Laser Physics OXFORD UNIVERSITY PRESS SIMON HOOKER COLIN WEBB. and. Department of Physics, University of Oxford

Similar documents
Lasers and Electro-optics

ATOMIC AND LASER SPECTROSCOPY

LIST OF TOPICS BASIC LASER PHYSICS. Preface xiii Units and Notation xv List of Symbols xvii

Diode Lasers and Photonic Integrated Circuits

Engineering Medical Optics BME136/251 Winter 2017

Modern optics Lasers

Distributed feedback semiconductor lasers

Quantum Electronics Laser Physics. Chapter 5. The Laser Amplifier

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009

Chemistry Instrumental Analysis Lecture 5. Chem 4631

Fiber Gratings p. 1 Basic Concepts p. 1 Bragg Diffraction p. 2 Photosensitivity p. 3 Fabrication Techniques p. 4 Single-Beam Internal Technique p.

Optics, Optoelectronics and Photonics

Optics, Light and Lasers

Elements of Quantum Optics

Signal regeneration - optical amplifiers

Laser Types Two main types depending on time operation Continuous Wave (CW) Pulsed operation Pulsed is easier, CW more useful

Figure 1 Relaxation processes within an excited state or the ground state.

What Makes a Laser Light Amplification by Stimulated Emission of Radiation Main Requirements of the Laser Laser Gain Medium (provides the light

PROBLEMS IN LASER PHYSICS

Instructor: Welcome to. Phys 774: Principles of Spectroscopy. Fall How can we produce EM waves? Spectrum of Electromagnetic Radiation and Light

Stimulated Emission. Electrons can absorb photons from medium. Accelerated electrons emit light to return their ground state

Stimulated Emission Devices: LASERS

Chapter9. Amplification of light. Lasers Part 2

Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy

Lasers... the optical cavity

Chapter-4 Stimulated emission devices LASERS

Materialwissenschaft und Nanotechnologie. Introduction to Lasers

Laser Types Two main types depending on time operation Continuous Wave (CW) Pulsed operation Pulsed is easier, CW more useful

Wolfgang Demtroder. Laser Spectroscopy. Basic Concepts and Instrumentation. Second Enlarged Edition With 644 Figures and 91 Problems.

CONTENTS. vii. CHAPTER 2 Operators 15

X-Rays From Laser Plasmas

Introduction Fundamentals of laser Types of lasers Semiconductor lasers

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

F.G. Major. The Quantum Beat. The Physical Principles of Atomic Clocks. With 230 Illustrations. Springer

Phys 2310 Fri. Dec. 12, 2014 Today s Topics. Begin Chapter 13: Lasers Reading for Next Time

Paper B2: Radiation and Matter - Basic Laser Physics

Principles of Lasers FIFTH EDITION

Introduction to Semiconductor Integrated Optics

Contents. Part I Fundamentals of Lasers 1 Introduction... 3

Unit-2 LASER. Syllabus: Properties of lasers, types of lasers, derivation of Einstein A & B Coefficients, Working He-Ne and Ruby lasers.

Quantum Dot Lasers. Jose Mayen ECE 355

(b) Spontaneous emission. Absorption, spontaneous (random photon) emission and stimulated emission.

LASERS. Amplifiers: Broad-band communications (avoid down-conversion)

THETOPPERSWAY.COM. Laser System. Principle of Lasers. Spontaneous Emission and Stimulated Emission. Page 1

L.A.S.E.R. LIGHT AMPLIFICATION. EMISSION of RADIATION

Phys 2310 Mon. Dec. 4, 2017 Today s Topics. Begin supplementary material: Lasers Reading for Next Time

Lasers & Holography. Ulrich Heintz Brown University. 4/5/2016 Ulrich Heintz - PHYS 1560 Lecture 10 1

EE 472 Solutions to some chapter 4 problems

Abstract... I. Acknowledgements... III. Table of Content... V. List of Tables... VIII. List of Figures... IX

OPTICAL GAIN AND LASERS

Emission Spectra of the typical DH laser

A Guide to Experiments in Quantum Optics

Ho:YLF pumped HBr laser

Stimulated Emission. ! Electrons can absorb photons from medium. ! Accelerated electrons emit light to return their ground state

In a metal, how does the probability distribution of an electron look like at absolute zero?

