Specific parameters for some isotopes of copernicium and flerovium

Similar documents
Nuclear Reactions. Shape, interaction, and excitation structures of nuclei scattering expt. cf. Experiment by Rutherford (a scatt.

Chapter 44. Nuclear Structure

α-decay half-lives for Pb isotopes within Gamow-like model

Stability of heavy elements against alpha and cluster radioactivity

Composite Nucleus (Activated Complex)

Alpha decay. Introduction to Nuclear Science. Simon Fraser University Spring NUCS 342 February 21, 2011

Theoretical basics and modern status of radioactivity studies

Part II Particle and Nuclear Physics Examples Sheet 4

RFSS: Lecture 2 Nuclear Properties

Finding Magic Numbers for Heavy and Superheavy Nuclei. By Roger A. Rydin Associate Professor Emeritus of Nuclear Engineering

Superheavy elements* Yury Ts. Oganessian. Pure Appl. Chem., Vol. 76, No. 9, pp , IUPAC

Nuclear Symmetry Energy Constrained by Cluster Radioactivity. Chang Xu ( 许昌 ) Department of Physics, Nanjing University

Single universal curve for decay derived from semi-microscopic calculations

Compound and heavy-ion reactions

= : K A

1 DETERMINATION HALF-LIVE OF HEAVY NUCLEI USING FERMI GAS MODEL DETERMINATION HALF-LIVE OF HEAVY NUCLEI USING FERMI GAS MODEL 1.

The IC electrons are mono-energetic. Their kinetic energy is equal to the energy of the transition minus the binding energy of the electron.

Subbarrier cold fusion reactions leading to superheavy elements( )

CHAPTER I. Introduction. There are 117 elements (Z=1-118) known at present, of which 94 occur naturally on

The Nuclear Many-Body problem. Lecture 3

Alpha decay. Introduction to Nuclear Science. Simon Fraser University Spring NUCS 342 February 21, 2011

Correlation between alpha-decay energies of superheavy nuclei

Alpha decay, ssion, and nuclear reactions

2007 Fall Nuc Med Physics Lectures

From Last Time. Stronger than coulomb force, But much shorter range than coulomb force.

Introduction to Nuclear Science

NUCLEI, RADIOACTIVITY AND NUCLEAR REACTIONS

An α decay is a nuclear transformation in which a nucleus reduces its energy by emitting an α-particle. Z 2 X N He 2, A X X + α.

Alpha Decay of Superheavy Nuclei

Class XII Chapter 13 - Nuclei Physics

The Charged Liquid Drop Model Binding Energy and Fission

Chapter 37. Nuclear Chemistry. Copyright (c) 2011 by Michael A. Janusa, PhD. All rights reserved.

Theoretical Study on Alpha-Decay Chains of

Nuclear Fission Fission discovered by Otto Hahn and Fritz Strassman, Lisa Meitner in 1938

Lecture 4: Nuclear Energy Generation

The liquid drop model

Journey to Superheavy Valley

Nuclear Binding Energy

Nuclear Symmetry Energy and its Density Dependence. Chang Xu Department of Physics, Nanjing University. Wako, Japan

Basic Nuclear Theory. Lecture 1 The Atom and Nuclear Stability

Chemistry 1000 Lecture 3: Nuclear stability. Marc R. Roussel


Chapter VIII: Nuclear fission

Alpha Decay. Decay alpha particles are monoenergetic. Nuclides with A>150 are unstable against alpha decay. E α = Q (1-4/A)

General Physics (PHY 2140)

What did you learn in the last lecture?

