INEQUALITIES FOR TWO SPECIFIC CLASSES OF FUNCTIONS USING CHEBYSHEV FUNCTIONAL. Mohammad Masjed-Jamei

Similar documents
AN INEQUALITY OF OSTROWSKI TYPE AND ITS APPLICATIONS FOR SIMPSON S RULE AND SPECIAL MEANS. I. Fedotov and S. S. Dragomir

SOME INTEGRAL INEQUALITIES OF GRÜSS TYPE

Improvement of Grüss and Ostrowski Type Inequalities

A Companion of Ostrowski Type Integral Inequality Using a 5-Step Kernel with Some Applications

WENJUN LIU AND QUÔ C ANH NGÔ

A Generalized Inequality of Ostrowski Type for Twice Differentiable Bounded Mappings and Applications

RGMIA Research Report Collection, Vol. 1, No. 1, SOME OSTROWSKI TYPE INEQUALITIES FOR N-TIME DIFFERENTIA

ON THE WEIGHTED OSTROWSKI INEQUALITY

Journal of Inequalities in Pure and Applied Mathematics

Keywords : Generalized Ostrowski s inequality, generalized midpoint inequality, Taylor s formula.

NEW INEQUALITIES OF SIMPSON S TYPE FOR s CONVEX FUNCTIONS WITH APPLICATIONS. := f (4) (x) <. The following inequality. 2 b a

Improvement of Ostrowski Integral Type Inequalities with Application

AN INTEGRAL INEQUALITY FOR CONVEX FUNCTIONS AND APPLICATIONS IN NUMERICAL INTEGRATION

Journal of Inequalities in Pure and Applied Mathematics

ON COMPANION OF OSTROWSKI INEQUALITY FOR MAPPINGS WHOSE FIRST DERIVATIVES ABSOLUTE VALUE ARE CONVEX WITH APPLICATIONS

Improvements of some Integral Inequalities of H. Gauchman involving Taylor s Remainder

S. S. Dragomir. 1. Introduction. In [1], Guessab and Schmeisser have proved among others, the following companion of Ostrowski s inequality:

Some estimates on the Hermite-Hadamard inequality through quasi-convex functions

arxiv: v1 [math.ca] 28 Jan 2013

Journal of Inequalities in Pure and Applied Mathematics

S. S. Dragomir. 2, we have the inequality. b a

SOME INEQUALITIES FOR THE DISPERSION OF A RANDOM VARIABLE WHOSE PDF IS DEFINED ON A FINITE INTERVAL

Some Hermite-Hadamard type inequalities for functions whose exponentials are convex

Generalized Hermite-Hadamard-Fejer type inequalities for GA-convex functions via Fractional integral

Ostrowski Grüss Čebyšev type inequalities for functions whose modulus of second derivatives are convex 1

CLOSED EXPRESSIONS FOR COEFFICIENTS IN WEIGHTED NEWTON-COTES QUADRATURES

A unified generalization of perturbed mid-point and trapezoid inequalities and asymptotic expressions for its error term

ON PERTURBED TRAPEZOIDAL AND MIDPOINT RULES. f (t) dt

An optimal 3-point quadrature formula of closed type and error bounds

New Integral Inequalities for n-time Differentiable Functions with Applications for pdfs

f (a) + f (b) f (λx + (1 λ)y) max {f (x),f (y)}, x, y [a, b]. (1.1)

0 N. S. BARNETT AND S. S. DRAGOMIR Using Gruss' integrl inequlity, the following pertured trpezoid inequlity in terms of the upper nd lower ounds of t

TRAPEZOIDAL TYPE INEQUALITIES FOR n TIME DIFFERENTIABLE FUNCTIONS

Calculus of variations with fractional derivatives and fractional integrals

ODE: Existence and Uniqueness of a Solution

New Expansion and Infinite Series

QUADRATURE is an old-fashioned word that refers to

GENERALIZED OSTROWSKI TYPE INEQUALITIES FOR FUNCTIONS WHOSE LOCAL FRACTIONAL DERIVATIVES ARE GENERALIZED s-convex IN THE SECOND SENSE