Laserphysik. Prof. Yong Lei & Dr. Yang Xu. Fachgebiet Angewandte Nanophysik, Institut für Physik

Liquid Crystals IAM-CHOON 1(1100 .,4 WILEY 2007 WILEY-INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION. 'i; Second Edition. n z

MOLECULAR SPECTROSCOPY

F. Elohim Becerra Chavez

Modern Optical Spectroscopy

Optical Characterization of Solids

PRINCIPLES OF PHYSICAL OPTICS

Optoelectronics ELEC-E3210

Lasers E 6 E 4 E 3 E 2 E 1

Introduction to Laser Material Processing. ME 677: Laser Material Processing Instructor: Ramesh Singh 1

Chapter 5. Semiconductor Laser

Steady state operation : g = 1

Ar and Kr ion lasers

Figure 5.1: Theodore Maiman constructed the first operational laser. Wikipedia). 5.1 Emission and absorption of electromagnetic radiation

Lecture 10. Lidar Effective Cross-Section vs. Convolution

SOLID STATE PHYSICS. Second Edition. John Wiley & Sons. J. R. Hook H. E. Hall. Department of Physics, University of Manchester

SOFT X-RAYS AND EXTREME ULTRAVIOLET RADIATION

External (differential) quantum efficiency Number of additional photons emitted / number of additional electrons injected

P. W. Atkins and R. S. Friedman. Molecular Quantum Mechanics THIRD EDITION

Chapter 7: Optical Properties of Solids. Interaction of light with atoms. Insert Fig Allowed and forbidden electronic transitions

PRINCIPLES OF NONLINEAR OPTICAL SPECTROSCOPY

Spectroscopy of. Semiconductors. Luminescence OXFORD IVAN PELANT. Academy ofsciences of the Czech Republic, Prague JAN VALENTA

Interested in exploring science or math teaching as a career?

MODERN OPTICS. P47 Optics: Unit 9

Quantum Electronics Laser Physics PS Theory of the Laser Oscillation

All-Optical Delay with Large Dynamic Range Using Atomic Dispersion

Photon Physics. Week 4 26/02/2013

Molecular spectroscopy

MEFT / Quantum Optics and Lasers. Suggested problems Set 4 Gonçalo Figueira, spring 2015

Laser-Based Measurements for Time and Frequency

F. Elohim Becerra Chavez

-I (PH 6151) UNIT-V PHOTONICS AND FIBRE OPTICS

Tentative Schedule: Date, Place & Time Topics Sep.4 (Mo) No classes Labor Day Holiday Exam 1 Exam 2 Over Chapters 4-6

The Generation of Ultrashort Laser Pulses

Semiconductor Lasers EECE 484. Winter Dr. Lukas Chrostowski

Other Devices from p-n junctions

CHAPTER 13 Molecular Spectroscopy 2: Electronic Transitions

Surface Plasmon Amplification by Stimulated Emission of Radiation. By: Jonathan Massey-Allard Graham Zell Justin Lau

What do we study and do?

QUESTION BANK IN PHYSICS

Principles of Lasers. Cheng Wang. Phone: Office: SEM 318

Metal Vapour Lasers Use vapoured metal as a gain medium Developed by W. Silfvast (1966) Two types: Ionized Metal vapour (He-Cd) Neutral Metal vapour

Unit I LASER Engineering Physics

Ms. Monika Srivastava Doctoral Scholar, AMR Group of Dr. Anurag Srivastava ABV-IIITM, Gwalior

Light Emission. Today s Topics. Excitation/De-Excitation 10/26/2008. Excitation Emission Spectra Incandescence

Transcription:

Laser Physics SIMON HOOKER and COLIN WEBB Department of Physics, University of Oxford OXFORD UNIVERSITY PRESS