HALF-LIVES OF THIRTEEN DOUBLE β -DECAY CANDIDATES WITH TWO NEUTRINOS

Chem 481 Lecture Material 1/23/09

FACTS WHY? C. Alpha Decay Probability 1. Energetics: Q α positive for all A>140 nuclei

Theoretical approaches on alpha decay half-lives of the super heavy Nuclei. S. S. Hosseini* 1, H. Hassanabadi 1

Production of superheavy elements. Seminar: Key experiments in particle physics Supervisor: Kai Schweda Thorsten Heußer

CHEM 312 Lecture 7: Fission

Production of Super Heavy Nuclei at FLNR. Present status and future

16.5 Coulomb s Law Types of Forces in Nature. 6.1 Newton s Law of Gravitation Coulomb s Law

Heavy-ion fusion reactions and superheavy elements. Kouichi Hagino

HALF-LIVES OF NUCLEI AROUND THE SUPERHEAVY NUCLEUS

Applied Nuclear Physics (Fall 2004) Lecture 11 (10/20/04) Nuclear Binding Energy and Stability

1) Radioactive Decay, Nucleosynthesis, and Basic Geochronology

Nice Try. Introduction: Development of Nuclear Physics 20/08/2010. Nuclear Binding, Radioactivity. SPH4UI Physics

LECTURE 23 NUCLEI. Instructor: Kazumi Tolich

Nuclear Physics for Applications

Theoretical Nuclear Physics

Alpha decay chains from superheavy nuclei

Quantum Theory of Many-Particle Systems, Phys. 540

Introduction to Nuclear Science

Fusion Barrier of Super-heavy Elements in a Generalized Liquid Drop Model

CHEM 312: Lecture 9 Part 1 Nuclear Reactions

α particles, β particles, and γ rays. Measurements of the energy of the nuclear

Introduction to Nuclear Physics and Nuclear Decay

Fundamental Stellar Parameters. Radiative Transfer. Stellar Atmospheres. Equations of Stellar Structure

FAVORABLE HOT FUSION REACTION FOR SYNTHESIS OF NEW SUPERHEAVY NUCLIDE 272 Ds

Nuclear and Particle Physics

Reactions of neutron-rich Sn isotopes investigated at relativistic energies at R 3 B

LECTURE 25 NUCLEAR STRUCTURE AND STABILITY. Instructor: Kazumi Tolich

Fusion probability and survivability in estimates of heaviest nuclei production R.N. Sagaidak Flerov Laboratory of Nuclear Reactions, JINR, Dubna, RF

Magic Numbers of Ultraheavy Nuclei

Nuclear Shell model. C. Prediction of spins and Parities: GROUND RULES 1. Even-Even Nuclei. I π = 0 +

Comprehensive decay law for emission of charged particles and exotic cluster radioactivity

α particles, β particles, and γ rays. Measurements of the energy of the nuclear

Chem 481 Lecture Material 1/30/09

PHYS3031 -Advanced Optics and Nuclear Physics, Paper 2. Session 2, 2014

Lecture 4: Nuclear Energy Generation

Allowed beta decay May 18, 2017

Atomic Quantum number summary. From last time. Na Optical spectrum. Another possibility: Stimulated emission. How do atomic transitions occur?

Properties of Nuclei

Nuclear Binding, Radioactivity

General Physics (PHY 2140)

Nuclear Physics and Astrophysics

13. Basic Nuclear Properties

Supplement 1: Beta Decay

Chapter 21. Preview. Lesson Starter Objectives Mass Defect and Nuclear Stability Nucleons and Nuclear Stability Nuclear Reactions

An Introduction to. Nuclear Physics. Yatramohan Jana. Alpha Science International Ltd. Oxford, U.K.

8 Nuclei. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1

Chapter 19 - Nuclear Chemistry Nuclear Stability and Modes of Decay

15. Nuclear Decay. Particle and Nuclear Physics. Dr. Tina Potter. Dr. Tina Potter 15. Nuclear Decay 1

c E If photon Mass particle 8-1

Fission and Fusion Book pg cgrahamphysics.com 2016

THE NUCLEUS OF AN ATOM

NERS 312 Elements of Nuclear Engineering and Radiological Sciences II aka Nuclear Physics for Nuclear Engineers Lecture Notes for Chapter 14: α decay

14. Structure of Nuclei

Transcription:

Science Front Publishers Journal for Foundations and Applications of Physics, 3 (2), (2016) (sciencefront.org) ISSN 2394-3688 Specific parameters for some isotopes of copernicium and flerovium Anjana Acharya *, Trupti Sahoo & Bibhas R Attreya Department of Physics, Veer Surendra Sai University of Technology Burla, Odisha-768018, India * Corresponding author E-mail: anjanaacharya1969@gmail.com (Received 24 April 2016, Accepted 04 June 2016, Published 14 June 2016) Abstract Super heavy elements (SHE) in the periodic table are generally transuranic and transactinide elements having Z > 92. Here, some of the properties of two super heavy elements viz. Copernicium (Cn) and Flerovium (Fl) are discussed. The half life time, transition probability, Gamow s factor, disintegration constant are calculated for these super heavy elements and compared with other values. 2016 Science Front Publishers Keywords: Transition probability, semi empirical mass formula, disintegration constant, tunneling effect 1. Introduction From the early days of the synthesis of heavier transuranic elements, it was predicted that since such heavy elements did not occur in nature, they would have shorter and shorter half lives. A doubly magic isotope having magic numbers of proton and neutrons would be stabilized against radioactive decay. The doubly magic isotope after lead-208 is flerovium-298 with 114 protons and 184 neutrons. It forms the centre of a so called island of stability. This island of stability centering around elements 112-118 comes just after a sea of instability from elements 101-111. The Flerovium isotopes in it were speculated in 1966 and it s half lives were estimated to be more than a hundred million years. B. Buck, A. C. Merchant, and S. M. Perez have shown in their paper new look about the α decay of heavy nuclei. Geiger-Nuttall plots of the accurate modern data on partial half-lives for α decay yield very striking linear correlations. Other data on ground-state to ground-state α decays for even-even nuclei with 76 Z 100 may be accounted for very well by a simple model with fixed parameters [1]. Sigurd Hofmann has explored the island of stability for the super heavy elements. Now, a Russian-American collaboration headed by Yuri Oganessian at the Joint Institute for Nuclear Research in Dubna, Russia, announces in Physical Review Letters its latest discovery a new element with atomic number 117 [2] The simplest of the nuclear models, which imagines the nucleus as a charged liquid drop, predicts that the most stable ones are located in the valley of 64

stability, the boundaries of which are determined by the interplay between nuclear and electric forces. The root-mean-square (rms) nuclear charge radii of superheavy odd-a and odd-odd nuclei are tentatively pursued by the deduction of experimental α decay data. The framework of calculating α decay half-lives is constructed via the combination of the improved two-potential approach with the density-dependent cluster model. In this procedure, the charge distribution of daughter nuclei is determined to exactly reproduce the measured α decay half-lives [3]. Assuming that the α particle is a structureless point particle with two protons and two neutrons, F R Xu et al [4] have calculated a mean-field-type cluster potential based on the Woods-Saxon potential with a folding factor which is to satisfy the quantization condition of a quasi bound cluster state. The folded Woods-Saxon cluster potential has been successfully applied to the calculations of α-particle decay in light and super-heavy nuclei. The standard values of the Woods-Saxon parameters were used without any adjustment. The calculated α-decay widths or lifetimes agree generally with experiment. Such a cluster potential leads to a consistent description of single-particle and cluster motions [4]. S K Patra et al calculated the reaction and the fusion cross-sections of neutron-rich heavy nuclei taking light exotic isotopes as projectiles [5, 6]. Results of neutron-rich Pb and U isotopes are demonstrated as the representative targets and He, B as the projectiles. The Gluaber Model and the Coupled Channel Formalism are used to evaluate the reaction and the fusion crosssections for the cases considered. Based on the analysis of these cross-sections, we predict the formation of heavy, superheavy and super-superheavy elements through rapid neutron/ light nuclei capture r-process of the nucleosynthesis in astrophysical objects [7]. Physical and Chemical properties of Cn & Fv Copernicium is an extremely radioactive element first originated in 1966 by the GSI Helmholtz Centre for Heavy Ion Research, Germany which was created in the laboratory. In the periodic table of the elements, it is a d-block transactinide element, extremely volatile even gas at standard temperature and pressure. Its lighter homologues, zinc, cadmium and mercury are entirely different from it. The most notable property is the withdrawing two 6d electrons before 7s ones due to the relativistic effects confirming that Cn is a transition metal [8, 9]. (relativistic) = - [ - ] It is predicted to differ significantly from the lighter group 12 elements. Cn2+ is likely to have a [Rn] 5f 14 6d 8 7s 2 electronic configuration. In water solutions it remains in +2 or +4 oxidation states. Cn is able to form metallic bond with copper, palladium, platinum, silver and gold. These bonds are predicted to be only about 15-20 kj/mol weaker than the analogous bonds with mercury. According to the Hund s rule with the state of higher total angular momentum, the binding energy would be lower. When the total correction (relativistic + spin orbit ) is independent of the orbital quantum number, states with same n and j but with different l will remain degenerate. Copernicium has no stable isotope. Several radioactive isotopes have been synthesized in the laboratory either by fusing atoms or by decay of heavier atoms. Six different isotopes are reported with atomic masses from 281 to 285 and 277. Among these isotopes, Cn 283 and Cn 285 have metastable states. Most of these decay through alpha decay, but some also undergo spontaneous fission. Density: 23.7gm/cm 3 Structure: hexagonal close-packed crystal Lattice parameters: a=332 pm and c=540 pm State: gaseous at room temperature. 65

