Determining WIMP Properties with the AMIDAS Package

Similar documents
Progress of the AMIDAS Package for Reconstructing WIMP Properties

Extracting Astrophysical Information about Galactic Dark Matter with and without Astrophysical Prior Knowledge

Bayesian Reconstruction of the WIMP Velocity Distribution with a Non-Negligible Threshold Energy

Bayesian Reconstruction of the WIMP Velocity Distribution Function from Direct Dark Matter Detection Data

Distinguishing Dark Matter Candidates from Direct Detection Experiments

Introduction to Direct Dark Matter Detection Experiments

arxiv: v2 [astro-ph.im] 13 Nov 2014

arxiv: v2 [astro-ph.he] 7 Aug 2015

WIMP Velocity Distribution and Mass from Direct Detection Experiments

Analyzing direct dark matter detection data with unrejected background events by the AMIDAS website

Introduction to Direct Dark Matter Detection Phenomenology

Learning from WIMPs. Manuel Drees. Bonn University. Learning from WIMPs p. 1/29

Can the DAMA annual modulation be explained by Dark Matter?

What is the probability that direct detection experiments have observed Dark Matter?

Effective theory of dark matter direct detection. Riccardo Catena. Chalmers University of Technology

Recent results from PandaX- II and status of PandaX-4T

Daniel Gazda. Chalmers University of Technology. Progress in Ab Initio Techniques in Nuclear Physics TRIUMF, Feb 28 Mar 3, 2017

Direct detection calculations. Riccardo Catena. Chalmers University

Solar and atmospheric neutrinos as background for direct dark matter searches

Background and sensitivity predictions for XENON1T

light dm in the light of cresst-ii

Coherency in Neutrino-Nucleus Elastic Scattering

COLD DARK MATTER DETECTION VIA THE LSP-NUCLEUS ELASTIC SCATTERING 1

Measurements of liquid xenon s response to low-energy particle interactions

A halo-independent lower bound on the DM capture rate in the Sun from a DD signal

No combined analysis of all experiments available

Inert Doublet Model and DAMA:

Lecture 12. Dark Matter. Part II What it could be and what it could do

Collider Searches for Dark Matter

arxiv: v1 [physics.ins-det] 4 Nov 2017

WIMP Recoil Rates and Exclusion Plots Brian, April 2007

CHANNELING IN DIRECT DARK MATTER DETECTION

DARWIN. Marc Schumann. U Freiburg PATRAS 2017 Thessaloniki, May 19,

XENON100. Marc Schumann. Physik Institut, Universität Zürich. IDM 2010, Montpellier, July 26 th,

arxiv: v1 [astro-ph.im] 28 Sep 2010

Scintillation efficiency measurement of Na recoils in NaI(Tl) below the DAMA/LIBRA energy threshold

Two-body currents in WIMP nucleus scattering

Neutrino bounds on dark matter. Alejandro Ibarra Technische Universität München

Enectalí Figueroa-Feliciano

DARWIN. Marc Schumann. U Freiburg LAUNCH 17 Heidelberg, September 15,

A computational tool of DM relic abundance and direct detection. M. Backovic, F. Maltoni, A. Martini, Mat McCaskey, K.C. Kong, G.

Direct detection detection of recoil nuclei after interaction of DM particle in large underground scale detector. DAMA, CDMS, ZENON... experiments.

Constraints on Low-Mass WIMPs from PICASSO. Carsten B. Krauss University of Alberta for the PICASSO Collaboration IDM Chicago, July

Search for Low Energy Events with CUORE-0 and CUORE

Search for Inelastic Dark Matter with the CDMS experiment. Sebastian Arrenberg Universität Zürich Doktorierendenseminar 2010 Zürich,

A survey of recent dark matter direct detection results

INDIRECT DARK MATTER DETECTION

COLUMNAR RECOMBINATION JIN LI INSTITUTE FOR BASIC SCIENCE CYGNUS2015 CONFERENCE JUN.3, 2015

Fermionic DM Higgs Portal! An EFT approach

Cryodetectors, CRESST and Background

Non-Standard Interaction of Solar Neutrinos in Dark Matter Detectors

Esperimenti bolometrici al Gran Sasso: CUORE e CRESST

In collaboration w/ G. Giudice, D. Kim, JCP, S. Shin arxiv: Jong-Chul Park. 2 nd IBS-KIAS Joint High1 January 08 (2018)

