CHBE320 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION. Professor Dae Ryook Yang

Similar documents
CHE302 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION. Professor Dae Ryook Yang

CHBE320 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION. Professor Dae Ryook Yang

Practice Problems - Week #7 Laplace - Step Functions, DE Solutions Solutions

Correction for Simple System Example and Notes on Laplace Transforms / Deviation Variables ECHE 550 Fall 2002

LAPLACE TRANSFORM REVIEW SOLUTIONS

Laplace Transformation

7.2 INVERSE TRANSFORMS AND TRANSFORMS OF DERIVATIVES 281

TMA4125 Matematikk 4N Spring 2016

Chapter 4. The Laplace Transform Method

Digital Control System

Name: Solutions Exam 3

ME 375 EXAM #1 Tuesday February 21, 2006

18.03SC Final Exam = x 2 y ( ) + x This problem concerns the differential equation. dy 2

MA 266 FINAL EXAM INSTRUCTIONS May 2, 2005

SOLUTIONS FOR HOMEWORK SECTION 6.4 AND 6.5

into a discrete time function. Recall that the table of Laplace/z-transforms is constructed by (i) selecting to get

Reading assignment: In this chapter we will cover Sections Definition and the Laplace transform of simple functions

Reading assignment: In this chapter we will cover Sections Definition and the Laplace transform of simple functions

Laplace Transforms Chapter 3

Name: Solutions Exam 2

Design of Digital Filters

Given the following circuit with unknown initial capacitor voltage v(0): X(s) Immediately, we know that the transfer function H(s) is

ME 375 FINAL EXAM Wednesday, May 6, 2009

SECTION x2 x > 0, t > 0, (8.19a)

Lecture 17: Analytic Functions and Integrals (See Chapter 14 in Boas)

1 Routh Array: 15 points

Linear System Fundamentals

Solving Differential Equations by the Laplace Transform and by Numerical Methods

Name: Solutions Exam 2

e st t u(t 2) dt = lim t dt = T 2 2 e st = T e st lim + e st

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Lecture 6: Resonance II. Announcements

Chapter 7: The Laplace Transform Part 1

CONTROL SYSTEMS. Chapter 2 : Block Diagram & Signal Flow Graphs GATE Objective & Numerical Type Questions

MODERN CONTROL SYSTEMS

Control Systems Engineering ( Chapter 7. Steady-State Errors ) Prof. Kwang-Chun Ho Tel: Fax:

Math 201 Lecture 17: Discontinuous and Periodic Functions

EE105 - Fall 2005 Microelectronic Devices and Circuits

MAHALAKSHMI ENGINEERING COLLEGE-TRICHY

The Laplace Transform

These are practice problems for the final exam. You should attempt all of them, but turn in only the even-numbered problems!

Laplace Transforms. Chapter 3. Pierre Simon Laplace Born: 23 March 1749 in Beaumont-en-Auge, Normandy, France Died: 5 March 1827 in Paris, France

The Riemann Transform

Midterm Test Nov 10, 2010 Student Number:

Definitions of the Laplace Transform (1A) Young Won Lim 2/9/15

ME2142/ME2142E Feedback Control Systems

EXAM 4 -B2 MATH 261: Elementary Differential Equations MATH 261 FALL 2012 EXAMINATION COVER PAGE Professor Moseley

MATEMATIK Datum: Tid: eftermiddag. A.Heintz Telefonvakt: Anders Martinsson Tel.:

Introduction to Laplace Transform Techniques in Circuit Analysis

L 2 -transforms for boundary value problems

Chapter 7: The Laplace Transform

EXAM 4 -A2 MATH 261: Elementary Differential Equations MATH 261 FALL 2010 EXAMINATION COVER PAGE Professor Moseley

The Laplace Transform

Question 1 Equivalent Circuits

ECE382/ME482 Spring 2004 Homework 4 Solution November 14,

MATH 251 Examination II April 6, 2015 FORM A. Name: Student Number: Section:

Exercises for lectures 19 Polynomial methods

ME 375 FINAL EXAM SOLUTIONS Friday December 17, 2004

Equivalent POG block schemes

Chapter 13. Root Locus Introduction

The Power Series Expansion on a Bulge Heaviside Step Function

Chapter 7. Root Locus Analysis

Basic Procedures for Common Problems

LAPLACE TRANSFORM AND TRANSFER FUNCTION

Bogoliubov Transformation in Classical Mechanics

( 1) EE 313 Linear Signals & Systems (Fall 2018) Solution Set for Homework #10 on Laplace Transforms

Figure 1: Unity Feedback System

EE Control Systems LECTURE 6

The Laplace Transform , Haynes Miller and Jeremy Orloff

Wolfgang Hofle. CERN CAS Darmstadt, October W. Hofle feedback systems

The state variable description of an LTI system is given by 3 1O. Statement for Linked Answer Questions 3 and 4 :

R L R L L sl C L 1 sc

EECS2200 Electric Circuits. RLC Circuit Natural and Step Responses

Modeling in the Frequency Domain

7-5-S-Laplace Transform Issues and Opportunities in Mathematica

CHAPTER 9. Inverse Transform and. Solution to the Initial Value Problem

Root Locus Diagram. Root loci: The portion of root locus when k assume positive values: that is 0

SIMON FRASER UNIVERSITY School of Engineering Science ENSC 320 Electric Circuits II. R 4 := 100 kohm

Function and Impulse Response

Chapter 10. Closed-Loop Control Systems

8. [12 Points] Find a particular solution of the differential equation. t 2 y + ty 4y = t 3, y h = c 1 t 2 + c 2 t 2.

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

4e st dt. 0 e st dt. lim. f (t)e st dt. f (t) e st dt + 0. e (2 s)t dt + 0. e (2 s)4 1 = 1. = t s e st

Solutions to homework #10

Math 334 Fall 2011 Homework 10 Solutions

ANSWERS TO MA1506 TUTORIAL 7. Question 1. (a) We shall use the following s-shifting property: L(f(t)) = F (s) L(e ct f(t)) = F (s c)

Things to Definitely Know. e iθ = cos θ + i sin θ. cos 2 θ + sin 2 θ = 1. cos(u + v) = cos u cos v sin u sin v sin(u + v) = cos u sin v + sin u cos v

Analysis of Step Response, Impulse and Ramp Response in the Continuous Stirred Tank Reactor System

Math 273 Solutions to Review Problems for Exam 1

Sampling and the Discrete Fourier Transform

Lecture 4. Chapter 11 Nise. Controller Design via Frequency Response. G. Hovland 2004

Module 4: Time Response of discrete time systems Lecture Note 1

March 18, 2014 Academic Year 2013/14

Digital Control System

Problem 1. Construct a filtered probability space on which a Brownian motion W and an adapted process X are defined and such that

IEOR 3106: Fall 2013, Professor Whitt Topics for Discussion: Tuesday, November 19 Alternating Renewal Processes and The Renewal Equation

Main Topics: The Past, H(s): Poles, zeros, s-plane, and stability; Decomposition of the complete response.

( ) ( ) ω = X x t e dt

Chapter 2: Problem Solutions

NAME (pinyin/italian)... MATRICULATION NUMBER... SIGNATURE

Transcription:

CHBE3 ECTURE V APACE TRANSFORM AND TRANSFER FUNCTION Profeor Dae Ryook Yang Spring 8 Dept. of Chemical and Biological Engineering 5-

Road Map of the ecture V aplace Tranform and Tranfer function Definition of aplace tranform Propertie of aplace tranform Invere aplace tranform Definition of tranfer function How to get the tranfer function Propertie of tranfer function + - Controller Actuator PROCESS Senor ecture IV to VII 5-

SOUTION OF INEAR ODE t -order linear ODE Integrating factor: [ xe ] f ( t) e atdt () atdt () High-order linear ODE with contant coeff. Mode: root of characteritic equation For ax ax ax f( t), Depending on the root, mode are pt pt Ditinct root: ( e, e ) pt pt Double root: ( e, te ) Imaginary root: ( t t e co t, e in t) dx For atx ( ) f ( x), I.F. exp( a( t) dt) dt () () xt () [ f() te atdt dtce ] ap apa a( p p)( p p) Many other technique for different cae atdt Solution i a linear combination of mode and the coefficient are decided by the initial condition. 5-3