WEIGHTED INTEGRAL INEQUALITIES OF OSTROWSKI, 1 (b a) 2. f(t)g(t)dt. provided that there exists the real numbers m; M; n; N such that

Research Article On New Inequalities via Riemann-Liouville Fractional Integration

New Integral Inequalities of the Type of Hermite-Hadamard Through Quasi Convexity

Revista Colombiana de Matemáticas Volumen 41 (2007), páginas 1 13

GENERALIZED ABSTRACTED MEAN VALUES

Some inequalities of Hermite-Hadamard type for n times differentiable (ρ, m) geometrically convex functions

On New Inequalities of Hermite-Hadamard-Fejer Type for Harmonically Quasi-Convex Functions Via Fractional Integrals

Journal of Inequalities in Pure and Applied Mathematics

Bounds for the Riemann Stieltjes integral via s-convex integrand or integrator

Some Improvements of Hölder s Inequality on Time Scales

ON AN INTEGRATION-BY-PARTS FORMULA FOR MEASURES

The Hadamard s inequality for quasi-convex functions via fractional integrals

GENERALIZATIONS OF WEIGHTED TRAPEZOIDAL INEQUALITY FOR MONOTONIC MAPPINGS AND ITS APPLICATIONS. (b a)3 [f(a) + f(b)] f x (a,b)

A basic logarithmic inequality, and the logarithmic mean

Journal of Inequalities in Pure and Applied Mathematics

Communications inmathematicalanalysis Volume 6, Number 2, pp (2009) ISSN

Problem Set 4: Solutions Math 201A: Fall 2016

Parametrized inequality of Hermite Hadamard type for functions whose third derivative absolute values are quasi convex

(4.1) D r v(t) ω(t, v(t))

Czechoslovak Mathematical Journal, 55 (130) (2005), , Abbotsford. 1. Introduction

Journal of Inequalities in Pure and Applied Mathematics

New general integral inequalities for quasiconvex functions

LYAPUNOV-TYPE INEQUALITIES FOR NONLINEAR SYSTEMS INVOLVING THE (p 1, p 2,..., p n )-LAPLACIAN

Research Article Fejér and Hermite-Hadamard Type Inequalities for Harmonically Convex Functions

LOGARITHMIC INEQUALITIES FOR TWO POSITIVE NUMBERS VIA TAYLOR S EXPANSION WITH INTEGRAL REMAINDER

ON THE INEQUALITY OF THE DIFFERENCE OF TWO INTEGRAL MEANS AND APPLICATIONS FOR PDFs

Mathematics. Area under Curve.

On the Generalized Weighted Quasi-Arithmetic Integral Mean 1

INEQUALITIES FOR BETA AND GAMMA FUNCTIONS VIA SOME CLASSICAL AND NEW INTEGRAL INEQUALITIES

ON THE C-INTEGRAL BENEDETTO BONGIORNO

Multiple Positive Solutions for the System of Higher Order Two-Point Boundary Value Problems on Time Scales

ON SOME NEW FRACTIONAL INTEGRAL INEQUALITIES

Hermite-Hadamard type inequalities for harmonically convex functions

Hermite-Hadamard and Simpson-like Type Inequalities for Differentiable p-quasi-convex Functions

INEQUALITIES FOR GENERALIZED WEIGHTED MEAN VALUES OF CONVEX FUNCTION

KRASNOSEL SKII TYPE FIXED POINT THEOREM FOR NONLINEAR EXPANSION

OPIAL S INEQUALITY AND OSCILLATION OF 2ND ORDER EQUATIONS. 1. Introduction We consider the second-order linear differential equation.

