Further Topics in Functions

Similar documents
Section 5.1 Composite Functions

5.3 Other Algebraic Functions

Section 0.2 & 0.3 Worksheet. Types of Functions

Math 110 Midterm 1 Study Guide October 14, 2013

Section Properties of Rational Expressions

f(x) = 3x 2 3 g(x) = 5x 7 3 h(x) = 16x 1 4 k(x) = 10x 7 4 m(x) = 81x 2 7 n(x) = 3x 3 4 w(x) = 5x 1 4 2x 3 2 v(x) = 4x x 3 2

1.4 Function Notation

1. Use the properties of exponents to simplify the following expression, writing your answer with only positive exponents.

Preliminaries Lectures. Dr. Abdulla Eid. Department of Mathematics MATHS 101: Calculus I

1 Fundamental Concepts From Algebra & Precalculus

MTH4100 Calculus I. Lecture notes for Week 2. Thomas Calculus, Sections 1.3 to 1.5. Rainer Klages

Calculus : Summer Study Guide Mr. Kevin Braun Bishop Dunne Catholic School. Calculus Summer Math Study Guide

Section 6.3: Exponential Equations and Inequalities, from College Algebra: Corrected Edition by Carl Stitz, Ph.D. and Jeff Zeager, Ph.D.

Review all the activities leading to Midterm 3. Review all the problems in the previous online homework sets (8+9+10).

Solving Quadratic & Higher Degree Equations

Examples 2: Composite Functions, Piecewise Functions, Partial Fractions

Chapter 7 Algebra 2 Honors 1 Polynomials

Functions. If x 2 D, then g(x) 2 T is the object that g assigns to x. Writing the symbols. g : D! T

Chapter 8. Exploring Polynomial Functions. Jennifer Huss

Math 3 Unit 5: Polynomial and Rational Representations and Modeling

Section 1.4: Function Notation, from College Algebra: Corrected Edition by Carl Stitz, Ph.D. and Jeff Zeager, Ph.D. is available under a Creative

8.6 Partial Fraction Decomposition

Chapter 1. Functions 1.1. Functions and Their Graphs

8 Building New Functions from Old Ones

3 Polynomial and Rational Functions

Finding Limits Analytically

MATH 1113 Exam 1 Review

General Form: y = a n x n + a n 1 x n a 2 x 2 + a 1 x + a 0

Note: The actual exam will consist of 20 multiple choice questions and 6 show-your-work questions. Extra questions are provided for practice.

REQUIRED MATHEMATICAL SKILLS FOR ENTERING CADETS

Polynomial Functions

f(x) x

1 Functions, Graphs and Limits

College Algebra Notes

7.5 Partial Fractions and Integration

PreCalculus Notes. MAT 129 Chapter 5: Polynomial and Rational Functions. David J. Gisch. Department of Mathematics Des Moines Area Community College

Chapter 5B - Rational Functions

1. Use the properties of exponents to simplify the following expression, writing your answer with only positive exponents.

Topics from Algebra and Pre-Calculus. (Key contains solved problems)

1 FUNCTIONS _ 5 _ 1.0 RELATIONS

Solving Quadratic Equations Review

Rational and Radical Functions. College Algebra

Objectives for Composition and Inverse Function Activity

Mathematics for Business and Economics - I. Chapter 5. Functions (Lecture 9)

MATH 103 Pre-Calculus Mathematics Test #3 Fall 2008 Dr. McCloskey Sample Solutions

Math 115 Spring 11 Written Homework 10 Solutions

Math 2: Algebra 2, Geometry and Statistics Ms. Sheppard-Brick Chapter 4 Test Review

8 Appendix: Polynomial Rings

Functions. is the INPUT and is called the DOMAIN. is the OUTPUT and is called the RANGE.

Suppose we have the set of all real numbers, R, and two operations, +, and *. Then the following are assumed to be true.

