Second Order ODE's (2A) Young Won Lim 5/5/15

Similar documents
Background ODEs (2A) Young Won Lim 3/7/15

CLTI Differential Equations (3A) Young Won Lim 6/4/15

Linear Equations with Constant Coefficients (2A) Young Won Lim 4/13/15

Separable Equations (1A) Young Won Lim 3/24/15

Introduction to ODE's (0A) Young Won Lim 3/9/15

Higher Order ODE's (3A) Young Won Lim 12/27/15

Higher Order ODE's (3A) Young Won Lim 7/7/14

ODE Background: Differential (1A) Young Won Lim 12/29/15

Higher Order ODE's (3A) Young Won Lim 7/8/14

Higher Order ODE's, (3A)

Background Trigonmetry (2A) Young Won Lim 5/5/15

Introduction to ODE's (0P) Young Won Lim 12/27/14

Definitions of the Laplace Transform (1A) Young Won Lim 1/31/15

dx n a 1(x) dy

Line Integrals (4A) Line Integral Path Independence. Young Won Lim 10/22/12

General Vector Space (2A) Young Won Lim 11/4/12

Complex Series (3A) Young Won Lim 8/17/13

General CORDIC Description (1A)

Differentiation Rules (2A) Young Won Lim 1/30/16

Matrix Transformation (2A) Young Won Lim 11/9/12

24. x 2 y xy y sec(ln x); 1 e x y 1 cos(ln x), y 2 sin(ln x) 25. y y tan x 26. y 4y sec 2x 28.

Complex Functions (1A) Young Won Lim 2/22/14

Line Integrals (4A) Line Integral Path Independence. Young Won Lim 11/2/12

Math 4B Notes. Written by Victoria Kala SH 6432u Office Hours: T 12:45 1:45pm Last updated 7/24/2016

Fourier Analysis Overview (0A)

Differentiation Rules (2A) Young Won Lim 2/22/16

DFT Frequency (9A) Each Row of the DFT Matrix. Young Won Lim 7/31/10

Matrix Transformation (2A) Young Won Lim 11/10/12

Introduction to ODE's (0A) Young Won Lim 3/12/15

Complex Trigonometric and Hyperbolic Functions (7A)

CLTI System Response (4A) Young Won Lim 4/11/15

Background Complex Analysis (1A) Young Won Lim 9/2/14

MA22S3 Summary Sheet: Ordinary Differential Equations

Relations (3A) Young Won Lim 3/27/18

Higher-order ordinary differential equations

Expected Value (10D) Young Won Lim 6/12/17

Hilbert Inner Product Space (2B) Young Won Lim 2/7/12

UNDETERMINED COEFFICIENTS SUPERPOSITION APPROACH *

CT Rectangular Function Pairs (5B)

Fourier Analysis Overview (0A)

Euler-Cauchy Using Undetermined Coefficients

MB4018 Differential equations

Integrals. Young Won Lim 12/29/15

Background LTI Systems (4A) Young Won Lim 4/20/15

Capacitor in an AC circuit

Review session Midterm 1

APPLIED MATHEMATICS. Part 1: Ordinary Differential Equations. Wu-ting Tsai

Phasor Young Won Lim 05/19/2015

Ordinary Differential Equations

17.2 Nonhomogeneous Linear Equations. 27 September 2007

Capacitor Young Won Lim 06/22/2017

Chapter 3. Reading assignment: In this chapter we will cover Sections dx 1 + a 0(x)y(x) = g(x). (1)

Table of contents. d 2 y dx 2, As the equation is linear, these quantities can only be involved in the following manner:

ODE classification. February 7, Nasser M. Abbasi. compiled on Wednesday February 07, 2018 at 11:18 PM

Signal Functions (0B)

Section 3.4. Second Order Nonhomogeneous. The corresponding homogeneous equation

The Method of Frobenius

General Vector Space (3A) Young Won Lim 11/19/12

Linear DifferentiaL Equation

Root Locus (2A) Young Won Lim 10/15/14

Capacitor and Inductor

Capacitor and Inductor

Group & Phase Velocities (2A)

Solution of Constant Coefficients ODE

2.2 Separable Equations

Math 2Z03 - Tutorial # 6. Oct. 26th, 27th, 28th, 2015

Definite Integrals. Young Won Lim 6/25/15

Consider an ideal pendulum as shown below. l θ is the angular acceleration θ is the angular velocity

Surface Integrals (6A)

3.4.1 Distinct Real Roots

The Growth of Functions (2A) Young Won Lim 4/6/18

Second-Order Linear ODEs

Ordinary Differential Equations (ODEs)

Essential Ordinary Differential Equations

Detect Sensor (6B) Eddy Current Sensor. Young Won Lim 11/19/09

Capacitor in an AC circuit

Discrete Time Rect Function(4B)

Series Solution of Linear Ordinary Differential Equations

Double Integrals (5A)

MATH 312 Section 4.3: Homogeneous Linear Equations with Constant Coefficients

Capacitor in an AC circuit

Capacitor in an AC circuit

A Brief Review of Elementary Ordinary Differential Equations

Digital Signal Octave Codes (0A)

ENGI Second Order Linear ODEs Page Second Order Linear Ordinary Differential Equations

Digital Signal Octave Codes (0A)

Capacitor in an AC circuit

Section 3.4. Second Order Nonhomogeneous. The corresponding homogeneous equation. is called the reduced equation of (N).