Detecting Dipolar Dark Matter in Beam Dump Experiments

TWO-PHASE DETECTORS USING THE NOBLE LIQUID XENON. Henrique Araújo Imperial College London

arxiv: v1 [astro-ph.co] 7 Nov 2012

Whither WIMP Dark Matter Search? Pijushpani Bhattacharjee AstroParticle Physics & Cosmology Division Saha Institute of Nuclear Physics Kolkata

Collider searches for dark matter. Joachim Kopp. SLAC, October 5, Fermilab

Lecture 16 The pn Junction Diode (III)

arxiv: v1 [hep-ex] 30 Nov 2009

Status of the ANAIS experiment at Canfranc

Axion Detection With NMR

Direct Detection of! sub-gev Dark Matter

Dark matter searches and prospects at the ATLAS experiment

Two Early Exotic searches with dijet events at ATLAS

Germanium-phobic exothermic Dark Matter and the CDMS-II Silicon excess

Cristiano Alpigiani Shanghai Jiao Tong University Shanghai, 18 May 2017

Standard Model and ion traps: symmetries galore. Jason Clark Exotic Beam Summer School July 28 August 1, 2014

Nuclear Recoil Scintillation and Ionization Yields in Liquid Xenon

Recent results from the LHCb experiment

Dark Matter and Dark Energy components chapter 7

Searches for Dark Matter with in Events with Hadronic Activity

Model independent extraction of the axial mass parameter in CCQE anti neutrino-nucleon scattering

Direct detection: results from liquid noble-gas experiments

Search for low-mass WIMPs with Spherical Detectors : NEWS-LSM and NEWS-SNO

Oak Ridge National Laboratory, TN. K. Scholberg, Duke University On behalf of the COHERENT collaboration August 2, 2017 DPF 2017, Fermilab

Direct Detection of Dark Matter with LUX

Dynamics of solar system bound WIMPs

DM direct detection predictions from hydrodynamic simulations

DARK MATTER INTERACTIONS

Charged current single pion to quasi-elastic cross section ratio in MiniBooNE. Steven Linden PAVI09 25 June 2009

Closing the window on GeV Dark Matter with moderate ( µb) interaction with nucleons

Measurement of the e + e - π 0 γ cross section at SND

Revisiting the escape speed impact on dark matter direct detection

star crusts M. Cermeño 1, M. A. Pérez-García 1, J. Silk 2 November 24, 2016

PHY326/426 Dark Matter and the Universe. Dr. Vitaly Kudryavtsev F9b, Tel.:

Davison E. Soper Institute of Theoretical Science, University of Oregon, Eugene, OR 97403, USA

Detectors in Nuclear Physics (48 hours)

Nuclear Geometry in High Energy Nuclear Collisions

TeV energy physics at LHC and in cosmic rays

The Neutron/WIMP Acceptance In XENON100

Hadron Spectroscopy at COMPASS

Vincenzo Caracciolo for the ADAMO collaboration National Laboratory of Gran Sasso - INFN.

Physics 403. Segev BenZvi. Propagation of Uncertainties. Department of Physics and Astronomy University of Rochester

Collaborazione DAMA & INR-Kiev. XCVIII Congresso SIF Napoli, 18 Settembre F. Cappella

Thermalization time scales for WIMP capture by the Sun

PandaX Dark Matter Search

π p-elastic Scattering in the Resonance Region

Search for Dark Matter in the mono-x* final states with ATLAS

Transcription:

Determining WIMP Properties with the AMIDAS Package Chung-Lin Shan Xinjiang Astronomical Observatory Chinese Academy of Sciences Center for Future High Energy Physics, Chinese Academy of Sciences August 12, 2016

