CHAPTER 3: FEEDBACK. Dr. Wan Mahani Hafizah binti Wan Mahmud

Similar documents
Feedback Principle :-

55:041 Electronic Circuits

Introduction to Electronic circuits.

PHYSICS 536 Experiment 12: Applications of the Golden Rules for Negative Feedback

Design of Analog Integrated Circuits

Circuits Op-Amp. Interaction of Circuit Elements. Quick Check How does closing the switch affect V o and I o?

III. Operational Amplifiers

Chapter 7. Systems 7.1 INTRODUCTION 7.2 MATHEMATICAL MODELING OF LIQUID LEVEL SYSTEMS. Steady State Flow. A. Bazoune

ME2142/ME2142E Feedback Control Systems. Modelling of Physical Systems The Transfer Function

EE 204 Lecture 25 More Examples on Power Factor and the Reactive Power

Lecture 2 Feedback Amplifier

PT326 PROCESS TRAINER

Linear Amplifiers and OpAmps

Chapter 3, Solution 1C.

The three major operations done on biological signals using Op-Amp:

CHAPTER 3 ANALYSIS OF KY BOOST CONVERTER

Introduction of Two Port Network Negative Feedback (Uni lateral Case) Feedback Topology Analysis of feedback applications

SIMULATION OF THREE PHASE THREE LEG TRANSFORMER BEHAVIOR UNDER DIFFERENT VOLTAGE SAG TYPES

ANALOG ELECTRONICS 1 DR NORLAILI MOHD NOH

EE 221 Practice Problems for the Final Exam

The Operational Amplifier and Application

CIRCUIT ANALYSIS II Chapter 1 Sinusoidal Alternating Waveforms and Phasor Concept. Sinusoidal Alternating Waveforms and

IGEE 401 Power Electronic Systems. Solution to Midterm Examination Fall 2004

Wp/Lmin. Wn/Lmin 2.5V

Section I5: Feedback in Operational Amplifiers

Waveshapping Circuits and Data Converters. Lesson #17 Comparators and Schmitt Triggers Section BME 373 Electronics II J.

FE REVIEW OPERATIONAL AMPLIFIERS (OP-AMPS)( ) 8/25/2010

Novel current mode AC/AC converters with high frequency ac link *

The two main types of FETs are the junction field effect transistor (JFET) and the metal oxide field effect transistor (MOSFET).

Faculty of Engineering

Conduction Heat Transfer

FYSE400 ANALOG ELECTRONICS

55:141 Advanced Circuit Techniques Two-Port Theory

CTN 2/23/16. EE 247B/ME 218: Introduction to MEMS Design Lecture 11m2: Mechanics of Materials. Copyright 2016 Regents of the University of California

Big Data Analytics! Special Topics for Computer Science CSE CSE Mar 31

Department of Electrical and Computer Engineering FEEDBACK AMPLIFIERS

Part III Lectures Field-Effect Transistors (FETs) and Circuits

Copyright Paul Tobin 63

Section 3: Detailed Solutions of Word Problems Unit 1: Solving Word Problems by Modeling with Formulas

OP AMP CHARACTERISTICS

Is current gain generally significant in FET amplifiers? Why or why not? Substitute each capacitor with a

Module B3. VLoad = = V S V LN

55:141 Advanced Circuit Techniques Two-Port Theory

55:041 Electronic Circuits

55:041 Electronic Circuits

V. Electrostatics Lecture 27a: Diffuse charge at electrodes

Energy & Work

T-model: - + v o. v i. i o. v e. R i

FEEDBACK AMPLIFIERS. v i or v s v 0

Edexcel GCSE Physics

Lesson 5. Thermomechanical Measurements for Energy Systems (MENR) Measurements for Mechanical Systems and Production (MMER)

Thermodynamics of Materials

FE REVIEW OPERATIONAL AMPLIFIERS (OP-AMPS)