8. Limit Laws. lim(f g)(x) = lim f(x) lim g(x), (x) = lim x a f(x) g lim x a g(x)

2. If the values for f(x) can be made as close as we like to L by choosing arbitrarily large. lim

KEMATH1 Calculus for Chemistry and Biochemistry Students. Francis Joseph H. Campeña, De La Salle University Manila

Final Exam Review Packet

Final Exam Review Packet

B) Increasing on (-1, ); Decreasing on (-, -1) C) Increasing on (-, -1); Decreasing on (-1, ) D) Increasing on (-, 1); Decreasing on (1, ) 2) 2)

D) Increasing on (-1, ); Decreasing on (-, -1) B) Increasing on (-, -1); Decreasing on (-1, ) C) Increasing on (-, 1); Decreasing on (1, ) 2) 2)

ter. on Can we get a still better result? Yes, by making the rectangles still smaller. As we make the rectangles smaller and smaller, the

Course Number 432/433 Title Algebra II (A & B) H Grade # of Days 120

Calculus Summer Math Practice. 1. Find inverse functions Describe in words how you use algebra to determine the inverse function.

_CH04_p pdf Page 52

Continuity. MATH 161 Calculus I. J. Robert Buchanan. Fall Department of Mathematics

3.4 Complex Zeros and the Fundamental Theorem of Algebra

Solutions Manual for Precalculus An Investigation of Functions

Math Lecture 4 Limit Laws

To get horizontal and slant asymptotes algebraically we need to know about end behaviour for rational functions.

8.3 Partial Fraction Decomposition

Rational Functions. Elementary Functions. Algebra with mixed fractions. Algebra with mixed fractions

Regents Review Session #3 Functions

Function: exactly Functions as equations:

MATH 2400 LECTURE NOTES: POLYNOMIAL AND RATIONAL FUNCTIONS. Contents 1. Polynomial Functions 1 2. Rational Functions 6

2.5 Complex Zeros and the Fundamental Theorem of Algebra

A Partial List of Topics: Math Spring 2009

Mock Final Exam Name. Solve and check the linear equation. 1) (-8x + 8) + 1 = -7(x + 3) A) {- 30} B) {- 6} C) {30} D) {- 28}

A function relate an input to output

Calculus with business applications, Lehigh U, Lecture 01 notes Summer

Math ~ Exam #1 Review Guide* *This is only a guide, for your benefit, and it in no way replaces class notes, homework, or studying

Limits and Continuity

Summer Math Packet: Incoming Calculus I* students

Ch 7 Summary - POLYNOMIAL FUNCTIONS

( 3) ( ) ( ) ( ) ( ) ( )

6.1 Polynomial Functions

LIMITS AT INFINITY MR. VELAZQUEZ AP CALCULUS

Chapter P: Preliminaries

Business and Life Calculus

Summer }Issignment for.jl<p Ca(cu(us <BC

1.3 Limits and Continuity

Final Exam Study Guide Mathematical Thinking, Fall 2003


Partial Fractions. June 27, In this section, we will learn to integrate another class of functions: the rational functions.

MATH 103 Pre-Calculus Mathematics Dr. McCloskey Fall 2008 Final Exam Sample Solutions

Test 2 Review Math 1111 College Algebra

II. The Calculus of The Derivative

Partial Fractions. (Do you see how to work it out? Substitute u = ax + b, so du = a dx.) For example, 1 dx = ln x 7 + C, x x (x 3)(x + 1) = a

Notes: Piecewise Functions

MATH 431 PART 2: POLYNOMIAL RINGS AND FACTORIZATION

Chapter 3: Polynomial and Rational Functions

MSM120 1M1 First year mathematics for civil engineers Revision notes 3

Algebra & Trig Review

Quadratics and Other Polynomials

Transcription:

Chapter 5 Further Topics in Functions 5. Function Composition Before we embark upon any further adventures with functions, we need to take some time to gather our thoughts and gain some perspective. Chapter first introduced us to functions in Section.3. At that time, functions were specific kinds of relations - sets of points in the plane which passed the Vertical Line Test, Theorem.. In Section.4, we developed the idea that functions are processes - rules which match inputs to outputs - and this gave rise to the concepts of domain and range. We spoke about how functions could be combined in Section.5 using the four basic arithmetic operations, took a more detailed look at their graphs in Section.6 and studied how their graphs behaved under certain classes of transformations in Section.7. In Chapter, we took a closer look at three families of functions: linear functions Section.), absolute value functions Section.), and quadratic functions Section.3). Linear and quadratic functions were special cases of polynomial functions, which we studied in generality in Chapter 3. Chapter 3 culminated with the Real Factorization Theorem, Theorem 3.6, which says that all polynomial functions with real coefficients can be thought of as products of linear and quadratic functions. Our next step was to enlarge our field of study to rational functions in Chapter 4. Being quotients of polynomials, we can ultimately view this family of functions as being built up of linear and quadratic functions as well. So in some sense, Chapters, 3, and 4 can be thought of as an exhaustive study of linear and quadratic 3 functions and their arithmetic combinations as described in Section.5. We now wish to study other algebraic functions, such as fx) = x and gx) = x /3, and the purpose of the first two sections of this chapter is to see how these kinds of functions arise from polynomial and rational functions. To that end, we first study a new way to combine functions as defined below. These were introduced, as you may recall, as piecewise-defined linear functions. This is a really bad math pun. 3 If we broaden our concept of functions to allow for complex valued coefficients, the Complex Factorization Theorem, Theorem 3.4, tells us every function we have studied thus far is a combination of linear functions.