Outline AMIDAS package Motivation With measured recoil energies With a non-negligible threshold energy With a model of the WIMP velocity distribution Determination of the WIMP mass Determinations of the WIMP-nucleon couplings Estimation of the SI scalar WIMP-nucleon coupling Determinations of ratios of WIMP-nucleon cross sections Summary C.-L. Shan (XAO-CAS) CFHEP-CAS, August 12, 2016 p. 1

Outline Dark Matter searches DM should have small, but non-zero interactions with SM matter. = Three different ways to detect DM particles p, e DM DM e, ν µ, γ DM DM (, ) p, e + DM ( ) DM e +, p, D q q Colliders Indirect detection Direct detection C.-L. Shan (XAO-CAS) CFHEP-CAS, August 12, 2016 p. 2

AMIDAS package AMIDAS package A Model-Independent Data Analysis System C.-L. Shan (XAO-CAS) CFHEP-CAS, August 12, 2016 p. 3

AMIDAS package AMIDAS package AMIDAS: A Model-Independent Data Analysis System for direct Dark Matter detection experiments and phenomenology DAMNED Dark Matter Web Tool (ILIAS Project) http://pisrv0.pit.physik.uni-tuebingen.de/darkmatter/amidas/ [CLS, AIP Conf. Proc. 1200, 1031; arxiv:0910.1971; Phys. Dark Univ. 5-6, 240 (2014)] TiResearch (Taiwan interactive Research) http://www.tir.tw/phys/hep/dm/amidas/ Online interactive simulation/data analysis system Full Monte Carlo simulations Theoretical estimations Real/pseudo- data analyses C.-L. Shan (XAO-CAS) CFHEP-CAS, August 12, 2016 p. 4

AMIDAS package AMIDAS package AMIDAS: A Model-Independent Data Analysis System for direct Dark Matter detection experiments and phenomenology C.-L. Shan (XAO-CAS) CFHEP-CAS, August 12, 2016 p. 5

AMIDAS package Motivation Motivation C.-L. Shan (XAO-CAS) CFHEP-CAS, August 12, 2016 p. 6

AMIDAS package Motivation Motivation Differential event rate for elastic WIMP-nucleus scattering dr vmax [ ] f1(v) dq = AF 2 (Q) dv v min (Q) v Here v min (Q) = α Astrophysics Q is the minimal incoming velocity of incident WIMPs that can deposit the recoil energy Q in the detector, A ρ0σ0 mn α m 2m χmr,n 2 2mr,N 2 r,n = mχm N 2 m χ + m N Particle physics ρ 0 : WIMP density near the Earth σ 0 : total cross section ignoring the form factor suppression F (Q): elastic nuclear form factor f 1 (v): one-dimensional velocity distribution of halo WIMPs C.-L. Shan (XAO-CAS) CFHEP-CAS, August 12, 2016 p. 7

AMIDAS package Motivation Motivation Differential event rate for elastic WIMP-nucleus scattering dr vmax [ ] f1(v) dq = AF 2 (Q) dv v min (Q) v Here v min (Q) = α Q is the minimal incoming velocity of incident WIMPs that can deposit the recoil energy Q in the detector, ρ0σ0 A 2m χmr,n 2 α mn 2m 2 r,n m r,n = mχm N m χ + m N ρ 0 : WIMP density near the Earth σ 0 : total cross section ignoring the form factor suppression F (Q): elastic nuclear form factor f 1 (v): one-dimensional velocity distribution of halo WIMPs C.-L. Shan (XAO-CAS) CFHEP-CAS, August 12, 2016 p. 8

C.-L. Shan (XAO-CAS) CFHEP-CAS, August 12, 2016 p. 9

With measured recoil energies With measured recoil energies C.-L. Shan (XAO-CAS) CFHEP-CAS, August 12, 2016 p. 10

