Introduction to Mass Spectrometry (MS)

Similar documents
sample was a solution that was evaporated in the spectrometer (such as with ESI-MS) ions such as H +, Na +, K +, or NH 4

Particle Position Relative Mass Relative Charge Proton Nucleus 1 +1 Neutron Nucleus 1 0 Electron Orbitals 1/ Atomic Symbol

CHAPTER 2: Atoms, Molecules and Stoichiometry

The atomic number, Z, is the number of protons in the nucleus. The mass number,a, is the total number of protons and neutrons in the atom.

CHEM 241 UNIT 5: PART A DETERMINATION OF ORGANIC STRUCTURES BY SPECTROSCOPIC METHODS [MASS SPECTROMETRY]

Atomic Structure Atoms are very small ~ metres All atoms are made up of three sub-atomic particles: protons, neutrons and electrons

in a Suitcase Spectroscopy Students resource

Lecture 8: Mass Spectrometry

Propose a structure for an alcohol, C4H10O, that has the following

1.1 Atomic Structure Details of the three Sub-atomic (fundamental) Particles

Lecture 8: Mass Spectrometry

THE STRUCTURE OF ATOMS. ATOMS Atoms consist of a number of fundamental particles, the most important are... in the nucleus of an atom

TANDEM MASS SPECTROSCOPY

Mass spectrometry has been used a lot in biology since the late 1950 s. However it really came into play in the late 1980 s once methods were

Atomic structure Calculate the number of protons, electrons and neutrons in Important terms: quantum shells, principle quantum number, energy levels,

ChemActivity L2: Mass Spectrometry

MASS SPECTROSCOPY (MS)

Mass Spectrometry - Background

Interpretation of Organic Spectra. Chem 4361/8361

1.1 Atomic structure. The Structure of the Atom Mass Spectrometry Electronic Structure Ionisation Energies

Topic 02 Atomic Structure 2.2: The Mass Spectrometer. IB Chemistry T02D02

3 Use of Mass Spectra to Obtain Structural Information

Chapter 12 Mass Spectrometry and Infrared Spectroscopy

State the position of protons, neutrons and electrons in the atom

ZAHID IQBAL WARRAICH

Structural Determination Of Compounds

Chapter 20. Mass Spectroscopy

Welcome to Organic Chemistry II

1.1 Atomic structure

OAT Organic Chemistry - Problem Drill 19: NMR Spectroscopy and Mass Spectrometry

Mass Spectrometry. Ionizer Mass Analyzer Detector

1.1 Atomic Structure Details of the three Sub-atomic (fundamental) Particles

Chromatography & instrumentation in Organic Chemistry

Mass Spectrometry in MCAL

Name AP CHEM / / Chapter 3 Outline Stoichiometry

Qualitative Analysis of Unknown Compounds

AQA Chemistry A-Level : Atomic Structure

LIQUID CHROMATOGRAPHY-MASS SPECTROMETRY (LC/MS) Presented by: Dr. T. Nageswara Rao M.Pharm PhD KTPC

Determining Chemical Formulas

PAPER CHROMATOGRAPHY

A N I N T R O D U C T I O N T O... MASS SPECTROMETRY. A self-study booklet

Grade 11 IB Chemistry

CHE 105 Exam 1 Spring 2016

Fundamentals of Mass Spectrometry. Fundamentals of Mass Spectrometry. Learning Objective. Proteomics

(2) Read each statement carefully and pick the one that is incorrect in its information.

Unit 3 Organic Chemistry. 3.3 Structural Analysis Part 2:

5. Carbon-13 NMR Symmetry: number of chemically different Carbons Chemical Shift: chemical environment of Carbons (e- rich or e- poor)

THE STRUCTURE OF ATOMS. ATOMS Atoms consist of a number of fundamental particles, the most important ones are...