360 Further Topics in Functions Definition 5.. Suppose f and g are two functions. The composite of g with f, denoted g f, is defined by the formula g f)x) = gfx)), provided x is an element of the domain of f and fx) is an element of the domain of g. The quantity g f is also read g composed with f or, more simply g of f. At its most basic level, Definition 5. tells us to obtain the formula for g f) x), we replace every occurrence of x in the formula for gx) with the formula we have for fx). If we take a step back and look at this from a procedural, inputs and outputs perspective, Defintion 5. tells us the output from g f is found by taking the output from f, fx), and then making that the input to g. The result, gfx)), is the output from g f. From this perspective, we see g f as a two step process taking an input x and first applying the procedure f then applying the procedure g. Abstractly, we have f g x fx) gfx)) g f In the expression gfx)), the function f is often called the inside function while g is often called the outside function. There are two ways to go about evaluating composite functions - inside out and outside in - depending on which function we replace with its formula first. Both ways are demonstrated in the following example. Example 5... Let fx) = x 4x, gx) = x + 3, and hx) = In numbers - 3, find the indicated function value. x x +.. g f)). f g)) 3. g g)6) In numbers 4-0, find and simplify the indicated composite functions. State the domain of each. 4. g f)x) 5. f g)x) 6. g h)x) 7. h g)x) 8. h h)x) 9. h g f))x) 0. h g) f)x) Solution.. Using Definition 5., g f)) = gf)). We find f) = 3, so g f)) = gf)) = g 3) =

5. Function Composition 36. As before, we use Definition 5. to write f g)) = fg)). We find g) = 0, so f g)) = fg)) = f0) = 0 3. Once more, Definition 5. tells us g g)6) = gg6)). That is, we evaluate g at 6, then plug that result back into g. Since g6) =, g g)6) = gg6)) = g ) = 4. By definition, g f)x) = gfx)). We now illustrate two ways to approach this problem. inside out: We insert the expression fx) into g first to get g f)x) = gfx)) = g x 4x ) = x 4x) + 3 = x 4x + 3 Hence, g f)x) = x 4x + 3. outside in: We use the formula for g first to get g f)x) = gfx)) = fx) + 3 = x 4x) + 3 = x 4x + 3 We get the same answer as before, g f)x) = x 4x + 3. To find the domain of g f, we need to find the elements in the domain of f whose outputs fx) are in the domain of g. We accomplish this by following the rule set forth in Section.4, that is, we find the domain before we simplify. To that end, we examine g f)x) = x 4x) + 3. To keep the square root happy, we solve the inequality x 4x + 3 0 by creating a sign diagram. If we let rx) = x 4x + 3, we find the zeros of r to be x = and x = 3. We obtain +) 0 ) 0 +) 3 Our solution to x 4x + 3 0, and hence the domain of g f, is, ] [3, ). 5. To find f g)x), we find fgx)). inside out: We insert the expression gx) into f first to get f g)x) = fgx)) = f x + 3 ) = x + 3 ) 4 x + 3 ) = 4 4 x + 3 + x + 3 ) 8 + 4 x + 3 = 4 + x + 3 8 = x

