PHOTOELECTROCHEMICAL DEGRADATION OF METHYLENE BLUE WITH NANO TiO 2

Similar documents
Photoelectrocatalytic Degradation of Sulfosalicylic Acid and Its Electrochemical Impedance Spectroscopy Investigation

Supplementary Information 1. Enhanced Solar Absorption, Visible-Light Photocatalytic and. Photoelectrochemical Properties of Aluminium-reduced

Photo catalytic degradation of methylene blue in aqueous solutions using TiO2 nanoparticles

Photocatalytic degradation of 4-nitrophenol in aqueous N, S-codoped TiO 2 suspensions

Catalytic materials for plasma-based VOC removal

Chapter - III THEORETICAL CONCEPTS. AOPs are promising methods for the remediation of wastewaters containing

CHAPTER 3 MATERIALS AND METHODS

INTERFERING EFFECTS IN THE MEASUREMENT OF BTEX DEPOLLUTION IN AIR BY PHOTOCATALYTIC MATERIALS

Construction of High Activity Titanium Dioxide Crystal Surface Heterostructures and Characterization of Its Basic Properties

Detection of intermediates in the TiO 2 -assisted photodegradation of Rhodamine B under visible light irradiation

PREPARATION, CHARACTERISATION AND PHOTOCATALYTIC ACTIVITY OF TERNARY GRAPHENE-Fe 3 O 4 :TiO 2 NANOCOMPOSITES

Available online at I-SEEC Proceeding - Science and Engineering (2013) 89 94

KTaO 3 a perovskite for water and air treatment

Supporting Information. Black Brookite Titania with High Solar Absorption and. Excellent Photocatalytic Perfomance

External and internal mass transfer effect on photocatalytic degradation

Phosphate Changes Effect of Humic Acids on TiO 2 Photocatalysis: from Inhibition to Mitigation of Electron-Hole Recombination

3.30 TITANIUM DIOXIDE

Supporting Information

Contributing factors on the removal of Azo-dyes from industrial wastewater: A comparison of the efficiency of sonocataysis and photocatalysis process

Adsorption Studies of Methylene Blue on TiO 2 Nanoparticles: Experimental and Mathematical Modeling

ROLE OF COPRECIPITATED NiS-ZnS IN PHOTOCATALYTIC DEGRADATION OF ALIZARIN RED S

Photoelectrocatalytic decomposition of dye in aqueous solution using Nafion as an electrolyte

Comparative study of UV-activated processes for the degradation of organic pollutants in

Ultrafast Electron and Energy Transfer in Dye- -- SUPPLEMENTARY TABLE and FIGURES

Preparation of Carbon-Coated TiO 2 at Different Heat Treatment Temperatures and Their Photoactivity

Techniques for effluent treatment. Lecture 5

Supplementary Information for

Synthesis and photocatalytic activity of TiO2 Nanoparticles

slurry photoreactor ENEA - C.R. "Casaccia Guido Spanò

Polymer Semiconductors for Artificial Photosynthesis: Hydrogen Evolution by Mesoporous Graphitic Carbon Nitride with Visible Light

Nano-engineered materials for H 2 production by water photo-electrolysis

PHOTOCATALYTIC REMOVAL OF TRI- AND HEXA-VALENT CHROMIUM IONS FROM CHROME-ELECTROPLATING WASTEWATER

A photo-catalytic reactor for degrading volatile organic compounds (VOCs) in paper mill environment

Research Article Preparation, Characterization, and Photocatalytic Property of Cu 2 O-TiO 2 Nanocomposites

Photocatalysis: semiconductor physics

Preparation of TiO2-Bamboo Leaves Ash Composite as Photocatalyst for Dye Photodegradation

Photocatalytic degradation of Acid Red 4 using a titanium dioxide membrane supported on a porous ceramic tube

Preparation of SiO 2 -Coated TiO 2 Composite Materials with Enhanced Photocatalytic Activity Under UV Light