Hyperbolic Functions (1A)

Signals and Spectra (1A) Young Won Lim 11/26/12

Grade: The remainder of this page has been left blank for your workings. VERSION D. Midterm D: Page 1 of 12

Discrete Time Rect Function(4B)

Spectra (2A) Young Won Lim 11/8/12

Capacitors in an AC circuit

Dispersion (3A) 1-D Dispersion. Young W. Lim 10/15/13

Digital Signal Octave Codes (0A)

Alan H. SteinUniversity of Connecticut. Linear Differential Equations With Constant Coefficients

Diff. Eq. App.( ) Midterm 1 Solutions

Fourier Analysis Overview (0B)

Digital Signal Octave Codes (0A)

Transcription:

Second Order ODE's (2A)

Copyright (c) 2011-2015 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License". Please send corrections (or suggestions) to youngwlim@hotmail.com. This document was produced by using OpenOffice and Octave.

Homogeneous Linear Equations with constant coefficients Second Order ODEs (2A) 3

Types of First Order ODEs A General Form of First Order Differential Equations d y d x = g(x, y) y ' = g(x, y) Separable Equations d y d x = g 1 (x)g 2 ( y) y ' = g 1 (x)g 2 ( y) y = f (x) Linear Equations a 1 (x) d y d x + a 0 (x) y = g(x) a 1 (x) y ' + a 0 (x) y = g(x) y = f (x) Exact Equations M (x, y)dx + N (x, y)dy = 0 z x d x + z y dy=0 z = f (x, y) Second Order ODEs (2A) 4

Second Order ODEs First Order Linear Equations a 1 (x) d y d x + a 0 (x) y = g(x) a 1 ( x) y ' + a 0 (x) y = g(x) Second Order Linear Equations a 2 (x) d 2 y d x 2 + a 1(x) d y d x + a 0(x) y = g(x) a 2 (x) y ' ' + a 1 (x) y ' + a 0 (x) y = g(x) Second Order Linear Equations with Constant Coefficients d 2 y a 2 d x + a d y 2 1 d x + a 0 y = g(x) a d2 y d x 2 + b d y d x + c y = g(x) a 2 y ' ' + a 1 y ' + a 0 y = g(x) a y ' ' + b y ' + c y = g(x) Second Order ODEs (2A) 5

Auxiliary Equation Homogeneous Second Order DEs with Constant Coefficients a d2 y d x 2 + b d y d x + c y = 0 a y ' ' + b y ' + c y = 0 try a solution y = e mx a d2 d x 2 {em x } + b d d x {em x } + c {e m x }= 0 a {m 2 e m x } + b{me m x } + c {e m x }= 0 (a m 2 + bm + c) e m x = 0 a {e m x }' ' + b{e m x }' + c {e m x }= 0 a {m 2 e m x } + b{me m x } + c {e m x }= 0 (a m 2 + b m + c) e m x = 0 auxiliary equation (a m 2 + b m + c) = 0 (a m 2 + bm + c) = 0 Second Order ODEs (2A) 6

Roots of the Auxiliary Equation Homogeneous Second Order DEs with Constant Coefficients a d2 y d x 2 + b d y d x + c y = 0 a y ' ' + b y ' + c y = 0 auxiliary equation y = e mx try a solution (a m 2 + bm + c) = 0 m 1 = ( b + b 2 4ac)/2a m 2 = ( b b 2 4ac)/2a = e m 1 x, = e m 2 x (A) b 2 4ac > 0 Real, distinct m 1, m 2 = e m 1 x = = e m 2 x (B) b 2 4ac = 0 Real, equal m 1, m 2 = e m 1 x, = e m 2 x (C) b 2 4ac < 0 Conjugate complex m 1, m 2 Second Order ODEs (2A) 7

Linear Combination of Solutions DEQ a d2 y d x 2 + b d y d x + c y = 0 a ' ' + b ' + c = 0 a ' ' + b ' + c = 0 C 1 + C 2 a( ' '+ ' ') + b( '+ ') + c( + ) = 0 a( + )' ' + b( + )' + c( + ) = 0 y 3 = + y 4 = a(c 1 ' '+C 2 ' ') + b(c 1 '+C 2 ') + c(c 1 +C 2 ) = 0 a(c 1 +C 2 )' ' + b(c 1 +C 2 )' + c(c 1 +C 2 ) = 0 y 5 = y 3 + 2 y 4 y 6 = y 3 2 y 4 Second Order ODEs (2A) 8

Solutions of 2nd Order ODEs DEQ a d2 y d x 2 + b d y d x + c y = 0 m = e 1 x = e m 2 x = e m 1 x = e m 1 x = e m 2 x (D > 0) (D = 0) (D < 0) C 1 + C 2 y = C 1 e m1x + C 2 e m 2 x y = C 1 e m 1x? y = C 1 e m1x + C 2 e m 2 x (D > 0) (D = 0) (D < 0) auxiliary equation (a m 2 + bm + c) = 0 m 1 = ( b + b 2 4ac)/2a m 2 = ( b b 2 4ac)/2a Second Order ODEs (2A) 9