36 Further Topics in Functions outside in: We use the formula for fx) first to get f g)x) = fgx)) = gx)) 4 gx)) = x + 3 ) 4 x + 3 ) = x same algebra as before Thus we get f g)x) = x. To find the domain of f g), we look to the step before we did any simplification and find f g)x) = x + 3 ) 4 x + 3 ). To keep the square root happy, we set x + 3 0 and find our domain to be [ 3, ). 6. To find g h)x), we compute ghx)). inside out: We insert the expression hx) into g first to get ) x g h)x) = ghx)) = g x + ) x = + 3 x + x 3x + ) = + get common denominators x + x + 5x + 3 = x + outside in: We use the formula for gx) first to get g h)x) = ghx)) = hx) + 3 ) x = + 3 x + 5x + 3 = x + get common denominators as before To find the domain of g h), we look to the step before we began to simplify: ) x g h)x) = + 3 x + To avoid division by zero, we need x. To keep the radical happy, we need to solve x x + + 3 = 5x + 3 x + 0 Defining rx) = 5x+3 x+, we see r is undefined at x = and rx) = 0 at x = 3 5. We get

5. Function Composition 363 +) ) 0 +) 3 5 Our domain is, ) [ 3 5, ). 7. We find h g)x) by finding hgx)). inside out: We insert the expression gx) into h first to get h g)x) = hgx)) =h x + 3 ) x + 3 ) = ) x + 3 + = 4 x + 3 3 x + 3 outside in: We use the formula for hx) first to get h g)x) = hgx)) = gx)) gx)) + x + 3 ) = ) x + 3 + = 4 x + 3 3 x + 3 To find the domain of h g, we look to the step before any simplification: h g)x) = x + 3 ) x + 3 ) + To keep the square root happy, we require x+3 0 or x 3. Setting the denominator equal to zero gives x + 3 ) + = 0 or x + 3 = 3. Squaring both sides gives us x + 3 = 9, or x = 6. Since x = 6 checks in the original equation, x + 3 ) + = 0, we know x = 6 is the only zero of the denominator. Hence, the domain of h g is [ 3, 6) 6, ). 8. To find h h)x), we substitute the function h into itself, hhx)). inside out: We insert the expression hx) into h to get ) x h h)x) = hhx)) = h x +

364 Further Topics in Functions = = = = = ) x x + ) x + x + 4x x + x + ) x x + + x + ) 4x x+ x + ) x x + 4x x + ) x + ) x x + ) x + ) + x + 4x 3x + ) x + ) + x + ) outside in: This approach yields h h)x) = hhx)) = hx)) hx) + ) x x + = ) x + x + 4x = 3x + same algebra as before To find the domain of h h, we analyze h h)x) = x x + x x + ) ) + To keep the denominator x + happy, we need x. Setting the denominator x x + + = 0 gives x = 3. Our domain is, ), 3) 3, ).

5. Function Composition 365 9. The expression h g f))x) indicates that we first find the composite, g f and compose the function h with the result. We know from number that g f)x) = x 4x + 3. We now proceed as usual. inside out: We insert the expression g f)x) into h first to get h g f))x) = hg f)x)) = h ) x 4x + 3 ) x 4x + 3 = ) x 4x + 3 + = 4 x 4x + 3 3 x 4x + 3 outside in: We use the formula for hx) first to get g f)x)) h g f))x) = hg f)x)) = g f)x)) + ) x 4x + 3 = ) x 4x + 3 + = 4 x 4x + 3 3 x 4x + 3 To find the domain of h g f)), we look at the step before we began to simplify, ) x 4x + 3 h g f))x) = ) x 4x + 3 + For the square root, we need x 4x + 3 0, which we determined in number to be, ] [3, ). Next, we set the denominator to zero and solve: ) x 4x + 3 + = 0. We get x 4x + 3 = 3, and, after squaring both sides, we have x 4x + 3 = 9. To solve x 4x 6 = 0, we use the quadratic formula and get x = ± 0. The reader is encouraged to check that both of these numbers satisfy the original equation, ) x 4x + 3 + = 0. Hence we must exclude these numbers from the domain of h g f). Our final domain for h f g) is, 0) 0, ] [ 3, + 0 ) + 0, ). 0. The expression h g) f)x) indicates that we first find the composite h g and then compose that with f. From number 4, we have h g)x) = 4 x + 3 3 x + 3