With measured recoil energies Normalized one-dimensional WIMP velocity distribution function { [ ( )]} d 1 dr f 1 (v) = N 2Q dq F 2 (Q) dq N = 2 { [ 1 1 α 0 Q F 2 (Q) ( )] } dr 1 dq dq Q=v 2 /α 2 Moments of the velocity distribution function ( α v n n+1 = N (Q thre ) 2 N (Q thre ) = 2 α [ 2Q 1/2 thre F 2 (Q thre ) [ I n(q thre ) = Q (n 1)/2 Q thre ) [ 2Q (n+1)/2 thre F 2 (Q thre ) ( ) dr dq ( ) dr + I 0 (Q thre ) dq Q=Q thre 1 F 2 (Q) ( )] dr dq dq + (n + 1)I n(q thre ) Q=Q thre ] 1 [M. Drees and CLS, JCAP 0706, 011 (2007)] C.-L. Shan (XAO-CAS) CFHEP-CAS, August 12, 2016 p. 11 ]

With measured recoil energies Ansatz: the measured recoil spectrum in the nth Q-bin ( ) dr r n e kn(q Qs,n) r n Nn dq expt, Q Q n b n Logarithmic slope and shifted point in the nth Q-bin Q Q n n 1 N n ( ) bn (Q n,i Q n) = coth N n 2 i=1 Q s,n = Q n + 1 [ ] sinh(knbn/2) ln k n k nb n/2 ( knb n 2 ) 1 k n Reconstructing the one-dimensional WIMP velocity distribution [ ] [ 2Qs,nrn d ] f 1 (v s,n) = N F 2 (Q s,n) dq ln F 2 (Q) k n Q=Qs,n [ ] N = 2 1 1 v s,n = α Q s,n α Qa F 2 (Q a) a [M. Drees and CLS, JCAP 0706, 011 (2007)] C.-L. Shan (XAO-CAS) CFHEP-CAS, August 12, 2016 p. 12

With measured recoil energies Reconstructed f 1,rec (v s,n ) ( 76 Ge, 500 events, 5 bins, up to 3 bins per window) [M. Drees and CLS, JCAP 0706, 011 (2007)] C.-L. Shan (XAO-CAS) CFHEP-CAS, August 12, 2016 p. 13

With a non-negligible threshold energy With a non-negligible threshold energy C.-L. Shan (XAO-CAS) CFHEP-CAS, August 12, 2016 p. 14

With a non-negligible threshold energy Reconstruction of f 1 (v) with a non-negligible threshold energy Reconstructed f 1,rec (v s,n ) with a non-negligible threshold energy ( 76 Ge, 2-50 kev, 500 events, m χ = 25 GeV) [CLS, IJMPD 24, 1550090 (2015)] C.-L. Shan (XAO-CAS) CFHEP-CAS, August 12, 2016 p. 15

With a non-negligible threshold energy Reconstruction of f 1 (v) with a non-negligible threshold energy Consider the non-zero minimal cut-off velocity where N 2 α [ 2Q 1/2 min F 2 (Q min ) ( ) ] 1 dr + I 0 (Q min, Qmax dq ) expt, Q=Q min ( ) dr = r 1 e k 1(Q min Q s,1) r(q min ) dq expt, Q=Q min I n(q min, Q max) = Q max Q min [ Q (n 1)/2 1 F 2 (Q) ( )] dr dq dq a Q (n 1)/2 a F 2 (Q a) ( Qmax min Q max, Q max,kin = v max 2 ) α 2 [CLS, IJMPD 24, 1550090 (2015)] C.-L. Shan (XAO-CAS) CFHEP-CAS, August 12, 2016 p. 16

With a non-negligible threshold energy Reconstruction of f 1 (v) with a non-negligible threshold energy Height of the velocity distribution at the non-zero minimal cut-off velocity [ ] [ ] f 1,rec (vmin ) = N 2Q min r(q min ) d F 2 (Q min ) dq ln F 2 (Q) k 1 N f 1,rec (vmin ) Q=Qmin Consider the contribution below the non-zero minimal cut-off velocity N = 2 α [ f 1,rec (vmin ) Q1/2 min + 2Q1/2 min F 2 (Q min ) ( ) ] 1 dr + I 0 (Q min, Qmax dq ) expt, Q=Q min [CLS, IJMPD 24, 1550090 (2015)] C.-L. Shan (XAO-CAS) CFHEP-CAS, August 12, 2016 p. 17