(A) Real Distinct Roots Case Homogeneous Second Order DEs with Constant Coefficients a d2 y d x 2 + b d y d x + c y = 0 a y ' ' + b y ' + c y = 0 y = e mx try a solution (a m 2 + b m + c) = 0 auxiliary equation m 1 = ( b + b 2 4ac)/2 a m 2 = ( b b 2 4ac)/2a = e m 1 x = e m 2 x b 2 4ac > 0 b 2 4ac = 0 b 2 4ac < 0 Real, distinct m 1, m 2 Real, equal m 1, m 2 Conjugate complex m 1, m 2 y = C 1 e m 1x + C 2 e m 2 x y = C 1 e m 1x + C 2 x e m 1x y = C 1 e m 1x + C 2 e m 2 x = C 1 e (α+i β) x + C 2 e (α iβ)x Second Order ODEs (2A) 10

(B) Repeated Real Roots Case Homogeneous Second Order DEs with Constant Coefficients a d2 y d x 2 + b d y d x + c y = 0 a y ' ' + b y ' + c y = 0 y = e mx try a solution (a m 2 + bm + c) = 0 auxiliary equation m 1 = ( b + b 2 4ac)/2a m 2 = ( b b 2 4ac)/2a b 2 4ac = 0 m 1 = b/2 a m 2 = b /2 a e m 1 x = e m 2 x = e b 2 a x b 2 4ac > 0 b 2 4ac = 0 b 2 4ac < 0 Real, distinct m 1, m 2 Real, equal m 1, m 2 Conjugate complex m 1, m 2 y = C 1 e m 1x + C 2 e m 2 x y = C 1 e m 1x + C 2 x e m 1x y = C 1 e m 1x + C 2 e m 2 x = C 1 e (α+i β) x + C 2 e (α iβ)x Second Order ODEs (2A) 11

(C) Complex Roots of the Auxiliary Equation Homogeneous Second Order DEs with Constant Coefficients a d2 y d x 2 + b d y d x + c y = 0 a y ' ' + b y ' + c y = 0 y = e mx try a solution (a m 2 + bm + c) = 0 auxiliary equation m 1 = ( b + b 2 4 ac)/2a m 2 = ( b b 2 4a c)/2a m 1 = ( b + 4 ac b 2 i)/2a m 2 = ( b 4 a c b 2 i)/2a = e m 1 x = e m 2 x b 2 4ac > 0 b 2 4ac = 0 b 2 4ac < 0 Real, distinct m 1, m 2 Real, equal m 1, m 2 Conjugate complex m 1, m 2 y = C 1 e m 1x + C 2 e m 2 x y = C 1 e m 1x + C 2 x e m 1x y = C 1 e m 1x + C 2 e m 2 x = C 1 e (α+i β) x + C 2 e (α iβ)x Second Order ODEs (2A) 12

Fundamental Set Examples (1) Second Order EQ a d2 y d x 2 + b d y d x + c y = 0 (α +iβ) x e (α i β) x e y 3 = 1 y 2 1 + 1 y 2 2 {e (α+i β) x + e (α iβ)x }/2 = e α x cos(β x) y 4 = 1 2i 1 y 2i 2 {e (α+i β) x e (α i β) x }/2i = e α x sin (β x) Second Order ODEs (2A) 13

Fundamental Set Examples (2) Second Order EQ a d2 y d x 2 + b d y d x + c y = 0 = = y 3 +i y 4 y 3 i y 4 (α +iβ) x e (α i β) x e y 3 = e α x cos(β x) e α x [cos(β x) + i sin(β x)] y 4 = e α x sin(β x) e α x [cos(β x) i sin(β x)] Second Order ODEs (2A) 14

General Solution Examples Second Order EQ a d2 y d x 2 + b d y d x + c y = 0 linearly independent Fundamental Set of Solutions {, }={e (α+i β) x, e (α iβ)x } C 1 + C 2 C 1 e (α +i β) x (α i β) x + C 2 e General Solution linearly independent Fundamental Set of Solutions {y 3, y 4 }={e α x cos(β x), e α x sin (β x)} c 3 y 3 + c 3 y 4 c 3 e α x cos(β x) + c 4 e α x sin(β x) = e α x (c 3 cos(β x) + c 4 sin(β x)) General Solution Second Order ODEs (2A) 15

Reduction of Orders Second Order ODEs (2A) 16

Finding another solution from the known Second Order EQ a d2 y d x + b d y d x + c y = 0 1 = f (x) known solution = u(x)f (x) another solution to be found We know one solution Suppose the other solution (x) = e m 1 x = e m 2 x = e b 2 a x (x) = u(x) (x) = u(x)e m 1 x Condition for (t) to be a solution Find u(x) Second Order ODEs (2A) 17

Conditions for to be another solution a d2 y d x 2 + b d y d x + c y = 0 a y ' ' + b y ' + c y = 0 = u ' = u' + u ' ' ' = u' ' + 2u' ' + u ' ' a ' ' + b ' + c = 0 a[u' ' + 2 u' ' + u ' '] + b[u' + u '] + c u = 0 a ' ' + b ' + c = 0 u[a ' ' + b ' + c ] + a[u ' ' + 2u ' '] + b[u' ] = 0 Condition for (t) to be a solution (x) = u(x) (x) a u' ' + u' [2a ' + b ] = 0 Second Order ODEs (2A) 18