366 Further Topics in Functions We now proceed as before. inside out: We insert the expression fx) into h g first to get h g) f)x) = h g)fx)) = h g) x 4x ) = 4 x 4x) + 3 3 x 4x) + 3 = 4 x 4x + 3 3 x 4x + 3 outside in: We use the formula for h g)x) first to get h g) f)x) = h g)fx)) = 4 fx)) + 3 3 fx)) + 3 = 4 x 4x) + 3 3 x 4x) + 3 = 4 x 4x + 3 3 x 4x + 3 We note that the formula for h g) f)x) before simplification is identical to that of h g f))x) before we simplified it. Hence, the two functions have the same domain, h f g) is, 0) 0, ] [ 3, + 0 ) + 0, ). It should be clear from Example 5.. that, in general, when you compose two functions, such as f and g above, the order matters. 4 We found that the functions f g and g f were different as were g h and h g. Thinking of functions as processes, this isn t all that surprising. If we think of one process as putting on our socks, and the other as putting on our shoes, the order in which we do these two tasks does matter. 5 Also note the importance of finding the domain of the composite function before simplifying. For instance, the domain of f g is much different than its simplified formula would indicate. Composing a function with itself, as in the case of finding g g)6) and h h)x), may seem odd. Looking at this from a procedural perspective, however, this merely indicates performing a task h and then doing it again - like setting the washing machine to do a double rinse. Composing a function with itself is called iterating the function, and we could easily spend an entire course on just that. The last two problems in Example 5.. serve to demonstrate the associative property of functions. That is, when composing three or more) functions, as long as we keep the order the same, it doesn t matter which two functions we compose first. This property as well as another important property are listed in the theorem below. 4 This shows us function composition isn t commutative. An example of an operation we perform on two functions which is commutative is function addition, which we defined in Section.5. In other words, the functions f + g and g + f are always equal. Which of the remaining operations on functions we have discussed are commutative? 5 A more mathematical example in which the order of two processes matters can be found in Section.7. In fact, all of the transformations in that section can be viewed in terms of composing functions with linear functions.

5. Function Composition 367 Theorem 5.. Properties of Function Composition: Suppose f, g, and h are functions. h g f) = h g) f, provided the composite functions are defined. If I is defined as Ix) = x for all real numbers x, then I f = f I = f. By repeated applications of Definition 5., we find h g f))x) = hg f)x)) = hgfx))). Similarly, h g) f)x) = h g)fx)) = hgfx))). This establishes that the formulas for the two functions are the same. We leave it to the reader to think about why the domains of these two functions are identical, too. These two facts establish the equality h g f) = h g) f. A consequence of the associativity of function composition is that there is no need for parentheses when we write h g f. The second property can also be verified using Definition 5.. Recall that the function Ix) = x is called the identity function and was introduced in Exercise 73 in Section.. If we compose the function I with a function f, then we have I f)x) = Ifx)) = fx), and a similar computation shows f I)x) = fx). This establishes that we have an identity for function composition much in the same way the real number is an identity for real number multiplication. That is, just as for any real number x, x = x = x, we have for any function f, I f = f I = f. We shall see the concept of an identity take on great significance in the next section. Out in the wild, function composition is often used to relate two quantities which may not be directly related, but have a variable in common, as illustrated in our next example. Example 5... The surface area S of a sphere is a function of its radius r and is given by the formula Sr) = 4πr. Suppose the sphere is being inflated so that the radius of the sphere is increasing according to the formula rt) = 3t, where t is measured in seconds, t 0, and r is measured in inches. Find and interpret S r)t). Solution. If we look at the functions Sr) and rt) individually, we see the former gives the surface area of a sphere of a given radius while the latter gives the radius at a given time. So, given a specific time, t, we could find the radius at that time, rt) and feed that into Sr) to find the surface area at that time. From this we see that the surface area S is ultimately a function of time t and we find S r)t) = Srt)) = 4πrt)) = 4π 3t ) = 36πt 4. This formula allows us to compute the surface area directly given the time without going through the middle man r. A useful skill in Calculus is to be able to take a complicated function and break it down into a composition of easier functions which our last example illustrates. Example 5..3. Write each of the following functions as a composition of two or more nonidentity) functions. Check your answer by performing the function composition.. F x) = 3x. Gx) = x + 3. Hx) = x + x Solution. There are many approaches to this kind of problem, and we showcase a different methodology in each of the solutions below.