A Novel Isolated Buck-Boost Converter

_J _J J J J J J J J _. 7 particles in the blue state; 3 particles in the red state: 720 configurations _J J J _J J J J J J J J _

Technote 6. Op Amp Definitions. April 1990 Revised 11/22/02. Tim J. Sobering SDE Consulting

Two Port Characterizations

ANALOG ELECTRONICS DR NORLAILI MOHD NOH

Chapter 6 : Gibbs Free Energy

CIRCLE YOUR DIVISION: Div. 1 (9:30 am) Div. 2 (11:30 am) Div. 3 (2:30 pm) Prof. Ruan Prof. Naik Mr. Singh

CHAPTER 11. Solutions for Exercises. (b) An inverting amplifier has negative gain. Thus L

Diodes Waveform shaping Circuits. Sedra & Smith (6 th Ed): Sec. 4.5 & 4.6 Sedra & Smith (5 th Ed): Sec. 3.5 & 3.6

Chapter II Circuit Analysis Fundamentals

Concurrent Adaptive Cancellation of Quantization Noise and Harmonic Distortion in Sigma Delta Converter

EE C245 ME C218 Introduction to MEMS Design

Revision: August 19, E Main Suite D Pullman, WA (509) Voice and Fax

Physic 231 Lecture 33

Diodes Waveform shaping Circuits

Microelectronics Circuit Analysis and Design. NMOS Common-Source Circuit. NMOS Common-Source Circuit 10/15/2013. In this chapter, we will:

Lesson #14. Section BME 373 Electronics II J.Schesser

element k Using FEM to Solve Truss Problems

CHAPTER 3 QUASI-RESONANT BUCK CONVERTER

Week 11: Differential Amplifiers

Improved Bridgeless Interleaved Boost PFC Rectifier with Optimized Magnetic Utilization and Reduced Sensing Noise

6. ELUTRIATION OF PARTICLES FROM FLUIDIZED BEDS

Lecture 20a. Circuit Topologies and Techniques: Opamps

BME 5742 Biosystems Modeling and Control

Bipolar-Junction (BJT) transistors

Chapter 30. Inductance

Voltage Mode-to-Current Mode Transformation

Spring 2002 Lecture #17

Coupled Inductors and Transformers

Lecture 02 CSE 40547/60547 Computing at the Nanoscale

Transfer Characteristic

Simple electronically tunable oscillators

Synchronous Motor V-Curves

POWER AMPLIFIERS. 1. Explain what are classes A, B, AB and C amplifiers in terms of DC biasing using a MOSFET drain characteristic.

Improved Bridgeless Interleaved Boost PFC Rectifier with Optimized Magnetic Utilization and Reduced Sensing Noise

Chapter 10 Diodes. 1. Understand diode operation and select diodes for various applications.

Exercises for Frequency Response. ECE 102, Winter 2011, F. Najmabadi

Water vapour balance in a building moisture exposure for timber structures

Oscillator. Introduction of Oscillator Linear Oscillator. Stability. Wien Bridge Oscillator RC Phase-Shift Oscillator LC Oscillator

Shell Stiffness for Diffe ent Modes

Transistors. Lesson #10 Chapter 4. BME 372 Electronics I J.Schesser

General Amplifiers. Analog Electronics Circuits Nagamani A N. Lecturer, PESIT, Bangalore 85. Cascade connection - FET & BJT

ZVS Boost Converter. (a) (b) Fig 6.29 (a) Quasi-resonant boost converter with M-type switch. (b) Equivalent circuit.