Reduction of Order We know one solution (x) Suppose the other solution (x) = u(x) (x) a d2 y d x 2 + b d y d x + c y = 0 a y ' ' + b y ' + c y = 0 a y ' ' 2 + b y ' 2 + c = 0 au' ' + u' [2 a ' + b ] = 0 2 nd Order w(x) = u '(x) a w' + w [2 a ' + b ] = 0 1 st Order u = c 1 e (b /a)x 2 dx + c 2 = c 1 e (b/a) x 2 dx + c 2 (c 1 =1, c 2 =0) = e (b /a) x 2 dx Second Order ODEs (2A) 19

General Solutions for the repeated roots case = e (b /a) x 2 dx m 1 = ( b + b 2 4ac)/2 a m 2 = ( b b 2 4ac)/2 a b 2 4ac = 0 m 1 = b/2a m 2 = b/2a e m 1 x = e m 2x = e b 2 a x (x) = e b 2 a x 2 = e b a x = e b 2a x a)x b e (b/ 2a dx = x e (b/ a)x 1dx e (x) = e b 2 a x (x) = x e b 2a x ' ' y 0 y (x) = c 1 (x) + c 2 (x) 2 Second Order ODEs (2A) 20

General Solutions - Homogeneous Equation - Non-homogeneous Equation Second Order ODEs (2A) 21

General Solution Homogeneous Equations Homogeneous Second Order DEs with Constant Coefficients a d2 y d x 2 + b d y d x + c y = 0 a y ' ' + b y ' + c y = 0 auxiliary equation (a m 2 + bm + c) = 0 m 1 = ( b + b 2 4ac)/2 a m 2 = ( b b 2 4ac)/2a (A) b 2 4ac > 0 Real, distinct m 1, m 2 y = C 1 e m 1x + C 2 e m 2 x (B) b 2 4ac = 0 Real, equal m 1, m 2 y = C 1 e m 1x + C 2 x e m 1x (C) b 2 4ac < 0 Conjugate complex m 1, m 2 y = C 1 e m 1x + C 2 e m 2 x = C 1 e (α+i β) x + C 2 e (α iβ)x = e α x (C 3 cos(β x) + C 4 sin (β x)) Second Order ODEs (2A) 22

Complementary Function DEQ a d2 y d x 2 + b d y d x + c y = g(x) particular solution + y c a complementary function that makes a general (whole) solution the general solution of a nonhomogeneous eq Associated DEQ a d2 y d x 2 + b d y d x + c y = 0 c 1 + c 2 homogeneous solution the general solution of a homogeneous eq Second Order ODEs (2A) 23

y c and DEQ a d2 y d x 2 + b d y d x + c y = g(x) particular solution y c + general solution nonhomogeneous eq a d2 y c d x 2 + b d y c d x + c y c 0 y c = c 1 e m 1 x + c 2 e m 2 x many such complementary functions c i manossible coefficients a d2 d x 2 + b d d x + c g(x) = a similar form only one particular functions coefficients can be determined Second Order ODEs (2A) 24

Finding a Particular Solution - Undetermined Coefficients Second Order ODEs (2A) 25

Particular Solutions DEQ a d2 y d x 2 + b d y d x + c y = g(x) When coefficients are constant particular solution by a conjecture (I) FORM Rule (II) Multiplication Rule And g(x) = A constant or A polynomial or An exponential function or A sine and cosine functions or Finite sum and products of the above functions k P(x) = a n x n + a n 1 x n 1 + + a 1 x 1 + a 0 e α x sin(β x) cos(β x) e α x sin (β x) + x 2 And g(x) ln x 1 x tan x sin 1 x Second Order ODEs (2A) 26

Form Rule DEQ a d2 y d x 2 + b d y d x + c y = g(x) When coefficients are constant particular solution by a conjecture (I) FORM Rule (II) Multiplication Rule g(x) = 2 = A g(x) = 3 x+4 = Ax+B g(x) = 6 x 2 7 = Ax 2 +Bx+C g(x) = sin 8 x = A cos 8 x+ B sin 8 x g(x) = cos 9 x = A cos 9 x+ B sin 9 x g(x) = e 10 x = A e 10 x g(x) = x e 11 x = ( Ax+ B)e 11 x g(x) = e 11 x sin 12 x = A e 11 x sin 12x+ B e 11 x cos12 x g(x) = 5 x sin (3 x) = ( Ax+B)cos(3 x) + (Cx+D)sin (3 x) Second Order ODEs (2A) 27

Form Rule Example DEQ a d2 y d x 2 + b d y d x + c y = g(x) + y c = Ax+B '= A ' '=0 ' ' + 3 ' + 2 = 3 A + 2(A x+b) = 2 A x+3 A+2 B = x Associated DEQ a d2 y d x 2 + b d y d x + c y = 0 m 2 + 3m + 2 = 0 (m+2)(m+1) = 0 2 A = 1 3 A+2 B = 0 A = 1 2 B = 3 4 = 1 2 x 3 4 c 1 + c 2 y = c 1 e x + c 2 e 2x + 1 2 x 3 4 Second Order ODEs (2A) 28