ODE: Existence and Uniqueness of a Solution

An inequality related to η-convex functions (II)

Research Article On Existence and Uniqueness of Solutions of a Nonlinear Integral Equation

Research Article On The Hadamard s Inequality for Log-Convex Functions on the Coordinates

NEW HERMITE HADAMARD INEQUALITIES VIA FRACTIONAL INTEGRALS, WHOSE ABSOLUTE VALUES OF SECOND DERIVATIVES IS P CONVEX

A NOTE ON SOME FRACTIONAL INTEGRAL INEQUALITIES VIA HADAMARD INTEGRAL. 1. Introduction. f(x)dx a

Section 4: Integration ECO4112F 2011

Realistic Method for Solving Fully Intuitionistic Fuzzy. Transportation Problems

MAC-solutions of the nonexistent solutions of mathematical physics

Integral inequalities

Hermite-Hadamard Type Inequalities for the Functions whose Second Derivatives in Absolute Value are Convex and Concave

September 13 Homework Solutions

Lecture 3: Curves in Calculus. Table of contents

INNER PRODUCT INEQUALITIES FOR TWO EQUIVALENT NORMS AND APPLICATIONS

The Regulated and Riemann Integrals

AN INEQUALITY OF GRÜSS TYPE FOR RIEMANN-STIELTJES INTEGRAL AND APPLICATIONS FOR SPECIAL MEANS

1B40 Practical Skills

1 The Lagrange interpolation formula

APPROXIMATING THE RIEMANN-STIELTJES INTEGRAL BY A TRAPEZOIDAL QUADRATURE RULE WITH APPLICATIONS

Research Article On Hermite-Hadamard Type Inequalities for Functions Whose Second Derivatives Absolute Values Are s-convex

POSITIVE SOLUTIONS FOR SINGULAR THREE-POINT BOUNDARY-VALUE PROBLEMS

Theoretical foundations of Gaussian quadrature

RIEMANN-LIOUVILLE AND CAPUTO FRACTIONAL APPROXIMATION OF CSISZAR S f DIVERGENCE

Section 6.1 INTRO to LAPLACE TRANSFORMS

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives

Transcription:

Fculty of Sciences nd Mthemtics University of Niš Seri Aville t: http://www.pmf.ni.c.rs/filomt Filomt 25:4 20) 53 63 DOI: 0.2298/FIL0453M INEQUALITIES FOR TWO SPECIFIC CLASSES OF FUNCTIONS USING CHEBYSHEV FUNCTIONAL Mohmmd Msjed-Jmei Astrct In this pper we introduce two specific clsses of functions in L p - spces tht cn generte new nd known inequlities in the literture. By using some recent results relted to the Cheyshev functionl we then otin upper ounds for the solute vlue of the two introduced functions nd consider three prticulr emples. One of these emples is suitle tool for finding upper nd lower ounds of some incomplete specil functions such s incomplete gmm nd et functions. Introduction Let L p [ ] p < ) denote the spce of p-power integrle functions on the intervl [ ] with the stndrd norm /p f p = ft) dt) p nd L [ ] show the spce of ll essentilly ounded functions on [ ] with the norm f = sup [] f). For two solutely continuous functions f g : [ ] R nd the positive function w : [ ] R + such tht wf wg wfg L [ ] the weighted Cheyshev functionl [] is defined y ) ) T w f g) = w)f) g) d w)f) d w)g) d. ) 200 Mthemtics Suject Clssifictions: 26D5; 26D20. Key words nd Phrses: Cheyshev functionl Upper ounds Gruss type inequlities kernel function Incomplete specil functions. Received: Decemer 0 200 Communicted y Drgn S. Djordjević

