Supersymmetric Gauge Theories in 3d

Similar documents
S-CONFINING DUALITIES

Rigid SUSY in Curved Superspace

Recent Advances in SUSY

Two Examples of Seiberg Duality in Gauge Theories With Less Than Four Supercharges. Adi Armoni Swansea University

Non-Supersymmetric Seiberg duality Beyond the Planar Limit

A Localization Computation in Confining Phase

The Affleck Dine Seiberg superpotential

Boundaries, Interfaces and Dualities

Symmetries Then and Now

A Crack in the Conformal Window

4d N=2 as 6d N=(2,0) compactified on C

Seiberg Duality: SUSY QCD

Aspects of N = 2 Supersymmetric Gauge Theories in Three Dimensions

Generalized Gaugino Condensation: Discrete R-Symmetries and Supersymmetric Vacua

Think Globally, Act Locally

Techniques for exact calculations in 4D SUSY gauge theories

Think Globally, Act Locally

5d SCFTs and instanton partition functions

Chern-Simons Theory and Its Applications. The 10 th Summer Institute for Theoretical Physics Ki-Myeong Lee

New and old N = 8 superconformal field theories in three dimensions

Exact Solutions of 2d Supersymmetric gauge theories

Supersymmetric Gauge Theories, Matrix Models and Geometric Transitions

Roni Harnik LBL and UC Berkeley

How to resum perturbative series in supersymmetric gauge theories. Masazumi Honda ( 本多正純 )

Chern-Simons Theories and AdS/CFT

Generalized Global Symmetries

String theory and the 4D/3D reduction of Seiberg duality. A Review

Dial M for Flavor Symmetry Breaking

Dynamics of Multiple Kaluza-Klein Monopoles in M- and String Theory

Lecture 7: N = 2 supersymmetric gauge theory

Solution Set 8 Worldsheet perspective on CY compactification

t Hooft Anomaly Matching for QCD

Vector Mesons and an Interpretation of Seiberg Duality

Topological reduction of supersymmetric gauge theories and S-duality

New Phenomena in 2d String Theory

LIBERATION ON THE WALLS IN GAUGE THEORIES AND ANTI-FERROMAGNETS

Prarit Agarwal (Seoul National University) International winter school : "Partition Functions and Automorphic Forms", 2018

arxiv: v1 [hep-th] 29 Oct 2015

Chiral Symmetry Breaking from Monopoles and Duality

Some Tools for Exploring Supersymmetric RG Flows

arxiv: v1 [hep-th] 17 Dec 2010

Exact Results in D=2 Supersymmetric Gauge Theories And Applications

Rotated Branes and N = 1 Duality

Singlet-Stabilized Minimal Gauge Mediation

Good IR Duals of Bad Quiver Theories

Little strings and T-duality

Instanton effective action in - background and D3/D(-1)-brane system in R-R background

THE MASTER SPACE OF N=1 GAUGE THEORIES

Anomalies, Conformal Manifolds, and Spheres

A supermatrix model for ABJM theory

Supersymmetric Mirror Duality and Half-filled Landau level S. Kachru, M Mulligan, G Torroba and H. Wang Phys.Rev.

N =1Supersymmetric Product Group Theories in the Coulomb Phase

S 2 partition functions: Coulomb vs Higgs localization and vortices

A Note on Supersymmetry Breaking. Stephen D.H. Hsu, Myckola Schwetz. Department of Physics Yale University New Haven, CT

Singlet-Stabilized Minimal Gauge Mediation

N = 2 CHERN-SIMONS MATTER THEORIES: RG FLOWS AND IR BEHAVIOR. Silvia Penati. Perugia, 25/6/2010

N=4 Gauge Theories in 3D, Hilbert. Series, Mirror Symmetry and Enhanced. Global Symmetries

RECENT ASPECTS OF SUPERSYMMETRY BREAKING

Aspects of SUSY Breaking

Introduction to AdS/CFT

CFTs with O(N) and Sp(N) Symmetry and Higher Spins in (A)dS Space

Seiberg-Witten Theories on Ellipsoids Kazuo Hosomichi (YITP)

One Loop Tests of Higher Spin AdS/CFT

Lecture 12 Holomorphy: Gauge Theory

Three-Charge Black Holes and ¼ BPS States in Little String Theory

Magnetic bions, multiple adjoints, and Seiberg-Witten theory

Contents. 1.1 Prerequisites and textbooks Physical phenomena and theoretical tools The path integrals... 9

Algebraic structure of the IR limit of massive d=2 N=(2,2) theories. collaboration with Davide Gaiotto & Edward Witten

SUSY N=1 ADE Dynamics

Four Lectures on Web Formalism and Categorical Wall-Crossing. collaboration with Davide Gaiotto & Edward Witten

Aspects of (0,2) theories

Three-Charge Black Holes and ¼ BPS States in Little String Theory I

Dualities and 5-Brane Webs for 5d rank 2 SCFTs

The Langlands dual group and Electric-Magnetic Duality

Dynamical SUSY Breaking in Meta-Stable Vacua

The Partonic Nature of Instantons

A Review of Solitons in Gauge Theories. David Tong

2-Group Global Symmetry

arxiv:hep-th/ v1 12 Dec 1996

Boundaries, Interfaces, & Duality in 3d SCFTs

Fractional Branes and Dynamical Supersymmetry Breaking

Linear Confinement from AdS/QCD. Andreas Karch, University of Washington work with Ami Katz, Dam Son, and Misha Stephanov.