ORGANIC - BRUICE 8E CH MASS SPECT AND INFRARED SPECTROSCOPY

Lecture 14 Organic Chemistry 1

Mass Spectroscopy. Dr. Sapna Gupta

Atomic masses. Atomic masses of elements. Atomic masses of isotopes. Nominal and exact atomic masses. Example: CO, N 2 ja C 2 H 4

Instrumental Analysis. Mass Spectrometry. Lecturer:! Somsak Sirichai

Mass Relationships of Atoms

Far UV Absorbance Detector

Mass Spectrometry. Introduction EI-MS and CI-MS Molecular mass & formulas Principles of fragmentation Fragmentation patterns Isotopic effects

THE MODERN VIEW OF ATOMIC STRUCTURE

LC-MS Based Metabolomics

UNIT 2 - ATOMIC THEORY

Organic Chemistry: CHEM2322

2401 Gas (liquid) Chromatography

Learn Chemistry. Starter for Ten 10. Analysis. Registered Charity Number

Lecture 15: Introduction to mass spectrometry-i

Introduction to GC/MS

UNIT 2 - ATOMIC THEORY

Unit 1 review. Chapter 1, chapter , 2.4

Chapter 5. Mass spectrometry

Unit 11 Instrumentation. Mass, Infrared and NMR Spectroscopy

2. Atomic Structure and Periodic Table Details of the three Sub-atomic (fundamental) Particles

Unit 2 Organic Chemistry. 2.3 Structural Analysis Part 2:

Welcome!! Chemistry 328N Organic Chemistry for Chemical Engineers. Professor: Grant Willson

20.2 Ion Sources. ions electrospray uses evaporation of a charged liquid stream to transfer high molecular mass compounds into the gas phase as MH n

1. (penalty for sig fig error =1mark per question) (a) neutron: relative mass = 1 relative charge = 0 1 (not neutral )

Mass spectrometry and elemental analysis

Mass Spectrometry. General Principles

Research Equipment in the UCA Chemistry Department

Chemistry Chapter 3. Stoichiometry. (three sections for this chapter)

I. History and Development of the Atom

ORGANIC - EGE 5E CH UV AND INFRARED MASS SPECTROMETRY

Questions on Instrumental Methods of Analysis

Chapter 19. Molecules and Compounds

Principles of Gas- Chromatography (GC)

Atomic Structure. The nuclear atom Electron Configuration. Ms. Thompson - SL Chemistry Wooster High School. Wednesday, July 15, 15

Sample Copyright. Academic Group ATOMIC STRUCTURE 1. Topics covered in this chapter:

magnet evacuated chamber Figure 1: The principle of a mass spectrometer

Secondary Ion Mass Spectroscopy (SIMS)

CHROMATOGRAPHY AND MASS SPECTROMETER

Topic 2.11 ANALYTICAL TECHNIQUES. High Resolution Mass Spectrometry Infra-red Spectroscopy

E35 SPECTROSCOPIC TECHNIQUES IN ORGANIC CHEMISTRY

CHEMISTRY - TRO 4E CH.2 - ATOMS & ELEMENTS.

CHEMISTRY - MCMURRY 7E CH.2 - ATOMS, MOLECULES AND IONS.

Express, an International Journal of Multi Disciplinary Research ISSN: , Vol. 2, Issue 7,July 2015 Available at:

Scientist used to believe that matter was made up of four elements (air, earth, fire and water).

Chapter 2 Atoms and Elements

Notes:&&Unit&4:&Atomics& & & & & & & & & & & & & & & & &

The rest of topic 11 INTRODUCTION TO ORGANIC SPECTROSCOPY

Chemistry Instrumental Analysis Lecture 34. Chem 4631

Mass Spectrometry. Electron Ionization and Chemical Ionization

SL Chemistry. Monday September 21st Monday, September 21, 15

Transcription:

Introduction to Mass Spectrometry (MS) MS Mass Spectrometry (MS) This is a very powerful analytical tool that can provide information on both molecular mass and molecular structure. Molecules come in all shapes and sizes. Here are just a few examples. SUBSTANCE Hydrogen FORMULA H 2 RELATIVE MOLECULAR MASS 2 SUBSTANCE Methane FORMULA CH 4 RELATIVE MOLECULAR MASS 16 SUBSTANCE Caffeine FORMULA C 8 H 10 N 4 O 2 RELATIVE MOLECULAR MASS 194 SUBSTANCE Carbon dioxide FORMULA CO 2 RELATIVE MOLECULAR MASS 44 SUBSTANCE Warfarin FORMULA C 19 H 16 O 4 RELATIVE MOLECULAR MASS 308

INTRODUCTION 2 SUBSTANCE Cyanocobalamin (Vitamin B-12) FORMULA C 63 H 88 CoN 14 O 14 P RELATIVE MOLECULAR MASS 1355 SUBSTANCE Polystyrene (1 monomer) FORMULA (C 8 H 9 )n RELATIVE MOLECULAR MASS 170,000 SUBSTANCE Nylon 6,6 (1 monomer) FORMULA (C 14 H 28 N 2 O 2 )n RELATIVE MOLECULAR MASS 14,000-20,000 In the same way that fingerprints can be used to identify individuals, mass spectrographs can be used to identify substances and large comparison sites can be accessed for this purpose. Mass Spectrometry This technique is about 1000 times more sensitive than IR or NMR analysis. Extremely small samples (a few nanograms) can be analysed using this technique. VALUE SYMBOL NAME 10 3 g kg kilogram 10-3 g mg milligram 10-6 g µg microgram 10-9 g ng nanogram Background information Any wire carrying an electric current a flow of negative electrons - has a magnetic field surrounding it, known as an electromagnetic field. If a current carrying wire is placed Magnetic Field Current + in an external magnetic field it would jump as it is deflected when the two magnetic fields interact. An electromagnetic field can also be generated by a flow of positively charged ion, such as those generated by a mass spectrometer.

INTRODUCTION 3 How it works In a mass spectrometer a stream of positively charged ions is produced along with an associated magnetic field and their deflection in a controlled external magnetic field is studied in detail. It is important that the atoms or the molecules of the substance being investigated are free to move so if the sample is not a gas it must first be VAPORISED. Vaporisation Ionisation Acceleration Deflection Detection Sample vapourised Ionisation chamber + + Magnetic field Heavier particles Sample Electron Gun Vacuum Intermediate mass particles Lighter particles Ion detector Next, the sample must be IONISED. This is achieved by bombarding the sample with high energy electrons from an electron gun. These knock off an electron to produce a positive ion. e.g. consider a helium atom He(g) + e - He + (g) + 2e - Sometimes doubly charged ions may also be produced but this only occurs in smaller amounts because more energy would be required. Ionisation Ionisation and fragmentation e - lost therefore positively charged Molecule fragments into positively charged ions