368 Further Topics in Functions. Our goal is to express the function F as F = g f for functions g and f. From Definition 5., we know F x) = gfx)), and we can think of fx) as being the inside function and g as being the outside function. Looking at F x) = 3x from an inside versus outside perspective, we can think of 3x being inside the absolute value symbols. Taking this cue, we define fx) = 3x. At this point, we have F x) = fx). What is the outside function? The function which takes the absolute value of its input, gx) = x. Sure enough, g f)x) = gfx)) = fx) = 3x = F x), so we are done.. We attack deconstructing G from an operational approach. Given an input x, the first step is to square x, then add, then divide the result into. We will assign each of these steps a function so as to write G as a composite of three functions: f, g and h. Our first function, f, is the function that squares its input, fx) = x. The next function is the function that adds to its input, gx) = x +. Our last function takes its input and divides it into, hx) = x. The claim is that G = h g f. We find so we are done. 3. If we look Hx) = h g f)x) = hgfx))) = hg x ) ) = h x + ) = x + = Gx), x+ x with an eye towards building a complicated function from simpler functions, we see the expression x is a simple piece of the larger function. If we define fx) = x, we have Hx) = fx)+ fx). If we want to decompose H = g f, then we can glean the formula for gx) by looking at what is being done to fx). We take gx) = x+ x, so g f)x) = gfx)) = fx) + x + fx) = = Hx), x as required.

5. Function Composition 369 5.. Exercises In Exercises -, use the given pair of functions to find the following values if they exist. g f)0) f g) ) f f)) g f) 3) f g) ) f f) ). fx) = x, gx) = x +. fx) = 4 x, gx) = x 3. fx) = 4 3x, gx) = x 4. fx) = x, gx) = x 5 5. fx) = 4x + 5, gx) = x 6. fx) = 3 x, gx) = x + 7. fx) = 6 x x, gx) = x x + 0 8. fx) = 3 x +, gx) = 4x x 9. fx) = 3 4x, gx) = x x + 0. fx) = x x + 5, gx) = 7 x. fx) = x 5 x, gx) = 4x +. fx) = x + 5, gx) = 0x x + In Exercises 3-4, use the given pair of functions to find and simplify expressions for the following functions and state the domain of each using interval notation. g f)x) f g)x) f f)x) 3. fx) = x + 3, gx) = x 9 4. fx) = x x +, gx) = 3x 5 5. fx) = x 4, gx) = x 6. fx) = 3x 5, gx) = x 7. fx) = x +, gx) = x 8. fx) = 3 x, gx) = x + 9. fx) = x, gx) = 4 x 0. fx) = x x, gx) = x 5. fx) = 3x, gx) = x + 3 3. fx) = x x +, gx) = x + x. fx) = 3x x, gx) = x x 3 4. fx) = x x 4, gx) = x

370 Further Topics in Functions In Exercises 5-30, use fx) = x, gx) = x and hx) = x to find and simplify expressions for the following functions and state the domain of each using interval notation. 5. h g f)x) 6. h f g)x) 7. g f h)x) 8. g h f)x) 9. f h g)x) 30. f g h)x) In Exercises 3-40, write the given function as a composition of two or more non-identity functions. There are several correct answers, so check your answer using function composition.) 3. px) = x + 3) 3 3. P x) = x x + ) 5 33. hx) = x 34. Hx) = 7 3x 35. rx) = 5x + 37. qx) = x + x 39. vx) = x + 3 4x 4. Write the function F x) = 36. Rx) = 7 x 38. Qx) = x3 + x 3 40. wx) = x x 4 + x 3 + 6 x 3 as a composition of three or more non-identity functions. 9 4. Let gx) = x, hx) = x+, jx) = 3x and kx) = x 4. In what order must these functions be composed with fx) = x to create F x) = 3 x + 4? 43. What linear functions could be used to transform fx) = x 3 into F x) = x 7)3 +? What is the proper order of composition? In Exercises 44-55, let f be the function defined by and let g be the function defined. Find the value if it exists. f = { 3, 4),, ),, 0), 0, ),, 3),, 4), 3, )} g = { 3, ),, 0),, 4), 0, 0),, 3),, ), 3, )} 44. f g)3) 45. fg )) 46. f f)0) 47. f g) 3) 48. g f)3) 49. gf 3))