With a non-negligible threshold energy Reconstruction of f 1 (v) with a non-negligible threshold energy Reconstructed f 1,rec (v s,n ) with the input WIMP mass ( 76 Ge, 2-50 kev, 500 events, m χ = 25 GeV) [CLS, IJMPD 24, 1550090 (2015)] C.-L. Shan (XAO-CAS) CFHEP-CAS, August 12, 2016 p. 18

With a non-negligible threshold energy Reconstruction of f 1 (v) with a non-negligible threshold energy Reconstructed f 1,rec (v s,n ) with the input WIMP mass ( 76 Ge, 5-50 kev, 500 events, m χ = 25 GeV) [CLS, IJMPD 24, 1550090 (2015)] C.-L. Shan (XAO-CAS) CFHEP-CAS, August 12, 2016 p. 19

With a non-negligible threshold energy Reconstruction of f 1 (v) with a non-negligible threshold energy [ Theoretical bias estimate of v min 0 ] v min f 0 1 (v) dv / v max f 0 1 (v) dv [CLS, IJMPD 24, 1550090 (2015)] C.-L. Shan (XAO-CAS) CFHEP-CAS, August 12, 2016 p. 20

With a model of the WIMP velocity distribution With a model of the WIMP velocity distribution Bayesian analysis C.-L. Shan (XAO-CAS) CFHEP-CAS, August 12, 2016 p. 21

With a model of the WIMP velocity distribution Bayesian reconstruction of f 1 (v) Bayesian analysis p(θ data) = p(data Θ) p(θ) p(data) Θ: { } a 1, a 2,, a NBayesian, a specified (combination of the) value(s) of the fitting parameter(s) p(θ): prior probability, our degree of belief about Θ being the true value(s) of fitting parameter(s), often given in form of the (multiplication of the) probability distribution(s) of the fitting parameter(s) p(data Θ): the probability of the observed result, once the specified (combination of the) value(s) of the fitting parameter(s) happens, usually be described by the likelihood function of Θ, L(Θ). p(θ data): posterior probability density function for Θ, the probability of that the specified (combination of the) value(s) of the fitting parameter(s) happens, given the observed result C.-L. Shan (XAO-CAS) CFHEP-CAS, August 12, 2016 p. 22

With a model of the WIMP velocity distribution Bayesian reconstruction of f 1 (v) Probability distribution functions for p(θ) Without prior knowledge about the fitting parameter Flat-distributed p i (a i ) = 1 for a i,min a i a i,max With prior knowledge about the fitting parameter Around a theoretical predicted/estimated or experimental measured value µ a,i With (statistical) uncertainties σ a,i Gaussian-distributed p i (a i ; µ a,i, σ a,i ) = 1 2π σa,i e (a i µ a,i ) 2 /2σ 2 a,i [CLS, JCAP 1408, 009 (2014)] C.-L. Shan (XAO-CAS) CFHEP-CAS, August 12, 2016 p. 23

With a model of the WIMP velocity distribution Bayesian reconstruction of f 1 (v) Likelihood function for p(data Θ) with Theoretical one-dimensional WIMP velocity distribution function: f 1,th (v; a 1, a 2,, a NBayesian ) Assuming that the reconstructed data points are Gaussian-distributed around the theoretical predictions ) L (f 1,rec(v s,µ), µ = 1, 2,, W ; a i, i = 1, 2,, N Bayesian W ) Gau (v s,µ, f 1,rec(v s,µ), σ f1,s,µ; a 1, a 2,, a NBayesian µ=1 ) Gau (v s,µ, f 1,rec(v s,µ), σ f1,s,µ; a 1, a 2,, a NBayesian [ ] 1 2 / e f 1,rec (v s,µ) f 1,th (v s,µ;a 1,a 2,,a NBayesian ) 2σf 2 1,s,µ 2π σf1,s,µ [CLS, JCAP 1408, 009 (2014)] C.-L. Shan (XAO-CAS) CFHEP-CAS, August 12, 2016 p. 24