CHEM Thermodynamics. Change in Gibbs Free Energy, G. Review. Gibbs Free Energy, G. Review

MODULE TITLE : ELECTRONICS TOPIC TITLE : AMPLIFIERS LESSON 1 : FEEDBACK

Lecture 12. Heat Exchangers. Heat Exchangers Chee 318 1

Prof. Paolo Colantonio a.a

Transcription:

CHPTER 3: FEEDBCK Dr. Wan Mahan Hafzah bnt Wan Mahmud

Feedback ntrductn Types f Feedback dvantages, Characterstcs and effect f Negatve Feedback mplfers Crcuts wth negatve feedback Pstve feedback and Oscllatr Operatn 2

Example f Negatve Feedback n Everyday Lfe djustng the shwer T ht, turn t dwn T cld, turn t up Drvng a car T slw, put yur ft dwn T fast, ease yur ft ff Blng kppers Water s bubblng, turn heat dwn Water ges ff the bl, turn heat up Standng up straght Start fallng t the left, shft weght t the rght 3

Feedback: alve Example s the water nears the specfed level, the valve s clsed Negatve feedback s mst cmmnly used t cntrl systems 4

n Techncal Terms Summng Nde mplfer nput - Errr Feedback Netwrk Feedback s a technque t feed back a prtn f the utput sgnal (current r vltage) t the nput surce thrugh a feedback netwrk m f the crcut s t mnmse the errr 5

Type f Feedback Tw types f feedback Pstve (regeneratve) Negatve (degeneratve) The basc dea f negatve feedback s t trade ff gan fr ther desrable prpertes 6

Type f Feedback (cnt.) n negatve feedback systems, the feedback tends t reduce the nput t the frward path n pstve feedback systems, the feedback tends t ncrease the nput t the frward path Negatve feedback: Pstve feedback: β s pstve β s negatve and less than 1 ( pen-lp gan, β feedback netwrk) 7

mplfer wthut Feedback X can be current r vltage sgnals s called an pen lp gan 8

mplfer wth Feedback Fgure 3.2: X S X XO X f Feedback netwrk: Gan wthut feedback: Gan wth feedback: β F X X X X F X X s F s called an 9 clse lp gan

n Fg. 3.2: Gan wth Feedback X f β X X X S X f X S β X X X ( X S β X ) X ( 1 β) X S f X X s 1 β mplfer s gan wth feedback s reduced by the factr (1 β) Deselectvty D 1 β 10

Why Feedback? (dvantages) Desenstze the gan: make the value f the gan less senstve t varatns n the value f crcut cmpnents, such as mght be caused by changes n temperature better stablzed gan Overall gan wth negatve feedback: f 1 β f β >> 1 then: f β 1 β Gan wth feedback ( f ) s ndependent f amplfer gan (). f depends n feedback netwrk (β) 11

Why Feedback? (dvantages) Reduce nnlnear dstrtn: make the utput prprtnal t the nput mre lnear peratn Reduce the effect f nse: mnmze the cntrbutn t the utput f unwanted electrc sgnals generated, ether by the crcut cmpnents themselves, r by extraneus nterference reduced dstrtn f the utput sgnal Extend the bandwdth f the amplfer mprved frequency respnse 12

Frequency Respnse lthugh gan s reduced, BW s ncreased f Lf f L 1 β f Hf f 1 H 13 ( β )

Gan Bandwdth Prduct (GBP) GBP fr amplfer wth r wthut prduct s equal: ( BW ) ( BW ) f f Cutff frequences wth feedback: f Lf f L f f ( ) 1 Hf H 1 β β Bandwdth wth feedback: BW f f Hf f Lf snce f Hf >> f Lf then BW f f Hf BW f f f 1 Hf H ( β ) 14

Gan Bandwdth Prduct (GBP) GBP fr amplfer wth feedback: f x BW f β 1 β ( f H ( 1 ) ) f H Fr amplfer wthut feedback, the bandwdth: BW f H f L f The GBP fr amplfer wthut feedback: H Prven that: xbw f H ( BW ) ( BW ) f f 15