5. Function Composition 37 50. g g) ) 5. g f) ) 5. gfg0))) 53. fff ))) 54. fffff))))) 55. g g g) 0) }{{} n times In Exercises 56-6, use the graphs of y = fx) and y = gx) below to find the function value. y y 4 3 4 3 3 4 x 3 4 x y = fx) y = gx) 56. g f)) 57. f g)3) 58. g f)) 59. f g)0) 60. f f)) 6. g g)) 6. The volume V of a cube is a function of its side length x. Let s assume that x = t + is also a function of time t, where x is measured in inches and t is measured in minutes. Find a formula for V as a function of t. 63. Suppose a local vendor charges $ per hot dog and that the number of hot dogs sold per hour x is given by xt) = 4t + 0t + 9, where t is the number of hours since 0 AM, 0 t 4. a) Find an expression for the revenue per hour R as a function of x. b) Find and simplify R x) t). What does this represent? c) What is the revenue per hour at noon? 64. Discuss with your classmates how real-world processes such as filling out federal income tax forms or computing your final course grade could be viewed as a use of function composition. Find a process for which composition with itself iteration) makes sense.

37 Further Topics in Functions 5.. Answers. For fx) = x and gx) = x +, g f)0) = f g) ) = f f)) = 6 g f) 3) = 9 f g) ) = 4 f f) ) = 6. For fx) = 4 x and gx) = x, g f)0) = 5 f g) ) = 4 f f)) = g f) 3) = 48 f g) ) = 3 4 f f) ) = 3. For fx) = 4 3x and gx) = x, g f)0) = 4 f g) ) = f f)) = 0 g f) 3) = 3 f g) ) = 5 f f) ) = 6 4. For fx) = x and gx) = x 5, g f)0) = 4 f g) ) = 5 f f)) = 0 g f) 3) = f g) ) = 3 4 f f) ) = 5. For fx) = 4x + 5 and gx) = x, g f)0) = 5 f g) ) is not real f f)) = 57 g f) 3) is not real f g) ) = 5 + f f) ) = 7 6. For fx) = 3 x and gx) = x +, g f)0) = 4 f g) ) = f f)) = g f) 3) = 7 f g) ) = 7 f f) ) = 3 5

5. Function Composition 373 7. For fx) = 6 x x and gx) = x x + 0, g f)0) = 4 f g) ) = 0 f f)) = 6 g f) 3) = 0 f g) ) = 7 4 8 f f) ) = 4 8. For fx) = 3 x + and gx) = 4x x, g f)0) = 3 f g) ) = 3 6 f f)) = 3 3 3 + g f) 3) = 4 3 4 + 3 f g) ) 3 = f f) ) = 0 9. For fx) = 3 x and gx) = 4x x +, g f)0) = 6 5 f g) ) = f f)) = 3 4 g f) 3) = 48 5 f g) ) = 5 f f) ) is undefined 0. For fx) = x x+5 and gx) = 7 x, g f)0) = 7 f g) ) = 6 f f)) = 37 g f) 3) = 8 9 f g) ) = 8 43 f f) ) = 3. For fx) = x 5 x and gx) = 4x +, g f)0) = f g) ) is not real f f)) = 8 g f) 3) = 7 f g) ) = 3 f f) ) = 8. For fx) = x + 5 and gx) = 0x x +, g f)0) = 5 5 3 f g) ) is not real f f)) = g f) 3) is not real f g) ) = 3 f f) ) = 7 3. For fx) = x + 3 and gx) = x 9 g f)x) = 4x + x, domain:, ) f g)x) = x 5, domain:, ) f f)x) = 4x + 9, domain:, )

374 Further Topics in Functions 4. For fx) = x x + and gx) = 3x 5 g f)x) = 3x 3x, domain:, ) f g)x) = 9x 33x + 3, domain:, ) f f)x) = x 4 x 3 + x x +, domain:, ) 5. For fx) = x 4 and gx) = x g f)x) = x 4, domain:, ) f g)x) = x 4 = x 4, domain:, ) f f)x) = x 4 8x +, domain:, ) 6. For fx) = 3x 5 and gx) = x g f)x) = 3x 5, domain: [ 5 3, ) f g)x) = 3 x 5, domain: [0, ) f f)x) = 9x 0, domain:, ) 7. For fx) = x + and gx) = x g f)x) = x +, domain:, ) f g)x) = x + = x +, domain: [0, ) f f)x) = x + + = x + +, domain:, ) 8. For fx) = 3 x and gx) = x + g f)x) = 4 x, domain: [, ] f g)x) = x, domain: [, ) f f)x) = x 4 + 6x 6, domain:, ) 9. For fx) = x and gx) = 4 x g f)x) = 4 x, domain: [ 4, 4] f g)x) = 4 x = 4 x, domain:, 4] f f)x) = x = x, domain:, )