Titanium dioxide nanoparticles as a highly active photocatalytic material

photo-mineralization of 2-propanol under visible light irradiation

A Plasmonic Photocatalyst Consisting of Silver Nanoparticles Embedded in Titanium Dioxide. Ryan Huschka LANP Seminar February 19, 2008

Photocatalytic discoloration of the azo dye methylene blue in the presence of irradiated TiO 2 /Pt nano-composite

Degradation of Chlorophenol by Photocatalysts with Various Transition Metals

Electronic Supplementary Information

Catalytic Decomposition of Formaldehyde on Nanometer Manganese Dioxide

Visible Light Assisted Photocatalytic Hydrogen Generation and Organic Dye Degradation by CdS Metal Oxide hybrids in presence of Graphene Oxide

Electronic Supplementary Information (ESI) for:

Supporting Information:

The vacuum thermal treatment effect on the optical absorption spectra of the TiO 2 coated by Ni-B nano-clasters photocatalyst powders

Supplementary Information

Supporting information. Highly Efficient Photocatalytic Degradation of Organic Pollutants by PANI-modified TiO 2 Composite

Photo Catalytic Degradation of Effluent of Iron and Power Plant Industries in Aqueous Solution by Tio 2 Nano Catalyst Using Uv Irradiation

Journal of Innovative Engineering R Senthilkumar et al., Journal of Innovative Engineering 2014, 2(2): 5

Supporting Information

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.8, No.1, pp

PHOTOCATALYTIC DEGRADATION OF NON-BIODEGRADABLE MALACHITE GREEN DYE BY Ni-DOPED TITANIUM DIOXIDE

A novel AgIO 4 semiconductor with ultrahigh activity in photodegradation of organic dyes: insights into the photosensitization mechanism

Optimal Configuration of a Photocatalytic lab-reactor by using Immobilized Nanostructured TiO 2

Preparation of One-dimensional ZnO/Bi2O3 Heterostructures Nanomaterial for Visible Light Photocatalysis

Synthesis of nano sized TiO 2 and its application in photocatalytic removal of methylene blue

ph-depending Enhancement of Electron Transfer by {001} Facet-Dominating TiO 2 Nanoparticles for Photocatalytic H 2 Evolution under Visible Irradiation

Supporting Information

Oxygen Vacancy Induced Bismuth Oxyiodide with Remarkably. Increased Visible-light Absorption and Superior Photocatalytic.

Title. CitationChemical Physics Letters, 392(1-3): Issue Date Doc URL. Type. File Information.

N.Hadj Salah a,b, M.Bouhelassa a, B.David b, *

Contribution to the Study of Quantum Efficiency of Photocatalytic Reaction of 2,6-Dichloroindophenol

Photocatalytical Decomposition of Contaminants on Thin Film Gas Sensors

Photocatalytic Degradation of Nitrogen Oxides on Titania under UV and Visible Light Irradiation and Application in Outdoor Air Purification

A comparative study of the azo dye reactive black 5 degradation by UV/TiO 2 and photo-fenton processes

Effect of Silver Dispersion on Photocatalytic Activity of Silver-Loaded Titanium Oxide

Microwave Synthesis of Monodisperse TiO 2 Quantum Dots and Enhanced Visible-Light Photocatalytic Properties

Decolorized of Textile dye waste waters by Hydrogen peroxide, UV and Sunlight

Degradation of Phenol in Water by Titanium Dioxide Photocatalysis

DEGRADATION OF METHYLENE BLUE VIA GEOPOLYMER COMPOSITE PHOTOCATALYSIS Wellington, New Zealand

Synthesis of 2 ) Structures by Small Molecule-Assisted Nucleation for Plasmon-Enhanced Photocatalytic Activity

Controlling Interfacial Contact and Exposed Facets for. Enhancing Photocatalysis via 2D-2D Heterostructure

Methylene Blue Immobilized Resin Dowex-11 as Photo Catalyst for UV Light Irradiation Assisted Degradation of Acid Yellow 36

Treatment of Reactive Blue 69 solution by electro-fenton process using carbon nanotubes based cathode