APACE TRANSFORM FOR INEAR ODE AND PDE aplace Tranform Not in time domain, rather in frequency domain Derivative and integral become ome operator. ODE i converted into algebraic equation PDE i converted into ODE in patial coordinate Need invere tranform to recover time-domain olution (D.E. calculation) u(t) ODE or PDE y(t) - - - U() Tranfer Function Y() (Algebraic calculation) 5-4

DEFINITION OF APACE TRANSFORM Definition F() i called aplace tranform of f(t). f(t) mut be piecewie continuou. F() contain no information on f(t) for t <. The pat information on f(t) (for t < ) i irrelevant. The i a complex variable called aplace tranform variable Invere aplace tranform and are linear. t F() f () t f () te dt - F f() t ( ) - af () t bf () t af () bf () 5-5

APACE TRANSFORM OF FUNCTIONS Contant function, a t a t a a a ae dt e f(t) a t Step function, S(t) for t f() t S() t for t t t S( t) e dt e f(t) t Exponential function, e -bt b b ( ) e e e dt e bt bt t b t f(t) b< b> t 5-6

Trigonometric function jt co Euler Identity: e t jint jt jt jt jt int e e cot e e j j j j j jt jt cot e + e j j j t j t int e e j in(t) t Rectangular pule, P(t) for t tw f( t) P( t) h for tw t for t tw t t P( ) t w t he dt e e h t w h f(t) h t w t 5-7

Impule function, for t tw f() t () t lim/ tw for tw t tw for t tw t () lim lim t w t e dt e tw t tw w tw f () t f() t 'Hopital' rule: lim lim t gt () t g() t Ramp function, t () t f(t) /t w t w t t t te dt f(t) t t e t e dt e dt t t Integration by part: f ' gdt f g f gdt Refer the Table 3. (Seborg et al.) for other function 5-8

5-9

5-

PROPERTIES OF APACE TRANSFORM Differentiation df t t t f e dt f ( te ) f ( e ) dt (by ibp...) dt t f e dt f() F( ) f() d f t t t t f e dt f () t e f ( ) e dt f e dt f () dt F() f() f() F() f() f() n d f ( n) t ( n) t ( n) t f e dt f() t e f ( ) e dt n dt n ( n) t ( n) d f ( n) f e dt f () f () n dt n n ( n) ( n) () () () () F f f f 5-

If f () = f () = f () = = f (n-) () =, Initial condition effect are vanihed. It i very convenient to ue deviation variable o that all the effect of initial condition vanih. df dt d f Tranform of linear differential equation. yt () Y (), ut () U() dt n d f dt n F() () F n F () dy() t Y ( ) (if y() ) dt dy() t yt () Kut () ( y() ) ( ) Y( ) KU( ) dt T T T( ) v ( Tw T) Hv ( H) T ( ) T w( ) t z z H 5-

Integration t t ( ) ( ) t f d f d e dt t e t t F( ) f ( ) d f e dt (by ib.. p.) Time delay (Tranlation in time) Derivative of aplace tranform d bt () db t da t f d f b t f a t dt at () dt dt () () eibniz rule: ( ) ( ( )) ( ( )) f t f t t in t () ( )S( ) t ( ) f( t )S( t) f( t) e dt f( ) e d (let t) e f( ) e d e F( ) f(t) t df() d t d t t f e dt f e dt ( t f ) e dt t f ( t) d d d 5-3

Final value theorem From the T of differentiation, a approache to zero lim df t e dt lim F ( ) f () dt df dt f ( ) f () lim F ( ) f () f ( ) lim F ( ) dt imitation: f ( ) ha to exit. If it diverge or ocillate, thi theorem i not valid. Initial value theorem From the T of differentiation, a approache to infinity df lim t e dt lim F( ) f() dt df lim e t dt lim F ( ) f () f () lim F ( ) dt 5-4

EXAMPE ON APACE TRANSFORM () f(t) 3.5 t for t 3 for t 6 f() t for 6 t 6 t for t f( t).5ts( t).5( t)s( t) 3S( t6).5 3 6 F() f() t ( e ) e 5 For F ( ), find f() and f( ). Uing the initial and final value theorem f() lim F( ) lim f( ) lim F( ) lim 5 5 But the final value theorem i not valid becaue 5 lim f( t) lim e t t t 5-5