5. Function Composition 375 0. For fx) = x x and gx) = x 5 g f)x) = x x 6, domain:, ] [3, ) f g)x) = x 6 x 5, domain: [5, ) f f)x) = x 4 x 3 x + 3x +, domain:, ). For fx) = 3x and gx) = x+3 g f)x) = 3x+, domain:, ) 3 3, ) f g)x) = x x+3, domain:, 3) 3, ) f f)x) = 9x 4, domain:, ). For fx) = 3x x and gx) = x x 3 g f)x) = x, domain:, ), ) f g)x) = x, domain:, 3) 3, ) f f)x) = 9x x+, domain:, ), ), ) 3. For fx) = x x+ and gx) = x+ x g f)x) = 4x+ x, domain:, ), 0), 0, ) f g)x) = x+ 5x+, domain:, ) 5 5, 0) 0, ) f f)x) = x 4x+, domain:, ), ) 4 4, ) 4. For fx) = x x 4 and gx) = x g f)x) = x x 4 x 4, domain:, ) [ 5, ) [ + 5, ) f g)x) = x x+3, domain:, 3) 3, ] ) ) 4x x f f)x) = 3 x 4 9x +6, domain:, + 7 + 7, ) 7, + ) ) 7 + 7,, + ) 7 + 7, 5. h g f)x) = x = x, domain:, 0] 6. h f g)x) = x = x, domain: [0, ) 7. g f h)x) = x, domain: {0} 8. g h f)x) = x = x, domain:, ) 9. f h g)x) = x = x, domain: [0, ), 7 )

376 Further Topics in Functions 30. f g h)x) = x,, domain:, ) 3. Let fx) = x + 3 and gx) = x 3, then px) = g f)x). 3. Let fx) = x x + and gx) = x 5, P x) = g f)x). 33. Let fx) = x and gx) = x, then hx) = g f)x). 34. Let fx) = 7 3x and gx) = x, then Hx) = g f)x). 35. Let fx) = 5x + and gx) = x, then rx) = g f)x). 36. Let fx) = x and gx) = 7 x, then Rx) = g f)x). 37. Let fx) = x and gx) = x+ x, then qx) = g f)x). 38. Let fx) = x 3 and gx) = x+ x, then Qx) = g f)x). 39. Let fx) = x and gx) = x+ 3 x, then vx) = g f)x). 40. Let fx) = x and gx) = x, then wx) = g f)x). x + 4. F x) = x 3 +6 x 3 9 = hgfx))) where fx) = x3, gx) = x+6 x 9 and hx) = x. 4. F x) = 3 x + 4 = kjfhgx))))) 43. One possible solution is F x) = x 7)3 + = kjfhgx))))) where gx) = x, hx) = x 7, jx) = x and kx) = x +. You could also have F x) = HfGx))) where Gx) = x 7 and Hx) = x +. 44. f g)3) = fg3)) = f) = 4 45. fg )) = f 4) which is undefined 46. f f)0) = ff0)) = f) = 3 47. f g) 3) = fg 3)) = f ) = 48. g f)3) = gf3)) = g ) = 4 49. gf 3)) = g4) which is undefined 50. g g) ) = gg )) = g0) = 0 5. g f) ) = gf )) = g) = 5. gfg0))) = gf0)) = g) = 3 53. fff ))) = ff0)) = f) = 3 54. fffff))))) = ffff3)))) = fff ))) = ff0)) = f) = 3 55. g g g) 0) = 0 }{{} n times

5. Function Composition 377 56. g f)) = 3 57. f g)3) = 4 58. g f)) = 0 59. f g)0) = 4 60. f f)) = 3 6. g g)) = 0 6. V x) = x 3 so V xt)) = t + ) 3 63. a) Rx) = x b) R x) t) = 8t + 40t + 84, 0 t 4. This gives the revenue per hour as a function of time. c) Noon corresponds to t =, so R x) ) = 3. The hourly revenue at noon is $3 per hour.