CMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance

Similar documents
Today s lecture. EE141- Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model

Important! EE141- Fall 2002 Lecture 5. CMOS Inverter MOS Transistor Model

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

THE INVERTER. Inverter

Digital Integrated Circuits

Device Models (PN Diode, MOSFET )

Device Models (PN Diode, MOSFET )

CMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view)

ENGR890 Digital VLSI Design Fall Lecture 4: CMOS Inverter (static view)

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

CMOS Inverter (static view)

DC and Transient Responses (i.e. delay) (some comments on power too!)

The Devices. Jan M. Rabaey

ECE 546 Lecture 10 MOS Transistors

Check course home page periodically for announcements. Homework 2 is due TODAY by 5pm In 240 Cory

EEE 421 VLSI Circuits

VLSI Design and Simulation

Integrated Circuits & Systems

Lecture 11 VTCs and Delay. No lab today, Mon., Tues. Labs restart next week. Midterm #1 Tues. Oct. 7 th, 6:30-8:00pm in 105 Northgate

MOSFET: Introduction

MOS Transistor Theory

The CMOS Inverter: A First Glance

MOS Transistor I-V Characteristics and Parasitics

The CMOS Inverter: A First Glance

ECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter

Lecture 4: CMOS Transistor Theory

Miscellaneous Lecture topics. Mary Jane Irwin [Adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.]

Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B)

CMOS Technology for Computer Architects

Announcements. EE141- Fall 2002 Lecture 7. MOS Capacitances Inverter Delay Power

The Physical Structure (NMOS)

MOS Transistor Theory

ECE 342 Electronic Circuits. 3. MOS Transistors

MOS Transistor. EE141-Fall 2007 Digital Integrated Circuits. Review: What is a Transistor? Announcements. Class Material

MOSFET and CMOS Gate. Copy Right by Wentai Liu

Chapter 5. The Inverter. V1. April 10, 03 V1.1 April 25, 03 V2.1 Nov Inverter

The Devices: MOS Transistors

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

Integrated Circuits & Systems

The Devices. Devices

ECE 497 JS Lecture - 12 Device Technologies

EE115C Winter 2017 Digital Electronic Circuits. Lecture 3: MOS RC Model, CMOS Manufacturing

HW 5 posted due in two weeks Lab this week Midterm graded Project to be launched in week 7

Lecture 04 Review of MOSFET

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

5.0 CMOS Inverter. W.Kucewicz VLSICirciuit Design 1

Step 1. Finding V M. Goal: Þnd V M = input voltage for the output = V M both transistors are saturated at V IN = V M since

ECE321 Electronics I

EEC 116 Lecture #3: CMOS Inverters MOS Scaling. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

Midterm. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. Pass Transistor Logic. Restore Output.

Practice 3: Semiconductors

EEC 118 Lecture #5: CMOS Inverter AC Characteristics. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Digital Microelectronic Circuits ( ) The CMOS Inverter. Lecture 4: Presented by: Adam Teman

Digital Integrated Circuits A Design Perspective

Lecture 5: CMOS Transistor Theory

Lecture 4: CMOS review & Dynamic Logic

B.Supmonchai June 26, q Introduction of device basic equations. q Introduction of models for manual analysis.

Lecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS

Lecture 5: DC & Transient Response

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA

ECE 342 Solid State Devices & Circuits 4. CMOS

EE105 - Fall 2005 Microelectronic Devices and Circuits

Chapter 4 Field-Effect Transistors

Lecture 3: CMOS Transistor Theory

Integrated Circuits & Systems

High-to-Low Propagation Delay t PHL

EE 434 Lecture 33. Logic Design

2007 Fall: Electronic Circuits 2 CHAPTER 10. Deog-Kyoon Jeong School of Electrical Engineering

Lecture 11: MOSFET Modeling

CHAPTER 15 CMOS DIGITAL LOGIC CIRCUITS

Lecture 6: DC & Transient Response

EE141Microelettronica. CMOS Logic

EECS 141: FALL 05 MIDTERM 1

CPE/EE 427, CPE 527 VLSI Design I L06: CMOS Inverter, CMOS Logic Gates. Course Administration. CMOS Inverter: A First Look

ECEN474/704: (Analog) VLSI Circuit Design Spring 2018

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

COMBINATIONAL LOGIC. Combinational Logic

EE5311- Digital IC Design

Chapter 2 CMOS Transistor Theory. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan

DC & Transient Responses

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

EE5311- Digital IC Design

CMOS Inverter: CPE/EE 427, CPE 527 VLSI Design I L06: CMOS Inverter, CMOS Logic Gates. Course Administration. CMOS Properties.

CMPEN 411 VLSI Digital Circuits Spring 2011 Lecture 07: Pass Transistor Logic

EE115C Digital Electronic Circuits Homework #3

Digital Integrated Circuits 2nd Inverter

Lecture 5: DC & Transient Response

VLSI Design and Simulation

ECE-305: Fall 2017 MOS Capacitors and Transistors

The Inverter. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

EE5311- Digital IC Design

Power Dissipation. Where Does Power Go in CMOS?