EXAMPE ON APACE TRANSFORM () What i the final value of the following ytem? xxxin t; x() x() ( )( ) ( )=lim x ( )( ) X () X () X x()= Actually, x( ) cannot be defined due to in t term. Find the aplace tranform for? df() From t f( t) d d tint d ( ) (in t t) 5-6

INVERSE APACE TRANSFORM Ued to recover the olution in time domain F() f() t - From the table By partial fraction expanion By inverion uing contour integral Partial fraction expanion t f() t F() e F() d j C - After the partial fraction expanion, it require to know ome imple formula of invere aplace tranform uch a ( n)! e,,,, etc. b n ( ) ( ) 5-7

PARTIA FRACTION EXPANSION F () N () N () n D( ) ( p ) ( p ) ( p ) ( p ) n n Cae I: All p i are ditinct and real By a root-finding technique, find all root (time-conuming) Find the coefficient for each fraction Comparion of the coefficient after multiplying the denominator Replace ome value for and olve linear algebraic equation Ue of Heaviide expanion Multiply both ide by a factor, (+p i ), and replace with p i. N () i ( pi) D () Invere T: p f t e e e pt pt n () i n p t 5-8

Cae II: Some root are repeated F () N () N () b b D( ) ( p) ( p) ( p) ( p) r r r r r r Each repeated factor have to be eparated firt. Same method a Cae I can be applied. Heaviide expanion for repeated factor r i i! d D( ) () i d N( ) () ( ) r p ( i,, r ) i p Invere T f () t e te t e ( r )! pt pt r r pt 5-9

Cae III: Some root are complex F () N () cc ( b) D () d d ( b) Each repeated factor have to be eparated firt. Then, ( b) ( b) ( b) ( b) ( b) Invere T where bd /, d d / 4 c, c b / bt f () t e cot e int bt 5-

EXAMPES ON INVERSE APACE TRANSFORM ( 5) A B C D F ( ) (ditinct) ( )( )( 3) 3 Multiply each factor and inert the zero value ( 5) B C D A A5/6 ( )( )( 3) 3 ( 5) A( ) C( ) D( ) B B ( )( 3) 3 ( 5) A( ) B( ) D( ) C C 3/ ( )( 3) 3 ( 5) A( 3) B( 3) C( 3) D D /3 ( )( ) 3 3 5 3 f() t F( ) e e e 6 3 - t t 3 t 5-

A B C D F ( ) (repeated) 3 3 ( ) ( ) ( ) ( ) ( A B C)( ) D( ) 3 3 ( ) ( 3 ) ( 3 ) ( ) A D AB D BC D CD AD, AB3D, BC3D, CD A, B, C, D Ue of Heaviide expanion r i ( ) ( ) ( ) ( ) 3 3 3 ( i ): 3 d ( i ):! d d ( i ):! d f() t F( ) e te t e e - t t t t () i d N( ) () ( ) r (,, ) i p i r i! d D( ) p 5-

( ) A( ) B CD ( ) (complex) ( 45) ( ) F A B CD ( ) ( )( 4 5) 3 ( A C ) (AB4 CD ) (5C4 D ) 5D AC, AB4CD, 5C4D, 5D A/5, B7/5, C /5, D/5 A ( ) B ( ) 7 B ( ) 5 ( ) 5 ( ) C D 5 5-7 () () t co t f t F e t e int t 5 5 5 5 5-3

e A B F () ( e ) (Time delay) (4)(3) 4 3 A /(3 ) 4, B /(4 ) 3 /4 /3 4 3 4e 3e 4 3 4 3 f() t F() t/4 t/3 ( t)/4 ( t)/3 e e e e S( t) 5-4

SOVING ODE BY APACE TRANSFORM Procedure. Given linear ODE with initial condition,. Take aplace tranform and olve for output 3. Invere aplace tranform dy dt Example: Solve for 5 4y ; y() dy 5 +4y 5( Y( ) y()) 4 Y( ) dt 5 (54) Y() 5 Y() (5 4).5.5 yt () Y().5.5e 5 4.8 t 5-5