With a model of the WIMP velocity distribution Bayesian reconstruction of f 1 (v) Input and fitting one-dimensional WIMP velocity distribution functions One-parameter shifted Maxwellian velocity distribution f 1,sh,v0 (v) = 1 ( ) v [ ] e (v ve)2 /v0 2 e (v+ve)2 /v0 2 v e = 1.05 v 0 π v 0 v e Shifted Maxwellian velocity distribution f 1,sh (v) = 1 ( ) v [ ] e (v ve)2 /v0 2 e (v+ve)2 /v0 2 π v 0 v e Variated shifted Maxwellian velocity distribution f 1,sh, v (v) = 1 [ ] { } v e [v (v 0+ v)] 2 /v0 2 e [v+(v 0+ v)] 2 /v0 2 π v 0 (v 0 + v) Simple Maxwellian velocity distribution f 1,Gau (v) = 4 ( v 2 ) π v0 3 e v 2 /v0 2 Modified simple Maxwellian velocity distribution f 1,Gau,k (v) = v 2 ( ) e v 2 /kv0 2 e v max 2 /kv 2 k 0 for v v max N f,k C.-L. Shan (XAO-CAS) CFHEP-CAS, August 12, 2016 p. 25

With a model of the WIMP velocity distribution Bayesian reconstruction of f 1 (v) Reconstructed f 1,Bayesian (v) with the input WIMP mass ( 76 Ge, 2-50 kev, 500 events, m χ = 25 GeV, f 1,sh,v0 (v) f 1,sh,v0 (v), flat-dist.) [CLS, IJMPD 24, 1550090 (2015)] C.-L. Shan (XAO-CAS) CFHEP-CAS, August 12, 2016 p. 26

With a model of the WIMP velocity distribution Bayesian reconstruction of f 1 (v) Reconstructed f 1,Bayesian (v) with the input WIMP mass ( 76 Ge, 5-50 kev, 500 events, m χ = 25 GeV, f 1,sh,v0 (v) f 1,sh,v0 (v), flat-dist.) [CLS, IJMPD 24, 1550090 (2015)] C.-L. Shan (XAO-CAS) CFHEP-CAS, August 12, 2016 p. 27

Determination of the WIMP mass Determination of the WIMP mass C.-L. Shan (XAO-CAS) CFHEP-CAS, August 12, 2016 p. 28

Determination of the WIMP mass Determination of the WIMP mass Estimating the moments of the WIMP velocity distribution v n = α n 2Q1/2 min r 1 min F 2 (Q min ) + I 0 2Q(n+1)/2 r min min F 2 + (n + 1)I n (Q min ) I n = a Q (n 1)/2 a F 2 (Q a) Determining the WIMP mass mx m m χ v Y m X R n n = R n m X /m Y R n = ( ) dr r min = = r 1 e k 1 (Q min Q s,1 ) dq expt, Q=Q min [M. Drees and CLS, JCAP 0706, 011 (2007)] 2Q(n+1)/2 min,x r min,x /FX 2 (Q min,x ) + (n + 1)I n,x (X ) 1/n 1 Y 2Q 1/2 (n 0) min,x r min,x /F X 2 (Q min,x ) + I 0,X Assuming a dominant SI scalar WIMP-nucleus interaction m χ σ = (m X /m Y ) 5/2 m Y m X R σ R σ (m X /m Y ) 5/2 R σ = E Y E X [CLS and M. Drees, arxiv:0710.4296] 2Q1/2 min,x r min,x /F 2 X (Q min,x ) + I 0,X 2Q 1/2 min,y r min,x /F 2 Y (Q min,y ) + I 0,Y [M. Drees and CLS, JCAP 0806, 012 (2008)] C.-L. Shan (XAO-CAS) CFHEP-CAS, August 12, 2016 p. 29

Determination of the WIMP mass Determination of the WIMP mass Reconstructed m χ,rec ( 28 Si + 76 Ge, Q max < 100 kev, 2 50 events) [M. Drees and CLS, JCAP 0806, 012 (2008)] C.-L. Shan (XAO-CAS) CFHEP-CAS, August 12, 2016 p. 30