EE5780 Advanced VLSI CAD

Topic 4. The CMOS Inverter

Lecture 4: DC & Transient Response

CMOS Logic Gates. University of Connecticut 181

MOSFET Physics: The Long Channel Approximation

Transcription:

CMOS INVERTER Last Lecture Metrics for qualifying digital circuits»cost» Reliability» Speed (delay)»performance 1

Today s lecture The CMOS inverter at a glance An MOS transistor model for manual analysis The VTC of the CMOS inverter The CMOS Inverter: A First Glance V DD V in V out C L 2

CMOS Inverters PMOS V DD In Out 2λ Metal1 Polysilicon NMOS GND Switch Model of CMOS Transistor V GS R on V GS < V T V GS > V T 3

CMOS Inverter: Steady State Response V DD V DD R on V OH =V DD V out V out V OL =0 R on V M = f(r onn, R onp ) V in =V DD V in =0 CMOS Inverter: Transient Response V DD t phl = f(r on.c L ) =0.69R on C L V out V out ln(0.5) R on C L 1 V DD 0.5 0.36 V in =V DD R on C L t 4

CMOS Properties Full rail-to-rail swing Symmetrical VTC Propagation delay function of load capacitance and resistance of transistors No static power dissipation Direct path current during switching The MOS Transistor Polysilicon Aluminum 5

MOS Transistors - Types and Symbols D D G G S NMOS Enhancement D S NMOS Depletion D G G B PMOS Enhancement S S NMOS with Bulk Contact Threshold Voltage: Concept S + V GS - G D n+ n+ n-channel p-substrate Depletion Region B 6

The Threshold Voltage The Body Effect 0.9 0.85 0.8 0.75 0.7 V T (V) 0.65 0.6 0.55 0.5 0.45 0.4-2.5-2 -1.5-1 -0.5 0 V (V) BS 7

Current-Voltage Relations A good ol transistor 6 x 10-4 VGS= 2.5 V I D (A) 5 4 3 2 Resistive Saturation VGS= 2.0 V V DS =V GS -V T VGS= 1.5 V Quadratic Relationship 1 VGS= 1.0 V 0 0 0.5 1 1.5 2 2.5 V DS (V) Transistor in Linear S V GS G V DS D I D n + V(x) + n + L x p-substrate B MOS transistor and its bias conditions 8

Transistor in Saturation V GS G V DS >V GS -V T S D n+ - V GS -V T + n+ Pinch-off Current-Voltage Relations Long-Channel Device 9

A model for manual analysis Current-Voltage Relations The Deep-Submicron Era -4 2.5 x 10 2 Early Saturation VGS= 2.5 V I D (A) 1.5 1 VGS= 2.0 V VGS= 1.5 V Linear Relationship 0.5 VGS= 1.0 V 0 0 0.5 1 1.5 2 2.5 V DS (V) 10

Velocity Saturation υ n (m/s) υ sat = 10 5 Constant velocity Constant mobility (slope = µ) ξ c = 1.5 ξ (V/µm) Perspective I D Long-channel device V GS = V DD Short-channel device V DSAT V GS -V T V DS 11

I D versus V GS 6 x 10-4 2.5 x 10-4 5 4 quadratic 2 1.5 linear ID (A) 3 I D (A) 2 1 1 0 0 0.5 1 1.5 2 2.5 V GS (V) Long Channel 0.5 quadratic 0 0 0.5 1 1.5 2 2.5 V GS (V) Short Channel A unified model for manual analysis G S D B 12

Simple Model versus SPICE -4 x 10 2.5 V DS =V DSAT I D (A) 2 1.5 1 Linear Velocity Saturated 0.5 V DSAT =V GT V DS =V GT Saturated 0 0 0.5 1 1.5 2 2.5 V DS (V) APMOSTransistor 0 x 10-4 VGS = -1.0V -0.2 VGS = -1.5V -0.4 I D (A) -0.6 VGS = -2.0V Assume all variables negative! -0.8 VGS = -2.5V -1-2.5-2 -1.5-1 -0.5 0 V DS (V) 13

Transistor Model for Manual Analysis The Transistor as a Switch V GS V T S Ron I D D V GS =V DD R mid R 0 V DD /2 V DD V DS 14

The Transistor as a Switch 7 x 105 6 5 R eq (Ohm) 4 3 2 1 0 0.5 1 1.5 2 2.5 V (V) DD The Transistor as a Switch 15

The Sub-Micron MOS Transistor Threshold Variations Subthreshold Conduction Parasitic Resistances Latch-up Threshold Variations V T V T Long-channel threshold Low V DS threshold Threshold as a function of the length (for low V DS ) L V DS Drain-induced barrier lowering (for low L) 16

Sub-Threshold Conduction 10-2 10-4 Linear I D (A) 10-6 10-8 Quadratic The Slope Factor 10-10 Exponential Typical values for S: 60.. 100 mv/decade 10-12 V T 0 0.5 1 1.5 2 2.5 V GS (V) Parasitic Resistances G Polysilicon gate L D Drain contact V GS,eff S D W R S R D Drain 17

Future Perspectives 25 nm MOS transistor (Folded Channel) Voltage Transfer Characteristic 18

PMOS Load Lines V in =V DD -V GSp I Dn =-I Dp V out =V DD -V DSp I Dn V out I Dp V in =0 I Dn I Dn V in =0 V in =3 V in =3 V GSp =-2 V DSp V DSp V out V GSp =-5 V in =V DD -V GSp I Dn =-I Dp V out =V DD -V DSp CMOS Inverter Load Characteristics PMOS I n,p V V in =5 in =0 NMOS V in =4 V in =1 V in =4 V in =3 V in =2 V in =3 V in =2 V in =4 V in =5 V in =3 V in =2 V in =1 V in =0 19

CMOS Inverter VTC V out 1 2 3 4 5 NMOS off PMOS lin NMOS sat PMOS lin NMOS sat PMOS sat NMOS lin PMOS sat NMOS lin PMOS off 1 2 3 4 5 V in Simulated VTC 4.0 V out (V) 2.0 0.0 0.0 1.0 2.0 3.0 4.0 5.0 V in (V) 20