Photocatalytic degradation of methylene blue and crystal violet by sulfur/reduced graphene oxide composite

THE USE OF SURFACTANT IN PHOTO GALVANIC CELLS FOR SOLAR ENERGY CONVERSION AND STORAGE: A TERGITOL 7 -MANNITOL METHYLENE BLUE SYSTEM

Photocatalytic degradation of dyes over graphene-gold nanocomposites under visible light irradiation

Electro2catalytic oxidation of phenol on Sb2doped SnO 2 2coated Titanium foams electrodes

Assessment of Microwave/UV/O 3 in the Photo-Catalytic Degradation of Bromothymol Blue in Aqueous Nano TiO 2 Particles Dispersions

Supporting information. Enhanced photocatalytic degradation of methylene blue and adsorption of

Characteristics of Spherical Activated Carbon contained Titanium Oxide

GRAPHENE EFFECT ON EFFICIENCY OF TiO 2 -BASED DYE SENSITIZED SOLAR CELLS (DSSC)

Photolytic Degradation of Rhodamine B in Water Using H 2 O 2 /UV System

Multiply twinned Pt Pd nanoicosahedrons as highly active electrocatalyst for methanol oxidation

Electronic Supplementary Information for the Manuscript

Table S1. Electrocatalyst plating conditions Metal Anode (foil) Plating Potential (V versus Ag/AgCl) Rh Pt 1 M HCl/HPLC.

MODELING OPTIMIZATION OF FIXED ARBITRARY CONCENTRATORS

Zn 1.5 PW 12 O 40 Mixed Oxide Nanotube: An Efficient and Stable Catalyst for Degradation of Phenol by Ultraviolet

Electronic Supplementary Information. Enhanced Photocatalytic/photoelectrocatalytic Activities

Comparative Analysis of the Physical Properties and Photocatalytic Effects for C/TiO 2 Complexes Derived from Titanium n-butoxide

Supporting Information

e - Galvanic Cell 1. Voltage Sources 1.1 Polymer Electrolyte Membrane (PEM) Fuel Cell

Photocatalytic Ozonation for Treatment of Wastewater

Supplementary Information

A Novel Approach for the Production of Nitrogen Doped TiO 2 Nanoparticles

Supporting Information

Transcription:

Mater.Phys.Mech. Photoelectrochemical 4 (2001) degradation 101-106of methylene blue with nano TiO 2 under high potential bias 101 PHOTOELECTROCHEMICAL DEGRADATION OF METHYLENE BLUE WITH NANO TiO 2 UNDER HIGH POTENTIAL BIAS Taicheng An 1, Guiying Li, Ya Xiong 1, Xihai Zhu 1, Hengtai Xing 2 and Guoguang Liu 3 1 School of Chemistry and Chemical Engineering, Zhongshan University, Guangzhou, 510275, P. R. China 2 School of Life Science, Northwest Normal University, Lanzhou, 7300, P. R. China 3 Key Lab of Environ. Sci. & Technol. of High Education of Hennan Province, Xinxiang, 453308, China Received: June 2, 2001 Abstract. In this work, photoelectrocatalytic degradation of wastewater containing methylene blue (MB) was investigated using a novel photoelectrochemical reactor a three dimensional electrodes-photocatalytic oxidation reactor in which nano TiO 2 was used as photocatalyst. The experimental results are assessed in the terms of decolorization and Chemical Oxygen Demanded (COD) removal efficiencies. The experimental results showed that the three dimensional electrodephotocatalytic reactor could effectively destroy MB within a reaction time of 30 min. It was found that the three dimensional electrode technologies under high potential bias have an apparent enhancement effect on the photocatalytic degradation of MB in water with nanometer TiO 2. At a cell voltage of.0 V and a concentration of 5 g l -1 TiO 2, the decolorization and the COD removal efficiencies in the photoelectrochemical process were increased by 21.8% and 14.1%, respectively, compared to those in the single photocatalytic process. 1. INTRODUCTION Heterogeneous photocatalytic processes using nanometer semiconductor as a photocatalyst, is a good advanced oxidation technology for organic pollutants [1]. The photocatalytic properties of nano TiO 2 for wastewater treatment have been investigated extensively in slurry cells and on immobilized films [2-3]. The appeal of this technology is the prospect of complete mineralization of the pollutants into a harmless compound [4]. Unfortunately, in spite of having numerous approved patents related to this technology, the technical development of a practical water treatment system, even pilot scale level, has not yet been successfully achieved [5]. The high degree of recombination of photogenerated electrons and holes is a major limiting factor controlling the photocatalytic efficiency and impeding the practical application of this technique in the degradation of contaminants in wastewater [2]. Thus, several researchers have recently attempted to increase the photocatalytic efficiency of titanium dioxide using electrochemical methods by applying an external anodic bias to drive the photo-generated electrons [6-9]. However, in most of electrochemically assisted photocatalytic experiments, the applied anodic bias potential is always lower than the oxidation potential of the organic pollutant so that no direct electrochemical oxidation complicates the analysis of photocatalytic efficiency [10]. It is clear that these investigations only effectively represent a proof-of-concept of enhanced effects of external bias on photocatalytic degradation of organic pollutants by reducing the electron-hole recombination [6-9]. Nevertheless, it is worth pointing out that electrochemistry is also a method of removing organic pollutants [11-13]. In other words, potential bias plays an important role in enhancing degradation of organic pollutants not only by both reducing the electron-holes recombination but also by direct electrochemical oxidation at an anodic bias which is higher than the oxidation potential of the organic pollutant. However, there are few reports that discuss this hybrid photoelectrochemical technology at high potential bias [14]. In this work, we investigated mainly the combination of the photocatalysis of nano TiO 2 with three-dimensional electrodes under high anodic bias. Corresponding authors: Taicheng An and Ya Xiong, e-mail:cedc18@zsu.edu.cn 2001 Advanced Study Center Co. Ltd.

102 Taicheng An, Guiying Li, Ya Xiong, Xihai Zhu, Hengtai Xing and Guoguang Liu Much attention was paid to probe the enhancement effects of this hybrid technology comparing with photocatalysis and the effect of operating conditions on the photoelectrocatalytic efficiency using methylene blue (MB) as a test pollutant. 2. EXPERIMENTAL Material. Photocatalyst was nanometer titanium dioxide (Degussa P25), mainly anatase (Ca. %) in the shape of non-porous polyhetral particles of Ca. 30 nm mean size with a surface area of 50 m 2 g -1. The dye used, methylene blue, was analytic grade reagent, and the dye solutions were prepared with deionized water at a concentration of 1.0 mmol l -1 (Chemical Oxygen Demanded (COD) 508.9 ppm and colorization 47204), except as indicated. Electrocatalyst (EC) was prepared by adding 5.0% MnO 2 in granulated activated carbon (GAC) and used as the filler of the three-dimensional electrode in this experiment. The EC has an average particle size of 4.0. 6.2 mm and ash content of 8.1%. Both the main electrodes were made of stainless steel and used after dipped into diluted sulfuric acid for 3 min and then washed with deionized water twice. Photoelectrochemical reactor. The experimental set-up is presented in Fig.1. It is an open doublelayered reactor (28.0 cm 6.0 cm 10.0 cm) made of PVC plate. The stainless steel anode and cathode (main electrode) were situated 26.0 cm apart from each other. 150.0 g of EC were used as particle electrodes and packed between the two main electrodes and suspension of 1.0 g titanium dioxide containing MB was added into the reactor. When compressed air was bubbled into the reactor by a micropore plate from the bottom of reactor, the reactor material separated into two layers. The upper layer is mainly the suspension of TiO 2 with a depth of about 1.0 cm, and the lower layer is mainly the EC particle electrode with a packed height of about 1.0 cm. A 500 W high-pressure mercury lamp was located 12.0 cm above the reactor as an illuminant. The emitting radiation is a continuous spectra in the range of 200 ~ 0 nm with a peak intensity at 365 nm. The intensity of ultraviolet light on the surface of the reaction solution was at the average of 6.64 mw cm -2. Procedure. A methylene blue aqueous solution of.0 ml 1.0 mmol l -1 was added into the reactor and immersed for 5.0 min. After the post-immersion residual solution was removed, a 200.0 ml solution of MB containing 1.0 g titanium dioxide was fed into the photoelectrochemical reactor each run. The reactor was timed starting when the d. c. power, illu- Fig. 1. Schematic of reactor set-up (1- cathode; 2- outlet of recycled water; 3- particle filler electrode; 4- micropore titanium plate; 5- inlet of compressed air; 6- inlet of recycled water; 7- titanium dioxide layer; 8- anode; 9- UV illuminant). mination and compressed air supply were switched on. Except as indicated, general treating conditions were 30.0 V voltage, 0.6 m 3. h -1 airflow, 5.0 g. l -1 titanium dioxide and 30 min treatment time. The experimental temperature was kept at 30±2 C and overheating of the reaction solution was prevented with the use of a cooling fan over the reactor. The post-treatment colloid solutions were separated by centrifuge and filtered through a Millipore membrane for color and COD analysis. Color and decolorization ratios were measured with spectrophotometer methods and calculated according to the literature [15]. COD was measured with potassium dichromate method [16]. 3. RESULTS AND DISCUSSION Bard et al. [17-19] first recognized that photoelectrochemical cells and semiconductor powders might behave similarly, thus opening a practical way for photocatalysis. They considered a powder as a miniaturized photoelectrochemical cell in which the wire connecting the irradiated semiconductor anode to the counter electrode is infinitely small. Based on these ideas, Bard and his colleagues investigated the characteristics of semiconductor powders as the slurry electrodes. Their results suggested that when an oxidation process scavenged the holes, the photogenerated electrons would build up on the particle surface. The photogenerated electrons are able to be collected at an inert electrode (usually Pt) immersed in the semiconductor powder suspension [17-18, 20-21]. Thus semiconductor powder suspension can behave as electrodes, so-called slurry electrodes, in the same manner as single crystal and polycrystalline semiconductor materials.