54 Mohmmd Msjed-Jmei If w) is uniformly distriuted on [ ] then ) is reduced to the usul Cheyshev functionl T f g) = ) ) f) g) d ) 2 f) d g) d. 2) To dte etensive reserch hs een done on the ounds of Cheyshev functionl see e.g. [25]. The first work dtes ck to 882 when Cheyshev [3] proved tht if f g L [ ] then Lter on in 934 Gruss [9] showed tht T f g) 2 )2 f g. 3) T f g) 4 M m )M 2 m 2 ) 4) where m m 2 M nd M 2 re rel numers stisfying the conditions m f) M nd m 2 g) M 2 for ll [ ]. 5) The constnt /4 is the est possile numer in 4) in the sense tht it cnnot e replced y smller quntity. An inequlity relted to usul Cheyshev functionl is due to Ostrowski [6] in 938. If f : [ ] R is differentile function with ounded derivtive then f) ft) dt ) + )/2)2 + 4 ) 2 ) f 6) for ll [ ]. Tody this inequlity plys key role in numericl qudrture rules [783]. A miture type of inequlities 3) nd 4) ws introduced in [7] s T f g) 8 )M m ) g 7) in which f is Leesgue integrle function stisfying 5) nd g is solutely continuous so tht g L [ ]. The constnt /8 is lso the est possile numer in 7). The following theorem due to Niezgod [5] is proly the most recent work out finding pproprite ounds for the usul Cheyshev functionl... Theorem A. Let f α β L p [ ] nd g L q [ ] /p + /q = p ) e functions such tht αt) + βt) is constnt function nd αt) ft) βt) for ll t [ ]. Then we hve T f g) 2 ) β α p g gt) dt. 8) q

Inequlities for Two Specific Clsses of Functions 55 For p = q = 2 8) leds to the well-known inequlity [4] T f g) 2 M m ) T g g) s.t. m f) M. 9) On the other hnd in 997 Drgomir nd Wng [6] introduced n inequlity of Ostrowski-Grss type ccording to the following theorem..2. Theorem B. If f : [ ] R is differentile function with ounded derivtive nd α 0 f t) β 0 for ll t [ ] then f) ft) dt f) f) + ) 2 4 )β 0 α 0 ). 0) There re mny improvements nd refinements of the right hnd side of inequlity 0) in the literture. See e.g. [40]. In this pper we introduce two specific clsses of functions in L p - spces tht cn generte mny new nd known inequlities in the literture nd otin their upper ounds using theorem A. Hence let us first consider the following kernel defined on [ ] ut) t [ ] K; t u v) = ) vt) t ] where ut) nd vt) re two ritrry integrle functions such tht ut) C [ ] nd vt) C ]. Bsed on kernel ) we now define the two following specific functions nd F ; f u v) = u) v)) f) + v)f) u)f) u t)ft) dt v t)ft) dt F 2 ; f u v) = F ; f u v) f) f) ut) dt + vt) dt ) 2). 3) It cn e verified tht the two functions 2) nd 3) re respectively produced y nd f t) K ; t u v) dt = F ; f u v) 4) ) T f t) K ; t u v)) = F 2 ; f u v) 5) where T.. ) is the sme s usul Cheyshev functionl. 2. Min Theorem. Let f : I R where I is n intervl e function differentile in the interior I 0 of I nd let [ ] I 0. Suppose tht f α β

56 Mohmmd Msjed-Jmei L p [ ] re functions such tht αt) + βt) is constnt function nd αt) f t) βt) for ll t [ ]. Then we respectively hve ut) q dt + /q dt) vt) q f p /p + /q = ) F ; f u v) ut) dt + ) vt) dt f p = ; q = ) m K; t u v) f q = ; p = ) t [] in which } m K; t u v) = m m ut) m vt) t [] [] t [] t ] 6) nd F 2 ; f u v) 2 β α p ut) ut) dt + ) vt) dt q dt + vt) ut) dt + vt) dt ) q dt ) /q 7) where ut) nd vt) re two ritrry integrle functions such tht ut) C [ ] nd vt) C ]. Proof. The proof of 6) is strightforwrd if one pplies the well-known Hlder s inequlity [4] fg f p g q /p + /q = ) 8) for identity 4) nd then refers to the generl kernel ). To prove 7) one should refer to identity 5) nd then use Theorem A so tht we hve F 2 ; f u v) 2 β α p K.) K.) dt 9) q nd since K.) ut) + vt) K.) dt q = ut) dt + ) vt) dt q dt ut) dt + ) vt) dt q ) /q dt 20) the proof is complete. One of the strightforwrd cses of theorem 2. is when p = q = 2. In other words pplying the well known Cuchy-Schwrtz inequlity [2] on 4) nd using the min theorem 2. for 5) respectively yield F ; f u v) /2 u 2 t) dt + v 2 t) dt) f 2) 2