Multiplication Rule DEQ a d2 y d x 2 + b d y d x + c y = g(x) use =x n =x n if = = + y c When contains a term which is the same term in y c Use multiplied by x n Associated DEQ a d2 y d x 2 + b d y d x + c y = 0 n is the smallest positive integer that eliminates the duplication c 1 + c 2 Second Order ODEs (2A) 29

Multiplication Rule Example (1) y ' ' 2 y '+ y = 2 e x y ' ' 2 y '+ y = 6 x e x = A e x A x e x A x 2 e x = A x e x A x 2 e x A x 3 e x 2 A e x 6 x e x = e x = x e x = e x = x e x y ' ' 2 y '+ y = 0 y ' ' 2 y '+ y = 0 = x (A x+b)e x B x e x = x 2 ( A x+b)e x Second Order ODEs (2A) 30

Multiplication Rule Example (2) y '+4 y = e x sin(2 t) + 2 t cos(2 t) (t ) = e x ( A cos(2 t)+b sin(2 t)) + (C t +D)cos(2 t) + (E t +F)sin(2 t) (t ) = e x ( A cos(2 t)+b sin(2 t)) + t (C t +D)cos(2t ) + t (E t +F)sin(2t) y h (t) = c 1 e +i 2 t i 2t +c 2 e = (c 3 cos(2t)+c 4 sin(2t)) y ' '+5 y '+6 y = t 2 e 3 t (t ) = ( A t 2 +B t +C )e 3t (t ) = t ( A t 2 +B t+c)e 3 t y h = c 1 e 2t +c 2 e 3 t Second Order ODEs (2A) 31

Superposition (1) DEQ d 2 y d x + b d y 2 d x + c y = 2 x2 + 3 + cos8 x (2 x 2 + 3) + (cos8 x) d 2 y d x + b d y 2 d x + c y = 0 y c d 2 y c d x 2 + b d y c d x + c y c = 0 d 2 y d x + b d y 2 d x + c y = 2 x2 + 3 d 2 y d x + b d y 2 d x + c y = cos 8 x 1 2 d 2 1 d x 2 + b d 1 d x + c 1 = (2 x2 + 3) d 2 y P 2 d x 2 + b d 2 d x + c y P 2 = cos8 x d 2 d x 2 [ y c+ 1 + 2 ] + b d d x [ y c+ 1 + 2 ] + c[ y c + 1 + 2 ] = 2 x 2 + 3 + cos8 x Second Order ODEs (2A) 32

Superposition (2) DEQ a d2 y d x 2 + b d y d x + c y = (2 x2 + 3) cos 8 x = ( A x 2 +B x+c) (cos8 x+sin 8 x) d 2 y d x + b d y 2 d x + c y = 0 d 2 y d x + b d y 2 d x + c y = (2 x2 + 3) d 2 y d x + b d y 2 d x + c y = cos 8 x y c 1 2 d 2 d x 2 [ y c+ 1 2 ] + b d d x [ y c+ 1 2 ] + c [ y c + 1 2 ] = (2 x 2 + 3) cos8 x Second Order ODEs (2A) 33

Finite Number of Derivative Functions y = x e m x y = 2 x 2 + 3 x + 4 ẏ = e m x + m x e m x ẏ = 4 x + 3 ÿ = me m x + m(e m x + m x e m x ) = 2me m x + m 2 x e m x ÿ = 4 y = 2me mx + m 2 (e m x + m x e m x ) = (m 2 + 2m)e m x + m 3 x e m x y = 0 {e m x, x e m x } {2 x 2 + 3 x + 4, 4 x + 3, 4} Second Order ODEs (2A) 34

Infinite Number of Derivative Functions y = +x 1 y = ln x ẏ = x 2 y = + x 1 ÿ = +2 x 3 ẏ = x 2 y = 6 x 4 ÿ = +2 x 3 y = 6 x 4 Second Order ODEs (2A) 35

Finding a Particular Solution - Variation of Parameters Second Order ODEs (2A) 36

Variation of Parameter [c u(x)] y ' + P(x) y = 0 y = c e P(x)dx y ' + P(x) y = Q(x) Integrating factor 1 = e + P( x)dx y h = c = u(x) = e P( x)dx y ' ' + P(x) y ' + Q(x) y = 0 y ' ' + P(x) y ' + Q(x) y = f (x) y h = c 1 = u 1 (x) + c 2 + u 2 (x) Second Order ODEs (2A) 37

Variation of Parameter [c u(x)] y ' ' + P(x) y ' + Q(x) y = 0 y ' ' + P(x) y ' + Q(x) y = f (x) y h = c 1 = u 1 (x) + c 2 + u 2 (x) = u 1 ' = u 1 ' + u 1 ' + u 2 + u 2 ' + u 2 ' ' ' + P(x) ' + Q(x) = ' ' = u 1 ' ' + u 1 ' ' + u 1 ' ' + u 1 ' ' + u 2 ' ' + u 2 ' ' + u 2 ' ' + u 2 ' ' not a matrix notation + u 1 ' ' + u 1 ' ' + u 1 ' ' + u 1 ' ' + u 2 ' ' + u 2 ' ' + u 2 ' ' + u 2 ' ' + u 1 ' + u 1 ' + P + Q + u 2 ' + u 2 ' + u 1 + u 2 u 1 ( ' ' + P ' + Q ) = 0 u 2 ( ' ' + P ' + Q ) = 0 Second Order ODEs (2A) 38