Why Feedback? (dvantages) Better nput and utput mpedances: rase r lwer the nput and utput mpedance by the selectn f an apprprate feedback tplgy accrdng t the type f amplfer hgher r lwer nput mpedance (Z ) hgher r lwer utput mpedance (Z ) Type f mplfer ltage mplfer Transmpedance mplfer Transcnductance mplfer Current mplfer Feedback Cnnectn ltage seres (shunt-seres) ltage shunt (shunt-shunt) Current seres (seres-seres) Current shunt (seres-shunt) 16

Feedback Cnnectn Types Bth vltage and current can be fed back t the nput ether n seres r parallel (shunt) 4 basc ways f cnnectng the feedback sgnal: ) vltage seres feedback (Fg.3.4(a)) ) vltage-shunt feedback (Fg.3.4(b)) ) current-seres feedback (Fg.3.4(c)) v) current-shunt feedback (Fg.3.4(d)) 17

ltage mplfer (a) vltage-seres feedback (shunt-seres) ƒ / s Transmpedance/ transresstance mplfer (b) vltage-shunt feedback (shunt-shunt) ƒ / s 18

Trancnductance mplfer (c) current-seres feedback (seres-seres) ƒ / s Current mplfer (d) current-shunt feedback (seres-shunt) ƒ / s 19

n Fg. 3.4, the terms vltage refers t cnnectng the utput vltage (Fg. a & b) as nput t the feedback netwrk whle current refers t tappng ff sme utput current (Fg. c & d) thrugh the feedback netwrk Seres refers t cnnectng the feedback sgnal n seres wth the nput sgnal vltage (Fg. a & c); whle shunt refers t cnnectng the feedback sgnal n shunt (parallel) wth an nput current surce (Fg. b & d) 20

mplfer Fundamentals 21

mplfers Type f mplfer ltage mplfer Transmpedance mplfer Transcnductance mplfer Current mplfer Feedback Cnnectn ltage seres ltage shunt Current seres Current Shunt deal nput mpedance (Z) deal Output mpedance (Z) Gan wthut Feedback 0 0 0 0 t tc 22

Fg. 3.5(a) ltage-seres Feedback 23

ltage-seres Feedback Fndng f Output f the crcut: O t the nput: s f and β f Hence: O ( ) ( β ) s f s f s f ( 1 β ) s O s 1 β 24

ltage-seres Feedback ) f s (1 β β β Fndng Z 25 ) 1 ( v s F Z Z β Z nput mpedance s ncreased ( ) s 1 Z β

Fndng Z ltage-seres Feedback Fr the crcut: Wth s 0 Z v - f Therefre Z v f Z v (β) Rewrtng the equatn v β Z Then the utput mpedance: Z f 1 Z v β 26

ltage-shunt Feedback Transmpedance mplfer 27

ltage-shunt Feedback ) (1 t t t t t s t f F β β β t 1 β F F s reduced 28 1 β t ) / ( / / f s F Z β β t F 1 Z Z β Z F s reduced

ltage-shunt Feedback Crcut n fndng utput mpedance 29

ltage-shunt Feedback Z F can be fund n smlar manner as the vltage amplfer wth vltage seres feedback When s 0 - f Z t Therefre Z t f f β, s ( 1 β ) t Z Z t ( β) Z F Z 1 β t Z F s reduced 30

Current-Seres Feedback Transcnductance mplfer 31

Current-Seres Feedback tc F 1 β F s reduced tc β β β 1 tc f s Fndng gan wth feedback 32 tc f F β β β 1 tc tc tc tc tc s S tc 1 β nther way:

Current-Seres Feedback tc s s f s Z - Z - Z - Z β β tc s - Z β Fndng nput mpedance 33 ( ) tc s F 1 Z Z β Z F s ncreased tc s ( ) tc tc tc s 1 Z Z Z Z β β β

Current-Seres Feedback Crcut t fnd utput mpedance Wth s 0: - f 34

Current-Seres Feedback Fndng utput mpedance tc Z Wth s 0: - f and f β Z f tc (- f ) - tc β Z Z (1 β ) Z tc Z (1 βtc ) Z F s ncreased 35