Inequlities for Two Specific Clsses of Functions 57 nd F 2 ; f u v) 2 β α 2 ut) ut) dt + ) 2 vt) dt) dt + vt) ut) dt + vt) dt) ) 2 dt ) /2. 22) Clerly vrious suclsses cn e considered for the min theorem 2. We here study three cses. Other cses cn nturlly e studied seprtely. 2.. Suclss. If u) v) is constnt function If u) v) is constnt numer sy c 0 then the kernel ) nd functions 2) nd 3) re respectively reduced to vt) + c t [ ] K; t v + c v) = vt) t ] 23) nd F ; f v + c v) = c f) + v)f) c + v))f) F 2 ; f v + c v) = F ; f v + c v) In fct reltions 24) nd 25) show tht f) f) c ) + v t)ft) dt 24) vt) dt F ; f v + c v) = c f) + A nd F 2 ; f v + c v) = c f) + A + B + D 26) where c A B nd D re rel constnts. Let us consider prticulr emple of the first suclss here. Emple. Suppose tht [ ] = [0 ] c = nd vt) = t 2. Under these ssumptions reltions 23) 24) nd 25) chnge to ). 25) K; t + t 2 t 2 ) = + t 2 t [0 ] t 2 t ] 27) nd F ; f + t 2 t 2) = f) + f) f0) 2 F 2 ; f + t 2 t 2) = f) + f) f0) 2 t ft) dt 0 f) f0)) + ) 0 t2 ft) dt 0 t ft) dt 28) 29)

58 Mohmmd Msjed-Jmei After some clcultions sustituting the ove reltions in ech two prts of the min theorem respectively yields ) f) 2 /q t ft) dt + f) f0) 0 + t2 ) q dt + 2q+ 2q+ f p + /3) f 0 + 2 ) f 30) nd f) 2 0 t ft) dt + f) f0)) 0 t2 ft) dt) 2 β α p 0 t 2 + 2/3 q dt + t 2 /3 dt) q /q 3) where αt) f t) βt) /p + /q = nd t [0 ]. For instnce p = q = 2 in inequlity 3) gives f) 2 0 t ft) dt + f) f0)) 0 t2 ft) dt) 5 30 303 45 2 + 5 + 4 0 βt) αt))2 dt) /2 for ll [0 ]. 2.2. Suclss 2. If u) nd v) re liner functions Suppose tht ut) = p t + q nd vt) = p 2 t + q 2 where p q nd p 2 q 2 re ll rel prmeters. Therefore we hve 32) p t + q K ; t p t + q p 2 t + q 2 ) = t [ ] p 2 t + q 2 t ] 33) nd F ; f p t + q p 2 t + q 2 ) = p p 2 ) + q q 2 ) f) + p 2 + q 2 )f) p + q )f) p ft) dt p 2 ft) dt 34) F 2 ; f p t + q p 2 t + q 2 ) = F ; f p t + q p 2 t + q 2 ) f) f) p p 2 2 2 + q q 2 ) + 2 p 2 2 p 2 ) + q 2 q ). For the ske of simplicity if we rerrnge 34) nd 35) y tking 35) p p 2 = r q q 2 = r 2 p 2 + q 2 = r 3 nd p q = r 4 36) then these ssumptions would chnge reltions 33) 34) nd 35) s follows K ; t r i } 4 ) r +r 2 +r 3 +r 4 i= = t r +r 2 +r 3 +r 4 r +r 2 +r 3 +r 4 t r +r 2 +r 3 +r 4 t [ ] t ] 37) F ; f ri } i=) 4 = r + r 2 ) f) + r 3 f) + r 4 f) r +r 2 +r 3 +r 4 ft) dt r +r 2 +r 3 +r 4 ft) dt 38)

