following electrical system 3 The given state space model of the system x 0 x2 0 x3 x x 0 ;y=[ 0 0] Check x 2 0 U x 2 x 6 x3 0 3 0 5 whether the given is controllable and observable or not And also Point out duality by Kalman s approach and Gilbert s method 4 Consider a system with state space model is given below x x2 x3 0 0 0 2 2 x x 2 3 x 3 0 0 U 4 x ; y=[2-4 0] x 2 Point out that the system is observable and controllable x 3

5 X ( t ) AX ( t ) Consider the state space model described by Y ( t ) CX ( t ) A ; C=[ 0] Design and express a full-order state 2 observer The desired Eigen values for the observer matrix 5; 2 5 express the expression for the controllability and 6 Examine and convert the following transfer function for the state x 0 x2 3 space model x 5 3 x 2 7 Obtain and 2 x 0 x 2 U 2 x ; y=[ 0 ] x 2 x x 2 x 5 U 2 ; y=[ 2 ] x 2 observability in (i) Kalman s Method 8 Solve and Calculate the value of state transition matrix or eat by using (a) Laplace Transform Method (b) Cayley Hamilton s Theorem(c)A0 in which A 0 2 9 7 Find and point out the value of eat by (i) Trial and Error Method (ii) Cayley Hamilton s Theorem A 0 2 0 3 Consider a system whose transfer function is given by Y(S)/U(S) = 0(S+)/S3+6S2+5S+0 Evaluate the state model for the system (i) by Block diagram reduction (ii) Signal flow graph Method Formulate the expression for the state space model for the continuous system and also draw the state diagram for it Formulate the controllable canonical realization of the following systems Hence, obtain the state space model in controllable canonical form (i) H(S)=(S+2)/(S+5) (ii) H(S)=(S+2)/(S2+2S+5) (iii)h(s)=(2s+9)/(s3+8s2+2s+) (iv)h(s)=(s2+2s+3)/(s4+3s3+2s2+9s+0)

3 Obtain x 2 x2 0 0 x3 the 2 0 following state 0 x 0 0 x 2 4 U 3 x 3 5 space Model x ;y=[ 0 0] x 2 x 3 Convert the state space model into canonical form state space model And also calculate the value of state transition matrix 4 With the case study Summarize (i) Armature control of DC Motor (ii) Field Control of DC Motor And also draw the (i) Block diagram(ii) State diagram and state space model for the system PART C x 0 The state space model x2 0 x3 0 5 0 x x 2 6 x3 0 0 U x ; x 2 x 3 The desired poles are S=-2+4j,-2-j4,-0 with state feedback control law U=KX Estimate the state feedback gain matrix K (5) Develop the expression of (i) Controllability (ii) Observability concept by the following methods (i) Gilbert s Method (ii) Kalman s Method 3 The state (5) space model for x 0 0 x 0 x ; 0 x2 0U x 2 x2 0 5 6 x x 3 3 x3 the system is x y=[ 0 0] x 2 x 3 Check given and illustrate whether the given system is controllable and observable by any one of the method and check the duality of the system (5) 4 What is meant by state space model? Evaluate the mathematical expression for the state space representation for the continuous system (5)