Current-Shunt Feedback Current mplfer 36

Current-Shunt Feedback F β β 1 S F O F β 37 S F 1 β F s reduced F 1 β β β 1 s

Current-Shunt Feedback f s F Z Z Z / / β β F 1 Z Z β Z F s decreased 38 Z F s ncreased Z Z Z ) - (- f β ) (1 f Z Z β Z ) (1 β

Current-Shunt Feedback Crcut t fnd utput mpedance 39

Effect f Feedback n nput and Output mpedances Feedback Tplgy mplfer ltage ltage Current Current seres shunt seres shunt ltage Transmpe- Transcnduc- Current mplfer Transcnduc- Transmpedance mplfer tance mplfer mplfer Z F Z ( 1 β) 1Z β Z ( 1 β) 1Z β Z F Z β Z β 1 1 Z ( 1 β) Z ( 1 β) 40

mplfer & Feedback Tplgy 41

PRCTCL FEEDBCK CRCUTS 42

Feedback n Crcuts T determne the type f feedback emplyed by a crcut, a test can be dne t check ether the utput vltage ( ) r utput current ( ) s taken at the utput t be fed back Ths s dne usng test fr vltage r test fr current Then at the nput sectn, check the way the surce (X s ), nput (X ) and feedback (X f ) sgnals are cnnected: ether n seres r parallel (shunt) 43

Test fr ltage r Current Test fr vltage Shrt crcut the lad s that the utput vltage becmes zer f the sgnal returned t the amplfer nput by the feedback netwrk becmes zer, then the amplfer has a vltage feedback Test fr current Open crcut the lad s that the utput current becmes zer f the sgnal returned t the amplfer nput by the feedback netwrk als becmes zer, then the amplfer has a current feedback 44

Example 1 Determne the feedback tplgy used n the crcut Fnd the feedback netwrk (β), and gan fr ths crcut 45

Example 1 : Test fr ltage Shrt crcut the utput The utput vltage ( 0 ) s zer; and n utput sgnal s beng fed t the feedback netwrk Snce the sgnal returned t the amplfer nput by the feedback netwrk becmes zer, then the amplfer has a vltage feedback t the nput: Surce sgnal s n seres wth nput and feedback sgnals Thus t s a vltage seres feedback 46

Example 1 : Test fr Current Open crcut utput There s a current () beng fed t the feedback netwrk Snce the sgnal returned t the amplfer nput by the feedback netwrk s nt zer, then the utput sgnal beng taken s nt current, s the amplfer has a vltage feedback t the nput: Surce sgnal s n seres wth nput and feedback sgnals Thus t s a vltage seres feedback 47

Example 1 Fndng the feedback factr (β): 2 1 2 F R R R 48 2 1 2 R R R β 2 1 2 F R R R S the feedback netwrk( β):

Example 1 Fndng the gan wth feedback s But - s F s F Thus: F O S O F 1 β R R 1 1 2 F R 2 R1 R 2 49

Example 2 Determne the feedback tplgy used n the crcut Fnd the feedback netwrk (β), and gan fr ths crcut 50

Test fr vltage Shrt crcut the utput The utput vltage ( 0 ) s zer; but there s a sgnal beng fed t feedback netwrk Snce the sgnal returned t the amplfer nput by the feedback netwrk s nt zer, then t s nt the utput vltage beng taken t be fed back Example 2 Hence the amplfer has a current feedback 51

Test fr current Open crcut the utput There s n utput sgnal beng fed t feedback netwrk Snce the sgnal returned t the amplfer nput by the feedback netwrk s zer, then t s the utput current beng taken t be fed back Example 2 Hence the amplfer has a current feedback 52

Example 2 t the nput: Surce sgnal s n seres wth nput and feedback sgnals Thus t s a current seres feedback The amplfer s a transcnductance amplfer 53