Inequlities for Two Specific Clsses of Functions 59 nd ) F 2 ; f ri } i=) 4 = F ; f ri } 4 i= f) f) 2 ) r 2 + 2r 2 r + )r 2 + )r 3 r 4 ) ). 39) By noting tht there re four free prmeters r r 2 r 3 nd r 4 in the kernel 37) mny suclsses eist for 38) nd 39). The following emple shows one of them. Emple 2. Let r = 0 in 38) nd 39). Then y referring to the min theorem we hve F ; f ri } i=2) 4 = r 2 f) + r 3 f) + r 4 f) r 2+r 3 +r 4 ft) dt r 2 +r 3 +r 4 q t r2+r3+r4 q ) /q r 2+r 3+r 4 dt + t r2+r3+r4 r 2+r 3+r 4 dt f p r 2 +r 3 +r 4 ) t r2+r3+r4 r 2+r 3+r 4 dt + t r2+r3+r4 r 2+r 3+r 4 dt f m K ; t ri } i=2) 4 f t [] 40) nd F 2 ; f ri } i=2) 4 = ) = F ; f ri } 4 i=2 f) f) 2 ) 2r 2 + )r 2 + )r 3 r 4 )) 2 β α p r 2+r 3 +r 4 t r 2 3+) r 2++)r 3 +r 4 ) 2 ) q dt + r 2+r 3 +r 4 t r 2 +3) r2++)r3+r4) 2 ) q /q dt). 4) Note to compute the integrls of reltions 40) nd 4) we cn use the following generl identity t θ q dt = c d in which c < d nd θ R. d θ) q+ +c θ) q+ q+ if c < θ < d d θ) q+ c θ) q+ q+ if θ < c < d d θ) q+ +c θ) q+ q+ if c < d < θ Remrk. For r r 2 r 3 r 4 ) = 0 0 0) inequlity 4) genertes inequlity 0). Remrk 2. For r = 0 nd r 2 + r 3 + r 4 = 0 since the kernel 37) is reduced to 42) r4 t [ ] K ; t r 4 r 3 ) = t ] r 3 43)

60 Mohmmd Msjed-Jmei so inequlities 38) nd 39) re respectively trnsformed to r 4 q ) + r 3 q )) /q f p r 3 f) + r 4 f) r 3 + r 4 ) f) r 4 ) + r 3 )) f m r 4 r 3 } f 44) nd f) β α p 2 r 3 +r 4 r4 + r 3+r 4 r 3 +r 4 ) q ) + r 3 r 3+r 4 r 3 +r 4 ) q /q )). 45) Remrk 3. For r = 0 r 2 + r 3 + r 4 = 0 nd = 0 since the kernel 37) is reduced to t r4 t [0 ] K ; t t r 4 r 3 ) = 46) r 3 t ] f) f) + f) f) so we hve F ; f t r 4 r 3 ) = r3 + r 4 ))f) + r 3 f) + r 4 f0) 0 ft) dt 0 t r 4 q dt + r 3 q ) ) /q f p 0 t r 4 dt + r 3 ) ) } f m r 3 m t r 4 f [0] t [0] 2.3. Suclss 3. If v) is constnt function If v) is constnt numer sy d 0 then the kernel ) nd functions 2) nd 3) respectively tke the forms 47) ut) t [ ] K; t u d) = d t ] 48) nd F ; f u d) = u) d) f) + df) u)f) F 2 ; f u d) = F ; f u d) f) f) u t)ft) dt 49) ) ut) dt + d ). 50) Hence y pplying the min theorem for the two ove functions 49) nd 50) one cn get ut) q dt + d q ) ) /q f p F ; f u d) ut) dt + d )) } f 5) m d m ut) f [] t []