INTRODUCTION 4 The high energy electron bombardment may also cause molecules to be broken into many different fragments. e.g. methane molecules CH 4 can be fragmented to produce CH 3+ CH 2+ CH + and C + Fragmentation is dealt with in more detail in a later section. NOTE: Because the positive ion formed has an unpaired electron it is sometimes shown with a dot indicating that it is a free radical, e.g. CH + 3 The positive ions are then ACCELERATED by an electric field and focused into a fine beam by passing through a series of slits with increasing negative potential. It is important that the ions can move freely through the apparatus without colliding with air molecules so the system has all the air removed to create a vacuum. The beam of fast moving positive ions is DEFLECTED by a strong external magnetic field. The magnitude of deflection depends upon two factors: The mass (m) of the ion the lighter it is the more it will be deflected. The charge (z) on the ion ions with 2 + charges are deflected more than 1 +. These two factors are combined into the mass to charge ratio (m/z). When m/z is small the deflection is large. Finally ions which make it right through the machine are DETECTED electronically. As the positive ions arrive at the detector they pick up electrons to become neutral. This movement of electrons is detected, amplified and recorded. The external magnetic field involved in deflection can be adjusted so that ions with different m/z ratios can be detected. A printout of intensity vs m/z ratio is produced. A simple mnemonic may help you remember these stages VICTOR IS A DAFT DUCK Vaporisation Ionisation Acceleration Deflection Detection Interpreting the printouts The mass spectrum of chlorine Cl 2 ISOTOPE OBSERVED MASS 35 Cl 35 m/z 37 Cl 37 m/z 35 Cl- 35 Cl 70 m/z 35 Cl- 37 Cl 72 m/z 37 Cl- 37 Cl 74 m/z The multitude of peaks is seen because chlorine has two common isotopes 35 Cl and 37 Cl. The peak at m/z=35 represents the [ 35 Cl] + ion and that at m/z=37 the [ 37 Cl] + ion. The ratio of the peak heights is 3:1 indicating the relative abundance of these isotopes; accounting for the Relative Atomic Mass of 35.5 a.m.u. The cluster of peaks at the higher mass result from the diatomic molecules i.e. Cl 2 where m/z=70 represents the [ 35 Cl- 35 Cl] + ion. That at m/z=72 the [ 37 Cl- 35 Cl] + ion and that at m/z=74 the [ 37 Cl- 37 Cl] + ion. Relative Abundance m/z

INTRODUCTION 5 As the molecule gets bigger the possibility of fragmentation increases and the mass spectra become more complex. Final decisions about structure are made after combining evidence from mass spectroscopy with other analytical tools such as IR, UV and NMR. Ethanol C 2 H 6 O Ionisation and fragmentation CH 3 C 2 H 5 CH 3 O C 2 H 5 O m/z=15 m/z=29 m/z=31 m/z=45 100 Relative Intensity 80 60 40 Ethanol m/z=46 20 0 10 15 20 25 30 35 40 45 m/z Many more mass spectra are available at http://www.le.ac.uk/spectraschool/ Modern Applications of MS LC-MS (Liquid Chromatography-Mass Spectrometry) This process allows complex mixtures to be separated by liquid chromatography using small capillary columns. The most up to date are less than 100µm across allowing very small quantities of sample to be used. This is very important as mass spectrometry destroys the sample. As the separated substances leave the column they are automatically fed into a mass spectrometer so that identification of each component of the mixture can be made. This technique has many applications including: Proteomics the study of proteins including digestion products. Pharmaceutics drug development, identification of drugs and drug metabolites remember the Olympics and the competitors drug testing. Environmental detection and analysis of herbicides and pesticides and their residues in foodstuffs.

INTRODUCTION 6 GC-MS (Gas Chromatography-Mass Spectrometry) This technique is growing in popularity due to the compact nature of the equipment, the speed of use (less than 90 seconds for the best equipment) and it s relatively low cost. Again it combines a chromatography step to separate out the components in a mixture, this time using an inert gas as the mobile phase. Some of its many applications include: Airport security for drug and explosive detection. Fire forensics using the debris from fires to try to explain the causes. Astrochemistry probes containing GC-MS have been sent to Mars, Venus and Titan to analyse atmosphere and planet surfaces. The Rosetta space mission aims to rendezvous with a comet in 2014 to analyse its constituents. High resolution mass spectrometry High resolution mass spectrometry can distinguish compounds with the same nominal mass but different actual mass caused by the different elemental composition. For example C 2 H 6, CH 2 O and NO all have a nominal mass of 30, however their exact masses are 30.04695039, 30.01056487 and 29.99798882, respectively. These subtle differences can be distinguished by this high resolution technique. It is becoming increasingly important as a technique for analysing the interactions between drugs and body tissues at the scale of DNA. Common Fragmentations When a molecule is split during fragmentation the pieces formed tend to be the more stable types and the height of the detected peak provides an indication of how stable the fragment is. Some typical examples are provided in the table. COMMONLY LOST FRAGMENTS COMMON STABLE IONS