Contents 1 Introduction 1.1 The laser 1.2 Electromagnetic radiation in a closed cavity 1.2.1 The density of modes 1.3 Planck's law 1.3.1 The energy density of blackbody radiation 2 The interaction of radiation and matter 2.1 The Einstein treatment 2.1.1 Relations between the Einstein coefficients 2.2 Conditions for optical gain 2.2.1 Conditions for steady-state inversion 2.2.2 Necessary, but not sufficient condition 2.3 The semi-classical treatment ^ 2.3.1 Outline 2.3.2 Selection rules for electric dipole transitions 2.4 Atomic population kinetics^ 2.4.1 Rate equations 2.4.2 Semi-classical equations 2.4.3 Validity of the rate-equation approach 3 Broadening mechanisms and lineshapes 3.1 Homogeneous broadening mechanisms 3.1.1 Natural broadening 3.1.2 Pressure broadening 3.1.3 Phonon broadening 3.2 Inhomogeneous broadening mechanisms 3.2.1 Doppler broadening 3.2.2 Broadening in amorphous solids 3.3 The interaction of radiation and matter in the presence spectral broadening 3.3.1 Homogeneously broadened transitions 3.3.2 Inhomogeneously broadened atoms ^ 3.4 The formation of spectral lines: The Voigt profile^

viii contents 3.5 Other broadening effects 3.5.1 Self-absorption 4 Light amplification by the stimulated emission of radiation 4.1 The optical gain cross-section 4.1.1 Condition for optical gain 4.1.2 Frequency dependence of the gain cross-section 4.1.3 The gain coefficient 4.1.4 Gain narrowing 4.2 Narrowband radiation 4.2.1 Amplification of narrowband radiation 4.2.2 Form of rate equations 4.3 Gain cross-section for inhomogeneous broadening* 4.4 Orders of magnitude 4.5 Absorption 4.5.1 The absorption cross-section 4.5.2 Self-absorption 4.5.3 Radiation trapping 5 Gain saturation 60 5.1 Saturation in a steady-state amplifier 60 5.1.1 Homogeneous broadening 60 5.1.2 Inhomogeneous broadening 1 ' 67 5.2 Saturation in a homogeneously broadened pulsed amplifier* 73 5.3 Design of laser amplifiers 77 78 6 The laser oscillator 83 6.1 Introduction 83 6.2 Amplified spontaneous emission (ASE) lasers 83 6.3 Optical cavities 85 6.3.1 General considerations 85 6.3.2 Low-loss (or 'stable') optical cavities 89 6.3.3 High-loss (or 'unstable') optical cavities* 97 6.4 Beam quality* 103 6.4.1 The M 2 beam-propagation factor 103 6.5 The approach to laser oscillation 106 6.5.1 The 'cold' cavity 106 6.5.2 The laser threshold condition 110 6.6 Laser oscillation above threshold 111 6.6.1 Condition for steady-state laser oscillation 112 6.6.2 Homogeneously broadened systems 113

contents ix 6.6.3 Inhomogeneously broadened systems^ 6.7 Output power 6.7.1 Low-gain lasers 6.7.2 High-gain lasers: the Rigrod analysis^ 6.7.3 Output power in other cases 7 Solid-state lasers 7.1 General considerations 7.1.1 Energy levels of ions doped in solid hosts ^ 7.1.2 Radiative transitions* 7.1.3 Non-radiative transitions* 7.1.4 Line broadening* 7.1.5 Three- and four-level systems 7.1.6 Host materials 7.1.7 Techniques for optical pumping 7.2 Nd 3+ :YAG and other trivalent rare-earth systems 7.2.1 Energy-level structure 7.2.2 Transition linewidth 7.2.3 Nd:YAG laser 7.2.4 Other crystalline hosts 7.2.5 Nd:glass laser 7.2.6 Erbium lasers 7.2.7 Praseodymium ions 7.3 Ruby and other trivalent iron-group systems 7.3.1 Energy-level structure* 7.3.2 The ruby laser 7.3.3 Alexandrite laser 7.3.4 CnLiSAF and CnLiCAF 7.3.5 Ti:sapphire 8 Dynamic cavity effects 8.1 Laser spiking and relaxation oscillations 8.1.1 Rate-equation analysis 8.1.2 Analysis of relaxation oscillations 8.1.3 Numerical analysis of laser spiking 8.2 Q-switching 8.2.1 Techniques for Q-switching 8.2.2 Rate-equation analysis of Q-switching 8.2.3 Comparison with numerical simulations 8.3 Modelocking 8.3.1 General ideas 8.3.2 Simple treatment of modelocking 8.3.3 Active modelocking techniques 8.3.4 Passive modelocking techniques 115 117 117 120 123 123 123 132 132 132 137 138 142 142 146 149 157 157 157 158 163 164 165 169 169 169 174 177 180 180 184 184 188 188 190 190 192 193 194 198 203 203 204 206 208 214