Inequlities for Two Specific Clsses of Functions 6 nd + F 2 ; f u d) 2 β α p ut) ut) dt + d )) q dt 52) d ut) dt + d )) q ) /q. dt One of the dvntges of inequlities 5) nd 52) is to find two upper ounds for the solute vlue of some incomplete specil functions. In other words since mny incomplete specil functions hve n integrl form s gt) dt the two ltter inequlities cn e used for this purpose see lso [] in this regrd. For emple since the incomplete gmm function cn e represented s Γ; α) = 0 t α ep t) dt α > ) 53) so y choosing ut) = t α /α ft) = ep t) nd = 0 in 49) nd employing the first inequlity of 5) we otin ) α α e Γ; α)+d e e ) αq+ q α q αq + ) +! e p ) p d q ) p 54) where 0 < d 0 nd /p + /q = for p [ ). Also since the incomplete et function cn e represented s B ; α β) = 0 t α t) β dt α β > ) 55) so y choosing ut) = t α /α ft) = t) β nd = 0 in 49) nd employing the first inequlity of 5) we otin α α ) β B; α β) + d ) β ) β ) ) β ) αq+ ) α q αq+) + d q q ) ) +β 2)p p +β 2)p where 0 < d 0 nd /p + /q = for p [ ). 56) Acknowledgements. IPM No. 8933002. This reserch ws in prt supported y grnt from References [] F. Ahmd N.S. Brnett S.S. Drgomir New weighted Ostrowski nd Cheyshev type inequlities Nonliner Anlysis: Theory Methods & Applictions 7 2) 2009) 408-42. [2] P. Cerone S.S. Drgomir New ounds for the Cheyshev functionl Appl. Mth. Lett. 8 2005) 603-6.

62 Mohmmd Msjed-Jmei [3] P.L.Cheyshev Sur les epressions pproimtive des integrls pr les uters prises entre les mmes limites Proc. Mth. Soc. Chrkov. 2 882) 93-98. [4] X. L. Cheng Improvement of some Ostrowski-Gruss type inequlities Comput. Mth. Appl. 42 200) 09-4. [5] S.S. Drgomir Bounds for some pertured Cheyshev functionls J. Inequl. Pure Appl. Mth. 9 3) 2008) Art. 64. [6] S.S. Drgomir S. Wng An inequlity of Ostrowski-Gruss type nd its pplictions to the estimtion of error ounds for some specil mens nd for some numericl qudrture rules Comput. Mth. Appl. 33 ) 997) 5-20. [7] S.S. Drgomir S. Wng Applictions of Ostrowski s inequlity to the estimtion of error ounds for some specil mens nd for some numericl qudrture rules Appl. Mth. Lett. ) 998) 05-09. [8] I. Fedotov S.S. Drgomir An inequlity of Ostrowski type nd its pplictions for Simpson s rule nd specil mens Mth. Inequl. Appl. 2 4) 999) 49-499. [9] G. Gruss Uer ds Mimum des soluten Betrges von ) f) g) d ) 2 f) d g) d Mth. Z. 39 935) 25-226. [0] Z. Liu Some Ostrowski-Gruss type inequlities nd pplictions Comput. Mth. Appl. 53 2007) 73-79. [] M. Msjed-Jmei A Min inequlity for severl specil functions Comput. Mth. Appl. 60 200) 280-289. [2] M. Msjed-Jmei Feng Qi H.M Srivstv Generliztions of some clssicl inequlities vi specil functionl property Integrl Trnsforms Spec. Funct 2 200) 327-336. [3] M. Msjed-Jmei S. S. Drgomir A new generliztion of the Ostrowski inequlity nd pplictions Filomt 25 20) 5-23. [4] D.S. Mitrinovic J.E. Pecric nd A.M. Fink Clssicl nd New Inequlities in Anlysis Kluwer Acdemic Pulishers Dordrecht/ Boston/ London 993. [5] M. Niezgod A new inequlity of Ostrowski-Gruss type nd pplictions to some numericl qudrture rules Comput. Mth. Appl 58 2009) 589-596. [6] A. Ostrowski Uer die solutweichung einer differentieren funktion vn ihrem inte-grlmittelwert Comment Mth. Helv 0 938) 226-227. [7] A.M. Ostrowski On n integrl inequlity Aequt. Mth. 4 970) 358-373.

Inequlities for Two Specific Clsses of Functions 63 Mohmmd Msjed-Jmei: Deprtment of Mthemtics K. N. Toosi University of Technology P.O. Bo: 635-68 Tehrn Irn School of Mthemtics Institute for Reserch in Fundmentl Sciences IPM) P.O. Bo: 9395-5746 Tehrn Irn E-mil: mmjmei@kntu.c.ir; mmjmei@yhoo.com.