Determinations of the WIMP-nucleon couplings Determinations of the WIMP-nucleon couplings C.-L. Shan (XAO-CAS) CFHEP-CAS, August 12, 2016 p. 31

Determinations of the WIMP-nucleon couplings Estimation of the SI scalar WIMP-nucleon coupling Estimation of the SI scalar WIMP-nucleon coupling C.-L. Shan (XAO-CAS) CFHEP-CAS, August 12, 2016 p. 32

Determinations of the WIMP-nucleon couplings Estimation of the SI scalar WIMP-nucleon coupling Estimation of the SI scalar WIMP-nucleon coupling Spin-independent (SI) scalar WIMP-nucleus cross section ( ) ( 4 σ0 SI = mr,n 2 [ ] 2 4 Zfp + (A Z)f n π π ) m 2 r,n A2 f p 2 = A 2 ( mr,n m r,p ( ) 4 σχp SI = m 2 π r,p f p 2 f (p,n) : effective SI scalar WIMP-proton/neutron couplings Rewriting the integral over f 1 (v)/v ) 2 σ SI χp ( ) dr = Eρ 2 [( ] 0A 4 )m 2r,p dq expt, Q=Q min 2m χmr,p 2 π fp 2 F 2 2 (Q min ) m 2Q1/2 min r ] min 2 rmin r,n m N F 2 (Q min ) + I 0 1[ F 2 (Q min ) Estimating the SI scalar WIMP-nucleon coupling [ ( )] f p 2 = 1 π ρ 0 4 1 2 E Z A 2 2Q1/2 min,z r min,z Z mz FZ 2(Q + I 0,Z (m χ + m Z ) min,z ) [M. Drees and CLS, PoS IDM2008, 110 (2008)] C.-L. Shan (XAO-CAS) CFHEP-CAS, August 12, 2016 p. 33

Determinations of the WIMP-nucleon couplings Estimation of the SI scalar WIMP-nucleon coupling Estimation of the SI scalar WIMP-nucleon coupling Reconstructed f p 2 rec vs. reconstructed m χ,rec ( 76 Ge (+ 28 Si + 76 Ge), Q max < 100 kev, σ SI χp = 10 8 pb, 1(3) 50 events) [CLS, arxiv:1103.0481] C.-L. Shan (XAO-CAS) CFHEP-CAS, August 12, 2016 p. 34

Determinations of the WIMP-nucleon couplings Determinations of ratios of WIMP-nucleon cross sections Determinations of ratios of WIMP-nucleon cross sections C.-L. Shan (XAO-CAS) CFHEP-CAS, August 12, 2016 p. 35

Determinations of the WIMP-nucleon couplings Determinations of ratios of WIMP-nucleon cross sections Determination of the ratio of SD WIMP-nucleon couplings Spin-dependent (SD) axial-vector WIMP-nucleus cross section ( ) ( ) 32 J + 1 [ Sp a σ0 SD = GF 2 ] 2 π m2 r,n p + S n a n J σ SD χp/n = ( 32 π ) G 2 F m2 r,p/n ( 3 4 ) a 2 p/n J: total nuclear spin S (p,n) : expectation values of the proton/neutron group spin a (p,n) : effective SD axial-vector WIMP-proton/neutron couplings Determining the ratio of two SD axial-vector WIMP-nucleon couplings ( ) SD an a p ±,n [( JX R J,n J X + 1 = Sp X ± S p Y R J,n S n X ± S n Y R J,n ) ( ) JY + 1 Rσ J Y R n ] 1/2 (n 0) [M. Drees and CLS, arxiv:0903.3300] C.-L. Shan (XAO-CAS) CFHEP-CAS, August 12, 2016 p. 36

Determinations of the WIMP-nucleon couplings Determinations of ratios of WIMP-nucleon cross sections Determination of the ratio of SD WIMP-nucleon couplings Reconstructed (a n /a p ) SD rec,1 ( 73 Ge + 37 Cl and 19 F + 127 I, Q min > 5 kev, Q max < 100 kev, 2 50 events, m χ = 100 GeV) [CLS, JCAP 1107, 005 (2011)] C.-L. Shan (XAO-CAS) CFHEP-CAS, August 12, 2016 p. 37