x contents 8.4 Other forms of pulsed output 221 222 222 9 Semiconductor lasers 226 9.1 Basic features of a typical semiconductor diode laser 226 9.2 Review of semiconductor physics 228 9.2.1 Band structure 228 9.2.2 Density of states and the Fermi energy (T = OK) 231 9.2.3 The Fermi-Dirac distribution {T ^ 0 K) 232 9.2.4 Doped semiconductors 233 9.3 Radiative transitions in semiconductors 235 9.4 Gain at a p-i-n junction 236 9.5 Gain in diode lasers 238 9.6 Carrier and photon confinement: the double heterostructure 241 9.7 Laser materials 243 9.8 Quantum-well lasers 1 " 244 9.9 Laser threshold 247 9.10 Diode laser beam properties 250 9.10.1 Beam shape 250 9.10.2 Transverse modes of edge-emitting lasers 250 9.10.3 Longitudinal modes of diode lasers 251 9.10.4 Single longitudinal mode diode lasers 253 9.10.5 Diode laser linewidth 254 9.10.6 Tunable diode laser cavities^ 255 9.11 Diode laser output power 1 " 257 9.12 VCSEL lasers 1 " 259 9.13 Strained-layer lasers 261 9.14 Quantum cascade lasers 1^ 262 264 264 10 Fibre lasers 267 10.1 Optical fibres 267 10.1.1 The importance of optical-fibre technology 267 10.1.2 Optical-fibre properties: Ray optics 268 10.1.3 Optical-fibre properties: Wave optics 271 10.1.4 Dispersion in optical fibres 274 10.1.5 Fabrication of optical fibres 276 10.1.6 Fibre-optic components 277 10.2 Wavelength bands for fibre-optic telecommunications 280 10.3 Erbium-doped fibre amplifiers 282 10.3.1 Energy levels and pumping schemes 282 10.3.2 Gain spectra 282 10.3.3 EDFA design and layout 284 10.3.4 Fabrication of erbium-doped fibre amplifiers 285 10.4 Fibre Raman amplifiers 285 10.4.1 Introduction 285

contents xi 10.4.2 Raman scattering 285 10.4.3 Fibre Raman amplifiers 286 10.4.4 Long-haul optical transmission systems 287 10.5 High-power fibre lasers 289 10.5.1 The revolution in fibre-laser performance 289 10.5.2 Cladding-pumped fibre-laser design 290 10.5.3 Materials and mechanisms of cladding-pumped fibre-laser systems 291 10.5.4 High-power fibre lasers: Linewidth considerations 291 10.6 High-power pulsed fibre lasers 293 10.6.1 Large mode area (LMA) fibres 293 10.6.2 Q-switched fibre lasers 294 10.6.3 Oscillator-amplifier pulsed fibre lasers 294 10.7 Applications of high-power fibre lasers 295 296 296 11 Atomic gas lasers 298 11.1 Discharge physics interlude 298 11.1.1 Low-pressure and high-pressure discharges 298 11.1.2 Low-pressure glow discharge 299 11.1.3 Temperatures 300 11.1.4 The steady-state positive column 303 11.1.5 Ionization rates 306 11.1.6 Excitation rates 307 11.1.7 Second-kind or superelastic collisions 310 11.1.8 Excited-state populations in low-pressure discharges 311 11.2 The helium-neon laser 314 11.2.1 Introduction 314 11.2.2 Energy levels, transitions and excitation mechanisms 316 11.2.3 Laser construction and operating parameters 318 11.2.4 Output-power limitations of the He-Ne laser 319 11.2.5 Applications of He-Ne lasers 321 11.3 The argon-ion laser 321 11.3.1 Introduction 321 11.3.2 Energy levels, transitions and excitation mechanisms 322 11.3.3 Laser construction and operating parameters 325 11.3.4 Argon-ion laser: Power limitations 327 11.3.5 Krypton-ion lasers 328 11.3.6 Applications of ion lasers 329 329 329 12 Infra-red molecular gas lasers 332 12.1 Efficiency considerations 332 12.1.1 Energy levels of atoms and molecules 332 12.1.2 Quantum ratio 333