Dynamical supersymmetry breaking, with Flavor

Emergent Spacetime. XXIII rd Solvay Conference in Physics December, Nathan Seiberg

N=1 Dualities of SO and USp Gauge Theories and T-Duality of String Theory

Rigid Holography and 6d N=(2,0) Theories on AdS 5 xs 1

't Hooft anomalies, 2-charge Schwinger model, and domain walls in hot super Yang-Mills theory

Current Algebra Constraints on Supersymmetric Quantum Field Theories

Quiver gauge theories, chiral rings and random matrix models

!onformali" Los# J.-W. Lee D. T. Son M. Stephanov D.B.K. arxiv: Phys.Rev.D80:125005,2009

Electric-Magnetic Duality, Monopole Condensation, And Confinement In N = 2 Supersymmetric Yang-Mills Theory

Properties of monopole operators in 3d gauge theories

On the Twisted (2, 0) and Little-String Theories

arxiv:hep-ph/ v1 8 Feb 2000

Symmetries and Strings in. Field Theory and Gravity

Lecture 24 Seiberg Witten Theory III

Topological String Theory

Models of Dynamical Supersymmetry Breaking from a SU(2k+3) Gauge Model* Abstract

UV Completions of Composite Higgs Models with Partial Compositeness

Transcription:

Supersymmetric Gauge Theories in 3d Nathan Seiberg IAS Intriligator and NS, arxiv:1305.1633 Aharony, Razamat, NS, and Willett, arxiv:1305.3924

3d SUSY Gauge Theories New lessons about dynamics of quantum field theory Since they can be obtained by studying a 4d theory on a circle, they reflect properties of 4d theories. Applications to condensed matter physics? New elements, which are not present in 4d 2

New elements in 3d N=2 SUSY No asymptotic freedom bound on the number of matter fields. U(1) theories can exhibit interesting dynamics, hence we can examine the effect of Fayet-Iliopoulos terms. New SUSY coupling constants: Chern-Simons terms, real masses. New phases (topological) BPS (half-susy) particles; e.g. Skyrmions, vortices Vortex/monopole operators (analogs of twist fields in 2d and thooft lines in 4d). They cannot be written in a simple local fashion. 3

The Coulomb branch A 3d N=2 gauge multiplet includes a scalar σ. When the theory is obtained by compactifying a theory on a circle it originates from A 4 (a Wilson line around the circle). The photon is dual to a compact scalar a. (+ quantum corrections) is a chiral superfield. Its vev parameterizes a Coulomb branch. 4

Monopole operators Microscopically X is defined as a monopole operator [Kapustin et al]. A monopole operator leads to a singularity in F (equivalently, remove a ball around x = 0 and put one unit of flux through its surface). In SUSY F is in a linear superfield and the monopole operator is defined through Hence 5

Monopole operators It is easy to see that in the dual variables has the same effect in the functional integral as the insertion of Semiclassically, this insertion sets and thus pushes the scalar σ to infinity. This explains why the chiral operator X is associated with the Coulomb branch. 6

Monopole operators vs. vortices A BPS particle (vortex) exists at a point in space. It needs a central charge Z (say Z > 0). It is annihilated by Q and its conjugate Q +. 2d rep: Q a > = 0 b > ~ Q + a > A BPS (monopole) operators X is a chiral operator (at a point in spacetime). It is annihilated by Q ±. X 0 > is not a BPS particle. But if an appropriate BPS state a > exists, it can be created by projecting on the lowest energy state 7

3d SU(2) gauge theory [Affleck, Harvey, Witten] Semiclassically, a Coulomb branch of vacua parameterized by The 4d monopole is like a 3d instanton and following Polyakov it leads to a superpotential This superpotential is exact because of an R- symmetry. (Recall, no axial anomaly in 3d.) It leads to runaway no vacuum. 8

4d SU(2) gauge theory on a circle Semiclassically, the Coulomb branch of vacua is compact A 4 = σ ~ σ ~ σ + 2. It is still R parameterized by a chiral superfield X. Global symmetry (This is the 4d instanton factor.) It disappears in the 3d limit. It relates the two points in the moduli space with unbroken SU(2): X = 0, (σ = 0, 1 R ). 9

4d SU(2) gauge theory on a circle Non-perturbatively [NS, Witten] 4d monopole acting as a 3d instanton 4d instanton η = Λ 6 disappears in the 3d limit. Breaks axial U 1. This superpotential is exact (holomorphy, right limits at zero and infinity, and global symmetry). 2 vacua, as in 4d. They run to infinity in the 3d limit η 0. 10