Determinations of the WIMP-nucleon couplings Determinations of ratios of WIMP-nucleon cross sections Determinations of ratios of WIMP-nucleon cross sections Differential rate for combined SI and SD cross sections ( ) dr = E ρ 0σ SI ( 0 σ [F 2SI SD ) ] dq expt, Q=Q min 2m χm r,n 2 (Q) + χp vmax [ ] σχp SI C pf 2 f1 SD (Q) (v) dv v min v C p 4 3 ( ) [ ] J + 1 Sp + (a 2 n/a p) S n J A Determining the ratio of two WIMP-proton cross sections σχp SD σχp SI = R m,xy F 2 SI,Y (Q min,y )R m,xy F 2 SI,X (Q min,x ) C p,x F 2 SD,X (Q min,x ) C p,y F 2 SD,Y (Q min,y )R m,xy ( ) ( rmin,x EY E X r min,y ) ( ) 2 my m X Determining the ratio of two SD axial-vector WIMP-nucleon couplings ( ) SI+SD an = a p ± ( )[ JX + 1 Sp X c p,x 4 3 J X (c p,x s n/p,x c p,y s n/p,y ) ± c p,x c p,y sn/p,x s n/p,y A X c p,x s n/p,x 2 c p,y s n/p,y 2 ] 2[ F 2 SI,Z (Q min,z )R m,yz F 2 ] SI,Y (Q min,y ) F 2 SD,X (Q min,x ) [M. Drees and CLS, arxiv:0903.3300] C.-L. Shan (XAO-CAS) CFHEP-CAS, August 12, 2016 p. 38

Determinations of the WIMP-nucleon couplings Determinations of ratios of WIMP-nucleon cross sections Determinations of ratios of WIMP-nucleon cross sections Reconstructed (a n /a p ) SI+SD rec vs. (a n /a p ) SD rec,1 ( 19 F + 127 I + 28 Si, Q min > 5 kev, Q max < 100 kev, 3 50 events, σ SI χp = 10 8 /10 10 pb, a p = 0.1, m χ = 100 GeV) [CLS, JCAP 1107, 005 (2011)] C.-L. Shan (XAO-CAS) CFHEP-CAS, August 12, 2016 p. 39

Determinations of the WIMP-nucleon couplings Determinations of ratios of WIMP-nucleon cross sections Determinations of ratios of WIMP-nucleon cross sections Reconstructed ( ) σχp SD /σχp SI and ( ) σ SD rec χn /σχp SI rec ( 19 F + 127 I + 28 Si vs. 23 Na/ 131 Xe + 76 Ge, Q min > 5 kev, Q max < 100 kev, σχp SI = 10 8 pb, a p = 0.1, m χ = 100 GeV, 3/2 50 events) [CLS, JCAP 1107, 005 (2011)] C.-L. Shan (XAO-CAS) CFHEP-CAS, August 12, 2016 p. 40

Summary Summary C.-L. Shan (XAO-CAS) CFHEP-CAS, August 12, 2016 p. 41

Summary Summary Once two or more experiments with different target nuclei observe positive WIMP signals, we could reconstruct WIMP mass m χ 1-D velocity distribution f 1 (v) SI WIMP-proton coupling f p 2 (with an assumed ρ 0 ) ratio between the SD WIMP-nucleon couplings a n /a p ratios between the SD and SI WIMP-nucleon cross sections σ SD χ(p,n) /σsi χp With an assumed f 1,th (v), one can fit f 1 (v) by using Bayesian analysis. For these analyses the local density, the velocity distribution, and the mass/couplings on nucleons of halo WIMPs are not required priorly. For a WIMP mass of O(100 GeV), with only O(50) events from one experiment and less than 20% unrejected backgrounds, these quantities could be estimated with statistical uncertainties of 10% 40%. C.-L. Shan (XAO-CAS) CFHEP-CAS, August 12, 2016 p. 42

Summary Thank you very much for your attention! C.-L. Shan (XAO-CAS) CFHEP-CAS, August 12, 2016 p. 43