12.2 Partial population inversion between vibrational energy levels of molecules 335 12.3 Physics of the C0 2 laser 338 12.3.1 Levels and lifetimes 338 12.3.2 The effect of adding N 2 341 12.3.3 Effect of adding He 342 12.4 CO2 laser parameters 343 12.5 Low-pressure c.w. CO2 lasers 344 12.6 High-pressure pulsed CO2 lasers 346 12.7 Other types of C0 2 laser 349 12.7.1 Gas-dynamic C0 2 lasers 349 12.7.2 Waveguide C0 2 lasers 351 12.8 Applications of CO2 lasers 351 352 352 13 Ultraviolet molecular gas lasers 355 13.1 The UV and VUV spectral regions 355 13.2 Energy levels of diatomic molecules 356 13.2.1 Separation of the overall wave function 356 13.2.2 Vibrational eigenfunctions 357 13.3 Electronic transitions in diatomic molecules: The Franck-Condon principle 358 13.3.1 Absorption transitions 358 13.3.2 The'Franck-Condon loop' 360 13.4 The VUV hydrogen laser 361 13.5 The UV nitrogen laser 364 13.6 Excimer molecules 364 13.7 Rare-gas excimer lasers 367 13.8 Rare-gas halide excimer lasers 370 13.8.1 Spectroscopy of the rare-gas halides 370 13.8.2 Rare-gas halide laser design 371 13.8.3 Pulse-length limitations of discharge-excited RGH lasers 373 13.8.4 Cavity design and beam properties of RHG lasers 373 13.8.5 Performance and applications of RGH excimer laser 375 377 378 14 Dye lasers 380 14.1 Introduction 380 14.2 Dye molecules 380 14.3 Energy levels and spectra of dye molecules in solution 382 14.3.1 Energy-level scheme 382 14.3.2 Singlet-singlet absorption 382 14.3.3 Singlet-singlet emission spectra 385 14.3.4 Triplet-triplet absorption 387 14.4 Rate-equation models of dye laser kinetics 387

contents xiii 14.5 Pulsed dye lasers 388 14.5.1 Flashlamp-pumped systems 388 14.5.2 Dye lasers pumped by pulsed lasers 389 14.6 Continuous-wave dye lasers 391 14.6.1 Population kinetics 391 14.6.2 Continuous waves dye laser design 393 14.7 Solid-state dye lasers 395 14.8 Applications of dye lasers 396 398 398 15 Non-linear frequency conversion 400 15.1 Introduction 400 15.2 Linear optics of crystals 400 15.2.1 Classes of anisotropic crystals 400 15.2.2 Vectors 402 15.2.3 Field directions for o- and e-rays in a uniaxial crystal 403 15.3 Basics of non-linear optics 405 15.3.1 Maxwell's equations for non-linear media 405 15.3.2 Second-harmonic generation in anisotropic crystals 406 15.3.3 The requirement for phase matching 408 15.4 Phase-matching techniques 409 15.4.1 Birefringent phase matching in uniaxial crystals 409 15.4.2 Critical and non-critical phase matching 412 15.4.3 Poynting vector walk-off in birefringent phase matching 414 15.4.4 Other factors affecting SHG conversion efficiency 414 15.4.5 Phase-matched SHG in biaxial crystals 415 15.4.6 Birefringent materials for SHG 416 15.4.7 Quasi-phase matching techniques 418 15.5 SHG: practical aspects 420 15.6 Three-wave mixing and third-harmonic generation (THG) 421 15.6.1 Three-wave mixing processes in general 421 15.6.2 Third-harmonic generation (THG) 423 15.7 Optical parametric oscillators (OPOs) 424 15.7.1 Parametric interactions 424 15.7.2 Optical parametric oscillators (OPOs) 425 15.7.3 Practical parametric devices 426 428 428 16 Precision frequency control of lasers^ 431 16.1 Frequency pulling 431 16.2 Single longitudinal mode operation 433 16.2.1 Short cavity 434 16.2.2 Intra-cavity etalons 435 16.2.3 Ring resonators 437 16.2.4 Other techniques 440