Flerovium, the super heavy element is created in the laboratory and has not been observed in nature. The element is named after the Flerov Laboratory of Nuclear Reactions of the Joint Institute for Nuclear Research in Dubna, Russia where the element was discovered in 1998 and adopted by IUPAC on May 30, 2012. In the periodic table, it is a transactinide element in the p-block. It is a member of the 7 th period and is placed as the heaviest known member of the carbon group. Electronic configuration: 7s 2 7p 2 Stability: due to inner pair effect and the effect of tearing of 7p sub shell Fl assumed to be stable Oxidation states: +4 and +6 Low boiling point, gaseous metal Island of stability: Copernicium has 112 protons and 166 neutrons and Flerovium has 114 protons and 184 neutrons which can undergo α-decay process to give the product 274 112Cn. 298 114Fl is having spin J=11/2 with odd parity according to the shell model. After the α-emission the super heavy element goes to the stable form. There are six isotopes of 274 112Cn and two isotopes of 298 114Fl. 2. Calculation of different parameters Half lives of 112 Cn and 114 Fl According to Gamow s theory of α-decay, if the motion of a particle in a neighborhood of a potential barrier is treated wave mechanically it is found that there is a finite probability that the particle can leak through the barrier even though its kinetic energy is less than the height of the barrier. This is known as the tunneling effect. α-decay can be visualized as a process involving the formation of daughter nucleus α-system from the original parent nucleus and the survival of this system as a quasi bound state for a while depends on the life time before it undergoes decay.the decay process is governed by the Schrodinger s equation governing the two body system. In the centre of mass system, the parent daughter interaction in three dimension having reduced mass µand interacting potential between them as U(r) reduces to the solution of radial Schrodinger equation provided the potential is symmetric [10].The values of fission energy and fission due to the columbic barrier inclusion for symmetric nuclei can be used as inputs for the calculation of cross section [11, 12]. The one-dimensional radial Schrodinger equation is written as () + 2 ћ [ ()]()=0 Where U(r) is the short range attractive nuclear potential. The WKB approximation can be used to calculate the transmission probability of the particle T=e -2G Where G = µ ћ [() ] 1/2 dr G is known as the Gamow s factor G µ" # $% & ' () * ћ [ ( - 2 + ' ] Let P α be the probability of formation of α particles. They formed from the neutrons and protons in the nucleus [10]. 66