Variation of Parameter [c u(x)] not a matrix notation ' ' + P(x) ' + Q(x) = + u 1 ' ' + u 1 ' ' + u 1 ' ' + u 2 ' ' + u 2 ' ' + u 2 ' ' + P + u 1 ' + u 2 ' = + u 1 ' ' + u 1 ' ' + u 2 ' ' + u 2 ' ' + P + u 1 ' + u 2 ' + + u 1 ' ' + u 2 ' ' = d d x + u 1 ' + u 2 ' + P + u 1 ' + u 2 ' + + u 1 ' ' + u 2 ' ' = f (x) u 1 ' + u 2 ' = 0 u 1 ' ' + u 2 ' ' = f (x) u 1 ' + u 2 ' = 0 ' u 1 ' + ' u 2 ' = f (x) [ ' '][ u 1' '] u = [ 0 2 f (x)] ' y2 ' 0 f (x) u 1 ' = ' y1 0 ' f u 2 (x) ' = ' ' Second Order ODEs (2A) 39

Variation of Parameter [c u(x)] y ' ' + P(x) y ' + Q(x) y = 0 y ' ' + P(x) y ' + Q(x) y = f (x) y h = c 1 + c 2 = u 1 (x) + u 2 (x) If the associated homogeneous solution can be solved then, always a particular solution can be found No restriction constant coefficients A constant or A polynomial or An exponential function or A sine and cosine functions or [ ' '][ u 1' '] u = [ 0 2 f (x)] 0 f (x) u 1 ' = ' y 2 ' = ' W 1 W 0 ' f u 2 (x) ' = ' = ' W 2 W ' ' y = W 2 u 1 ' (x) = (x)f (x) W u 2 '(x) = (x)f (x) W Second Order ODEs (2A) 40

Homogeneous Linear Equations with variable coefficients Second Order ODEs (2A) 41

Cauchy-Euler Equation Second Order Linear Equations with Constant Coefficients d 2 y a 2 d x + a d y 2 1 d x + a 0 y = g(x) a 2 y ' ' + a 1 y ' + a 0 y = g(x) Second Order Linear Equations with Variable Coefficients a 2 (x) d 2 y d x 2 + a 1(x) d y d x + a 0(x) y = g(x) a 2 ( x) y ' ' + a 1 (x) y ' + a 0 (x) y = g(x) Cauchy-Euler Equation a 2 x 2 d 2 y d x 2 + a 1 x d y d x + a 0 y = g(x) a 2 x 2 y ' ' + a 1 x y ' + a 0 y = g(x) Second Order ODEs (2A) 42

Auxiliary Equation of Cauchy-Euler Equation Homogeneous Second Order Cauchy-Euler Equation a x 2 d 2 y d x 2 + b x d y d x + c y = 0 a x 2 y ' ' + b x y ' + c y = 0 try a solution y = x m a x 2 d 2 d x 2 {xm } + b x d d x {xm } + c {x m }= 0 a {m(m 1)x m } + b{m x m } + c {x m }= 0 (a m 2 + (b a)m + c) x m = 0 a x 2 {x m }' ' + b x {x m }' + c {x m }= 0 a {m(m 1)x m } + b{m x m } + c {x m }= 0 (a m 2 + (b a)m + c) x m = 0 auxiliary equation (a m 2 + (b a)m + c) = 0 (a m 2 + (b a)m + c) = 0 Second Order ODEs (2A) 43

General Solution y h of Cauchy-Euler Equations Homogeneous Second Order Cauchy-Euler Equation a x 2 d 2 y d x 2 + b x d y d x + c y = 0 a x 2 y ' ' + b x y ' + c y = 0 try a solution y = x m auxiliary equation (a m 2 + (b a)m + c) = 0 m 1 = { (b a) + (b a) 2 4 ac}/2 a m 2 = { (b a) (b a) 2 4 ac}/2 a (A) (b a) 2 4a c > 0 Real, distinct m 1, m 2 y = C 1 x m 1 + C 2 x m 2 (B) (b a) 2 4a c = 0 Real, equal m 1, m 2 y = C 1 x m 1 + C 2 x m 1 ln x (C) (b a) 2 4 a c < 0 Conjugate complex m 1, m 2 y = C 1 x m 1 + C 2 x m 2 = C 1 x (α+i β) (α i β) + C 2 x Second Order ODEs (2A) 44