xiv contents 16.3 Output linewidfh 440 16.3.1 The Schawlow-Townes limit 441 16.3.2 Practical limitations 444 16.3.3 Intensity noise 446 16.4 Frequency locking 448 16.4.1 Locking to atomic or molecular transitions 450 16.4.2 Locking to an external cavity 452 16.5 Frequency combs 453 456 456 17 Ultrafast lasers 462 17.1 Propagation of ultrafast laser pulses in dispersive media 462 17.1.1 The time-bandwidth product 462 17.1.2 General considerations 463 17.1.3 Propagation through a dispersive system 466 17.1.4 Propagation of Gaussian pulses 469 17.1.5 Non-linear effects: self-phase modulation and the B-integral 472 17.2 Dispersion control 474 17.2.1 Geometric dispersion control 474 17.2.2 Chirped mirrors 478 17.2.3 Pulse shaping 480 17.3 Sources of ultrafast optical pulses 482 17.3.1 Modelocked lasers 482 17.3.2 Oscillators 483 17.3.3 Chirped-pulse amplification (CPA) 483 17.4 Measurement of ultrafast pulses 489 17.4.1 Autocorrelators 489 17.4.2 Methods for exact reconstruction of the pulse 492 495 495 18 Short-wavelength lasers 502 18.1 Definition of wavelength ranges 503 18.2 Difficulties in achieving optical gain at short wavelengths 503 18.2.1 Pump-power scaling 503 18.3 General properties of short-wavelength lasers 505 18.3.1 Travelling-wave pumping 505 18.3.2 Threshold and saturation behaviour in an ASE laser 506 18.3.3 Spectral width of the output 508 18.3.4 Coherence properties of ASE lasers 509 18.4 Laser-generated plasmas^ 510 18.4.1 Inverse bremsstrahlung heating 510 18.4.2 Generation of highly ionized plasmas from laser-solid interactions 511 18.4.3 Optical field ionization 514 18.5 Collisionally excited lasers 517

contents xv 18.5.1 Ne-likeions t 518 18.5.2 Ni-likeions t 520 18.5.3 Methods of pumping 520 18.5.4 Collisionally excited OFI lasers 528 18.6 Recombination lasers 530 18.6.1 H-like carbon 532 18.6.2 OFI recombination lasers 533 18.7 Other sources 535 18.7.1 High-harmonic generation 535 18.7.2 Free-electron lasers 537 541 541 Appendix A: The semi-classical theory of the interaction of radiation and matter 548 A.l The amplitude equations 548 A. 1.1 Derivation of the amplitude equations 548 A. 1.2 Solution of the amplitude equations 550 A.2 Calculation of the Einstein B coefficient 551 A.2.1 Polarized atoms and radiation 551 A.2.2 Unpolarized atoms and/or radiation 553 A.2.3 Treatment of degeneracy 554 A.3 Relations between the Einstein coefficients 555 A.4 Validity of rate equations 555 Appendix B: The spectral Einstein coefficients 557 Appendix C: Kleinman's conjecture 560 Bibliography 563 Index 579