The frequency with which the α-particle hits the wall ν =, R is the radius of the nucleus and v is the velocity of the α-particle. λ = P α ν T t 1/2 = -./0 1 Binding energy The binding energy is calculated by using the semi-empirical mass formula BE = a v A-a s A 2/ 3 - a c Z (Z-1) / A 1/3 - a a (A - 2Z) 2 /A+ (A,Z) δ/a 1/2 The term a v attached to the volume term is known as the co-efficient of volume energy term. a s A 2/3 is known as the surface energy term, a correction to the volume term and strong in nature. a c Z(Z-1)/A 1/3 is known as the coulomb or electrostatic term. a a (A-2Z) 2 /A is the asymmetry term. δ/a 1/2 is known as the pairing energy term which captures the spin orbit coupling. +1 (A,Z) = 2 0 4 [for (A even and Z even), A odd and (A even and Z odd) respectively] 1 From the binding energy expression, we calculate the energy of the reaction as Eα = B.E. (He) + B.E. (Y) - B.E. (X) The α-decay process for flerovium is written as + 289 Fl 114 285 Cn 112 + 4 He 2 The calculated values of half life for the isotopes of Cn and Fl are given in table-1. The correlation between various nuclear parameters are shown in Fig.1 to 3. Table 1. Different parameters for the Isotopes of Cn & Fl isotopes E α in MeV G T ν t 1/2 in sec. 277 Cn 112 10.470 23.6044 3.144 1.442 0.15 281 Cn 112 10.003 25.0494 1.747 1.403 2.83 282 Cn 112 9.884 25.4331 8.112 1.393 6.13 283 Cn 112 9.766 25.8261 3.696 1.383 13.56 284 Cn 112 9.646 26.2288 1.652 1.373 70.57 285 Cn 112 9.526 26.6415 7.235 1.362 30.30 292 Fl 114 9.690 26.7436 5.899 1.363 86.19 289 Fl 114 10.045 25.5529 6.383 1.392 7.80 67

Fig 1 Graph between the T and R (in fermi) for different isotopes of Cn & Fl Fig 2 Graph between Eα (in Mev) and R (in fermi) for different isotopes of Cn and Fl 68

Fig 3 Graph between Eα (in Mev) and b (in fermi) for different isotopes of Cn and Fl 3. Result and Discussions In the table-1, we see that with increase in atomic mass of different isotopes of copernicium and flerovium, the Gamow factor and the half lives increase. The transition probability shows some abrupt behavior. The binding energy goes in a decreasing fashion with respect to the atomic masses of the superheavy elements. So in order to avoid this discrepancy we have to devise a model by including the coulomb interaction, which is our future plan. REFERENCES [1] B. Buck, A. C. Merchant, and S. M. Perez, New look at α decay of heavy nuclei, Phys. Rev. Letter, 65, 2975, (1990) [2] Sigurd Hofmann, Exploring the island of superheavy elements, Physics, 3, 31 (2010) [3] Yibin Qian, Zhongzhou Ren, and Dongdong Ni Tentative probe into the nuclear charge radii of superheavy odd-mass and odd-odd nuclei, Phys. Rev. C 89, 024318 (2014) [4] F R Xu, S M Wang, Z J Lin and J C Pei Alpha-decay quantum-tunnelling calculations based on a folded Woods-Saxon potential, Physica Scripta, T150, (2012) [5] A Marinov, I Rodushkin, D Kolb, A Pape, Y Kashiv, R Brandt, R V Gentry and H W Miller, Evidence for the Possible Existence of Long-lived Superheavy Nucleus with Atomic Mass Number A = 292 and Atomic Number Z 122 in Natural Th, International Journal of Modern Physics E, 19, (1), 131-140, (2010) [6] S K Patra, M Bhuyan, M S Mehta and R K Gupta, Superdeformed and Hyperdeformed States in Z = 122 Isotopes Physical Review C, 80 (3), (2009) [7] B S Meyer The r-, s-, and p-processes in Nucleosynthesis Annual Review of Astronomy and Astrophysics, 32, 153-190 (1994) [8] D Ni, Z Ren, T Dong and Y Qian, Nuclear charge radii of heavy and super heavy elements from the α-decay energy and half lives, Physical Review C, 87,024310 (2013) 69

[9] V E Viola & G T Seaborg, Nuclear systematic of the heavy elements II lifetimes of alpha, beta and spontaneous fission decay, J. Inorganic Nuclear Chemistry, 28, 741, (1966) [10] Tiekuang Dong and Zhongzhou Ren, New calculations of α-decay half lives by the Viola- Seaborg formula, European Physics Journal A, 26, 69-72, (2005) [11] T Sahoo, R L Nayak, A Acharya, Threshold energy values for superheavy elements from Z=104 to 117, International Journal of Engineering Science and Technology, 5 (3), (2016) [12] V I Zogrebaev and W Greiner, Cross sections for the production of super heavy elements, Nuclear Physics A, 944, 257-307 (2015) 70