Duality in 4d N=1 SUSY Gauge Theory Two dual theories are related by RG flow Two asymptotically free theories flow to the same IR fixed point An asymptotically free theory in the UV flows to an IR free field theory. Characteristic example Electric theory: SU(N c ) with N f quarks Magnetic theory: SU(N f - N c ) with N f quarks and singlets M (mesons) with a superpotential 11

Lessons Nontrivial mixing of flavor and gauge The dual gauge group depends on the flavor Composite gauge fields Gauge symmetry can be emergent Gauge symmetry is not fundamental... 12

Going to 3d Reducing the two dual Lagrangians to 3d does not lead to dual theories. Perhaps it is not surprising radius going to zero does not commute with IR limit in 4d Aharony, Giveon and Kutasov conjectured some dual pairs. They were motivated by stringy brane constructions. These were recently generalized and tested by various authors. 13

Aharony duality The electric theory: U(N c ) with N f quarks The magnetic theory: U(N f - N c ) with N f quarks, and singlets M (mesons) and X ± (monopoles) with a superpotential are monopoles of the magnetic gauge group. 14

Aharony duality The Lagrangian of the magnetic theory includes monopole operators. These are local operators, but they cannot be expressed simply in terms of the elementary fields. The monopoles of the electric theory are elementary in the magnetic theory. The monopoles carry nontrivial flavor quantum numbers. Hence, mixing of gauge and flavor. Similar dualities with orthogonal and symplectic gauge groups 15

Giveon-Kutasov duality The electric theory: U(N c ) k (the subscript denotes the coefficient of the Chern-Simons term) with N f quarks The magnetic theory: U( k +N f - N c ) -k with N f quarks and singlets M (mesons) with a superpotential 16

Giveon-Kutasov duality No monopole operators in the Lagrangians Relation to level-rank duality This duality can be derived from Aharony duality (and vice versa) by turning on real mass terms and using renormalization group flow. Similar dualities with orthogonal and symplectic gauge groups 17

Duality in 3d Until recently, only a few tests main motivation was brane constructions. New non-trivial tests involving the S 3 and the S 2 xs 1 partition functions [Kapustin, Willett and Yaakov, ] Questions: Why doesn t the simple reduction from 4d work? Why are these 3d dualities so similar to the 4d dualities? Are there additional dual pairs? What is the underlying reason for duality? 18

Compactify a 4d theory on a circle Main difference between a 4d theory and its 3d counter-part is an anomalous U(1) symmetry in 4d. Instantons explicitly break the symmetry. When the 4d theory is placed on a circle 4d instantons still break the U(1) symmetry. They typically lead to a term in the effective superpotential [NS, Witten] X is a monopole operator. is the 4d instanton factor. η goes to zero in the 3d limit. 19

Compactify a 4d dual pair In order to break the anomalous symmetries in the 3d theories we should add to the 3d Lagrangian of the electric theory and to the 3d Lagrangian of the magnetic theory. This leads to two dual theories in 3d. All the tests of duality in 3d are satisfied. One might not like the presence of the monopole operators in the Lagrangians. 20

Example Electric theory: SU(N c ) with N f quarks superpotential with a Magnetic theory: SU(N f - N c ) with N f quarks and singlets M (mesons) with a superpotential 21

Deforming the dual pair by relevant operators We can deform the dual pair with all the relevant operators present in 4d. This preserves the duality Given our construction, this fact is trivial and does not lead to new dualities. New relevant operators real masses for the quarks. They lead to new interesting dual pairs. 22

Example 1: Real mass for one of the flavors the electric theory Start with N f + 1 flavors and turn on real mass for one of the flavors (opposite signs for the quarks and antiquarks). The low energy electric theory is SU(N c ) with N f quarks. There is no monopole operator in the Lagrangian (no η-term); W=0. This is standard SQCD. 23

Example 1: Real mass for one of the flavors the magnetic theory The magnetic gauge group is Higgsed: The light elementary matter fields are: N f dual quarks, SU(N f - N c ) singlets with U(1) charges ±(N f - N c ) Neutral fields M (mesons) and X (monopole) are monopole operators of U(N f - N c ). 24

Example 2: Real masses for all the antiquarks The electric theory: SU(N c ) with N f fundamentals Q. No additional fields, W=0. Depending on the signs of the masses there might or might not be a Chern-Simons term. For even N f we can let N f /2 of the anti-quarks have positive real mass and N f /2 of them have negative real mass. Then there is no Chern-Simons term. The magnetic theory: SU(N f - N c ) with N f fundamentals q. No additional fields, W=0. 25

Conclusions A 4d dual pair leads to a 3d dual pair (with monopole operators in the Lagrangians). Turning on real masses, we find many more dual pairs: We reproduced all known examples (some still in progress) Many new dualities (with or without monopole operators in the electric or magnetic Lagrangians) This explains: Why naïve dimensional reduction of the dual pair does not work Why the known examples are similar to the 4d examples. 26

Conclusions This two step process (reduce with a monopole operator and flow down) has to work. It follows from the assumption of 4d duality. Alternatively, the fact that it works leads to new tests of 4d duality. It seems that all 3d dualities follow from 4d dualities. More generally, 3d dynamics is part of 4d dynamics. It raises many new questions 27