Complex Exponential Conversion (Cauchy-Euler Equation) Homogeneous Second Order Cauchy-Euler Equation a x 2 d 2 y d x 2 + b x d y d x + c y = 0 a x 2 y ' ' + b x y ' + c y = 0 m 1 = { (b a) + 4 ac (b a) 2 i}/2a m 2 = { (b a) 4 ac (b a) 2 i}/2 a m 1 = α + iβ m 2 = α iβ = x m 1 = x α+i β = x m 2 = x α i β x m 1 = x α x +i β = x α e +i βln x x = e ln x x m 2 = x α x iβ = x α e i β ln x x i β +i β ln x = e y = C 1 x m 1 + C 2 x m 2 = C 1 x α e +i β ln x + C 2 x α +iβ ln x e Pick two homogeneous solution = x α {e +iβ ln x + e iβ ln x }/2 = x α cos(βln x) = x α {e +i β ln x e i β ln x }/2i = x α sin(βln x) (C 1 =+1/2, C 2 =+1/2) (C 1 =+1/2i, C 2 = 1/2 i) y = C 3 x α cos(βln x) + C 4 x α sin(βln x) = x α (C 3 cos(β ln x) + C 4 sin(βln x)) Second Order ODEs (2A) 45

Conditions for (Cauchy-Euler Equation) a x 2 d 2 y d x 2 + b x d y d x + c y = 0 a x 2 y ' ' + b x y ' + c y = 0 a x 2 ' ' + b x ' + c = 0 a x 2 ' ' + b x ' + c = 0 = u ' = u' + u ' ' ' = u' ' + 2 u' ' + u ' ' a x 2 [u' ' + 2 u ' ' + u ' '] + b x[u' + u '] + c u = 0 u[a x 2 ' ' + b x ' + c ] + a x 2 [u ' ' + 2u' '] + b x[u' ] = 0 Condition for (t) to be a solution (x) = u(x) (x) a x u ' ' + u'[2 a x ' + b ] = 0 Second Order ODEs (2A) 46

Reduction of Order (Cauchy-Euler Equation) We know one solution (x) Suppose the other solution (x) = u(x) (x) a x 2 d 2 y d x 2 + b x d y d x + c y = 0 a x 2 y ' ' + b x y ' + c y = 0 a x 2 ' ' + b x ' + c = 0 a x u' ' + u '[2 a x ' + b ] = 0 w(x) = u '(x) a x w ' + w[2a x ' + b ] = 0 u = c 1 x (b /a) dx + c 2 2 = x (b /a) dx 2 1 = x (b a) a u = c 1 ln x + c 2 = c 1 x (b/a) 2 dx + c 2 (c 1 =1, c 2 =0) = ln x Second Order ODEs (2A) 47

Constant v.s. Non-constant Coefficients Homogeneous Second Order DEs with Constant Coefficients a d2 y d x 2 + b d y d x + c y = 0 a y ' ' + b y ' + c y = 0 (A) b 2 4ac > 0 y = C 1 e m 1 x + C 2 e m 2 x (B) b 2 4ac = 0 y = C 1 e m 1 x + C 2 x e m 1 x (C) b 2 4ac < 0 y = C 1 e α x e +iβ x + C 2 e α x e iβ x = e α x (C 3 cos(β x) + C 4 sin(β x)) Homogeneous Second Order Cauchy-Euler Equation a x 2 d 2 y d x 2 + b x d y d x + c y = 0 a x 2 y ' ' + b x y ' + c y = 0 x = e ln x x i β +i β ln x = e (A) (b a) 2 4a c > 0 y = C 1 x m 1 + C 2 x m 2 (B) (b a) 2 4a c = 0 y = C 1 x m 1 + C 2 x m 1 ln x (C) (b a) 2 4 a c < 0 y = C 1 x α e +iβ ln x + C 2 x α +i β ln x e = x α (C 3 cos(β ln x) + C 4 sin(βln x)) Second Order ODEs (2A) 48

A Unifying View Constant Coefficients a d2 y d x 2 + b d y d x + c y = 0 Non-constant Coefficients a x2 d 2 y d x 2 + b x d y d x + c y = 0 x = e ln x x i β +i β ln x = e (A) (B) (C) y = C 1 x m 1 + C 2 x m 2 y = C 1 x m 1 + C 2 x m 1 ln x y = C 1 x α e +iβ ln x + C 2 x α +i β ln x e = x α (C 3 cos(β ln x) + C 4 sin(βln x)) (A) (B) y = C 1 e m 1 x + C 2 e m 2 x y = C 1 e m 1 x + C 2 x e m 1 x x (A) (B) y = C 1 e m 1 ln x + C 2 e m 2 ln x y = C 1 e m 1 ln x + C 2 e m 1 ln x ln x ln x (C) y = C 1 e α x e +iβ x + C 2 e α x e iβ x (C) y = C 1 e α ln x e +iβ ln x + C 2 e α ln x +i β ln x e = e α x (C 3 cos(β x) + C 4 sin(β x)) = e α ln x (C 3 cos(β ln x) + C 4 sin(β ln x)) Second Order ODEs (2A) 49

Green's Function Second Order ODEs (2A) 50

Initial Value Problems y ' ' + P(x) y ' + Q(x) y = 0 y ' (x 0 ) = y ' (x 0 ) = 0 y (x 0 ) = y 0 y (x 0 ) = 0 y ' ' + P(x) y ' + Q(x) y = f (x) ' ' y = W 2 y h = c 1 + c 2 = u 1 (x) + u 2 (x) (x 0 ) = 0 u 1 '(x) = W 1 W = (x)f (x) W u 2 ' (x) = W 2 W = (x)f (x) W u 1 (x) = u 1 ' (x) dx u 2 (x) = u 2 ' (x) dx anti-derivative = (t) f (t ) W (t) dt + c 1 = (t) f (t ) anti-derivative W (t) dt + c 2 x = x 0 (t) f (t) W (t) dt x = x 0 (t) f (t) W (t) dt u 1 (x 0 ) = 0 u 1 (x 0 ) (x 0 ) = 0 u 2 (x 0 ) = 0 u 2 (x 0 ) ( x 0 ) = 0 Second Order ODEs (2A) 51