Example 2 O F But 0 O F R F F F R F β O Feedback netwrk F - S F F F R F O R O S 1 R F tc mplfer s gan 54

Example 3 Determne the feedback tplgy used n the crcut 55

Test fr vltage Shrt crcut utput Output vltage wll be zer; n utput sgnal s beng fed t the feedback netwrk Snce the sgnal returned t the amplfer nput by the feedback netwrk becmes zer, then the amplfer has a vltage feedback Example 3 t the nput: Surce sgnal s parallel wth nput and feedback sgnals Thus t s a vltage shunt feedback 56

Test fr current Open crcut utput There s a current beng fed t the feedback netwrk Snce the sgnal returned t the amplfer nput by the feedback netwrk s nt zer, then the utput sgnal beng taken s nt current; t s the utput vltage Hence the amplfer has a vltage feedback Example 3 t the nput: Surce sgnal s parallel wth nput and feedback sgnals Thus t s a vltage shunt feedback 57

Example 3 Exercse: Fnd the feedback netwrk (β), and the gan fr ths crcut Ths crcut has a vltage shunt feedback Thus t s a transmpedance amplfer 58

Slutn fr Exercse (Example 3) F S 0 S F O O R 0 59 O O F R 1 β O S O F R O O R

POSTE FEEDBCK ND OSCLLTOR OPERTON 60

Oscllatr n scllatr s a crcut that prduces a perdc wavefrm n ts utput wth nly the dc supply vltage as an nput The utput vltage can be ether snusdal r nn- snusdal, dependng n the type f scllatr Fg. 3.9 dc supply vltage scllatr ut 61

Pstve Feedback Pstve feedback s used n a range f bth analgue and dgtal crcuts t prduce a varety f effects Pstve feedback Mst cmmnly used n the prductn f scllatrs Pstve feedback s characterzed by the cndtn wheren an n-phase prtn f the utput vltage f an amplfer s fed back t the nput wth n net phase shft 62

Pstve Feedback & Oscllatn ttal phase shft f 360 s ntrduced nvertng mplfer (θ 180 ) and f are n phase β O Fg. 3.10 Feedback netwrk (θ 180 ) 63

Pstve Feedback : nvertng mplfer Fg. 3.10 64

Pstve Feedback : Nnnvertng mplfer n-phase f v Nnnvertng amplfer Feedback crcut 65

Oscllatn Frm the shwn fgure, the n-phase feedback vltage, f, s amplfed t prduce the utput vltage, whch n turn prduces the feedback vltage lp s created n whch the sgnal sustans tself and a cntnuus snusdal utput s prduced Ths phenmenn s called scllatn 66

Cndtns fr Oscllatn Tw cndtns are requred t sustan a state f scllatns: The phase shft arund the feedback lp must be effectvely 0 (r 360 ) The vltage gan, cl, arund the clsed feedback lp (lp gan) must equal t 1 (unty) These 2 cndtns are knwn as Barkhausen Crtern 67

Barkhausen Crtern f v f v Phase shft 0 cl v β 1 Feedback crcut Feedback crcut n-phase (a) (b) Fg. 3.11 : General cndtns t sustan scllatn : (a) The phase shft arund the lp s 0 (b) The clsed lp gan s 1 68

Start-up Cndtns t cc v cl v β t β cl > 1 cl 1 When scllatn starts at t, the cndtn cl > 1 causes the snusdal utput vltage ampltude t buld up t a desred level. Then cl decreases t 1 and mantans the desred ampltude. 69

Effects f v β n Oscllatr Operatn Fg. 3.12: (a) The utput s drven nt clppng when v β > 1 70

Effects f v β n scllatr peratn Fg. 3.12: (b) The utput fades ut when v β < 1 Dampng; The fadng and lss f scllatns that ccur when vβ < 1 71

Effects f v β n scllatr peratn Fg. 3.12: (c) cnstant-ampltude utput s prduced when v β 1 72

Q & 73