TRANSFER FUNCTION () Definition An algebraic expreion for the dynamic relation between the input and output of the proce model dy 5 4 y u; y() U() dt et y y and u u4 Y ().5 (5 4) Y() U() G() U ( ) 54.5 Y () Tranfer Function, G() How to find tranfer function. Find the equilibrium point. If the ytem i nonlinear, then linearize around equil. point 3. Introduce deviation variable 4. Take aplace tranform and olve for output 5. Do the Invere aplace tranform and recover the original variable from deviation variable 5-6

TRANSFER FUNCTION () Benefit Once TF i known, the output repone to variou given input can be obtained eaily. yt Y GU G U () () () () () () Interconnected ytem can be analyzed eaily. By block diagram algebra X + - G G3 G Y Y () () () G G X () G() G() G3() Eay to analyze the qualitative behavior of a proce, uch a tability, peed of repone, ocillation, etc. By inpecting Pole and Zero Pole: all atifying D()= Zero: all atifying N()= 5-7

TRANSFER FUNCTION (3) Steady-tate Gain: The ratio between ultimate change in input and output ouput ( y( ) y()) Gain= K = input ( u ( ) u ()) For a unit tep change in input, the gain i the change in output Gain may not be definable: for example, integrating procee and procee with utaining ocillation in output From the final value theorem, unit tep change in input with zero initial condition give y( ) K lim Y( ) lim G( ) lim G( ) The tranfer function itelf i an impule repone of the ytem Y () GU () () G () (t) G () 5-8

EXAMPE Horizontal cylindrical torage tank (Ex4.7) dm dv qi q dt dt h dv dh V( h) wi( h) dh wi ( h) dt dt wi ( h)/ R ( Rh) ( Rh) h dh dh w i qi q ( qi q) (Nonlinear ODE) dt dt ( D h) h Equilibrium point: ( qi, q, h) ( qi q) /( ( Dh) h) (if qi q, h can be any value in h D.) inearization: dh f f f f ( hq,, q) ( hh) ( qq) ( qq) dt h q q i i i ( hq, i, q) i ( hq, i, q) ( hq, i, q) q i q R w i h 5-9

f ( qi q) ( qi q) h h ( D h) h ( hq, i, q) f f, q ( Dh) h q ( Dh) h i ( hq, i, q) ( hq, i, q) H () kqi () kq() H () and Q (): - k k H() and Q i (): et thi term be k Tranfer function between (integrating) Tranfer function between (integrating) h If i near or D, k become very large and i around D/, k become minimum. The model could be quite different depending on the operating condition ued for the linearization. The bet uitable range for the linearization in thi cae i around D/. (le change in gain) inearized model would be valid in very narrow range near. h 5-3

PROPERTIES OF TRANSFER FUNCTION Additive property Y Y Y () () () G X G X () () () () X () X () G () G () Y () Y () + + Y() Multiplicative property X () X () X 3 () G () G () X3() G() X() G() G() X() G() G() X() Phyical realizability In a tranfer function, the order of numerator(m) i greater than that of denominator(n): called phyically unrealizable The order of derivative for the input i higher than that of output. (require future input value for current output) 5-3

EXAMPES ON TWO TANK SYSTEM Two tank in erie (Ex3.7) No reaction dc V qc qci dt dc V qc qc dt Initial condition: c ()= c ()= kg mol/m 3 (Ue deviation var.) Parameter: V /q= min., V /q=.5 min. Tranfer function () Ci () C () ( V / q) C () ( V / q) C() C() C() Ci() C () Ci() ( V / q) ( V/ q) C C i C C V V q 5-3

Pule input P 5.5 C i () ( e ) c i P 5.5 t Equivalent impule input C i ( ) (5.5) ( t).5 Pule repone v. Impule repone 5 C C e () P P.5 () i () ( ) 5 e c t e.5 ( ) P t/ ( ) 5( ) e t.5 C () Ci () () c ( t.5)/ 5( )S(.5).65e t / 5-33

5 C C e ( )(.5 ) ( )(.5 ) P P.5 ( ) i ( ) ( ) 5 4.5 e.5 c t e e P t/ t/.5 () (5 5 ) C ( ) Ci ( ) ()(.5).5 ()(.5) 5 3.75.5 c.5e.5e t/ t/.5.5 ( ) ( t.5)/ ( t.5)/.5 (5 e 5 e )S( t.5) 5-34