Green's Function and IVP's (1) y ' ' + P(x) y ' + Q(x) y = f (x) [x 0, x] I u 1 ' (x) = (x)f (x) W (x) x y u 1 ( x) = x0 2 (t )f (t) d t W (t ) ' ' y = W (x) 2 u 2 '(x) = (x)f (x) W (x) x u 2 (x) = x 0 (t)f (t) W (t) d t = u 1 (x) + u 2 (x) = [ x 0 = [ x 0 = [ x y x0 x (t)f (t) W (t) x (x) (t) W (t ) d t ] (x) + [ x 0 f (t)d t ] + [ x 0 1 (t ) (x) (x) y (t) 2 ] f (t )d t W (t ) x x (t)f (t) ] d t W (t) y (x) 2 (t) (x) ] f (t)d t W (t ) = x0 x G(x, t)f (t)d t Second Order ODEs (2A) 52

Green's Function and IVP's (2) y ' ' + P(x) y ' + Q(x) y = 0 y ' (x 0 ) = y ' (x 0 ) = 0 y (x 0 ) = y 0 y (x 0 ) = 0 y ' ' + P(x) y ' + Q(x) y = f (x) ' ' y = W 2 y h = c 1 + c 2 = u 1 (x) + u 2 (x) x x = u 1 (x) + u 2 (x) = [ (t ) (x) (x) y (t) 2 ] = x0 G(x, t)f (t)d t x0 f (t )d t W (t ) at the end, this x will replace the literal t = x0 x G(x, t)f (t)d t this x and t appear in the indefinite integral Second Order ODEs (2A) 53

Green's Function G(x, t ) = [ (t) (x) (x) (t) W (t) ] W (t) = (t ) (t) ' (t) ' (t ) y ' ' + P(x) y ' + Q(x) y = 0, y ' ' + P(x) y ' + Q(x) y = f (x) the same Green's function y ' ' + P(x) y ' + Q(x) y = g(x) G(x, t ) = [ (t) (x) (x) (t) W (t) ] y ' ' + P(x) y ' + Q(x) y = h(x) Second Order ODEs (2A) 54

Three Initial Value Problem y ' ' + P(x) y ' + Q(x) y = f (x) y (x 0 ) = y 0 y '(x 0 ) = y ' ' + P(x) y ' + Q(x) y = 0 y (x 0 ) = y 0 y '(x 0 ) = Homogeneous DEQ Nonhomogeneous Initial Conditions Nonzero Initial Conditions y ' ' + P(x) y ' + Q(x) y = f (x) Nonhomogeneous DEQ y (x 0 ) = 0 y '(x 0 ) = 0 Zero Initial Conditions Initially at rest Rest Solution Second Order ODEs (2A) 55

General Solutions of the Initial Value Problem y ' ' + P(x) y ' + Q(x) y = f (x) y (x 0 ) = y 0 y '(x 0 ) = y = y h + y (x 0 ) = y h (x 0 ) + (x 0 ) = y 0 + 0 = y 0 y '(x 0 ) = y h '(x 0 ) + '(x 0 ) = + 0 = y ' ' + P(x) y ' + Q(x) y = 0 y (x 0 ) = y 0 y '(x 0 ) = y h Nonhomogeneous Initial Conditions Nonzero Initial Conditions Response due to the initial conditions y ' ' + P(x) y ' + Q(x) y = f (x) y (x 0 ) = 0 y '(x 0 ) = 0 x = x0 G(x, t)f (t)d t Zero Initial Conditions Initially at rest Rest Solution Response due to the forcing function f Second Order ODEs (2A) 56

Rest Solution y ' ' + P(x) y ' + Q(x) y = f (x) y (x 0 ) = 0 y '(x 0 ) = 0 Nonhomogeneous DEQ Zero Initial Conditions Initially at rest Rest Solution = u 1 (x) + u 2 (x) = [ x y x0 1 (t ) (x) (x) y (t) 2 ] W (t ) f (t )d t x = x0 G(x, t)f (t )d t (x) = x0 x G(x, t)f (t)d t '(x) = G(x, x)f (x) + x0 x x [G(x, t)f (t)] d t = [ x y x0 1 (t ) ' (x) '(x) y (t) 2 ] W (t ) f (t)d t (x 0 ) = x0 x 0 G(x, t )f (t)d t = 0 x 0 '(x 0 ) = [ y x0 1 (t) '(x 0 ) '(x 0 ) (t) W (t) ] f (t)d t = 0 Second Order ODEs (2A) 57

References [1] http://en.wikipedia.org/ [2] M.L. Boas, Mathematical Methods in the Physical Sciences [3] E. Kreyszig, Advanced Engineering Mathematics [4] D. G. Zill, W. S. Wright, Advanced Engineering Mathematics [5] www.chem.arizona.edu/~salzmanr/480a