Photoelectrochemical degradation of methylene blue with nano TiO 2 under high potential bias 103 0 10 20 30 40 50 Cell voltage [V] Fig. 2. Effect of cell voltage on decolorization and COD removal efficiencies (concentration of TiO 2 : 5 g l -1 ; initial concentration of MB: 1 mmol l -1 and reaction time: 30 min). Effect of potential bias on photocatalytic reaction. Fujishima and Honda [22] first used a singlecrystal rutile TiO 2 photoanode for photoelectrocatalytic decomposition of water under the influence of an anodic bias. To increase the photocatalytic efficiency of such semiconductors for degrading undesirable organics in aqueous solution, the anodic bias is also used for nanocrystal semiconductor photocatalysis [6-9]. However, in these electrochemically assisted photocatalytic experiments, the applied anodic bias potential is always lower than the oxidation potential of the organic pollutant so that no direct electrochemical oxidation complicates the photocatalysis [10]. In this paper, we investigated the effect of anode potential bias on the photoelectrochemical degradation of MB at a range of cell voltages from 0.0 to.0 V. The decolorization efficiency and COD removal efficiency were shown in Fig. 2. It is easily seen that both the decolorization and the COD removal efficiencies were greatly affected by the applied cell voltage. COD removal efficiency is 71.8% and decolorization efficiency is 72.8% without any cell voltage. This is attributed to photocatalytic degradation of the nano semiconductor and the adsorption of both photoand electro- catalysts. By increasing of the cell voltage, COD removal and the decolorization efficiencies were substantially improved. The best COD removal of 85.7% with the best decoloization efficiency of 94.6% was obtained at.0 V cell voltage. This enhanced effect in the photoelectrochemi- cal process may be attributed to two factors. First, the external electric field can capture photogenerated electrons, reducing the recombination of these electrons and holes; second, the high anodic bias can result in the electrochemical oxidation of MB. In practice, a 30.0 V cell voltage can be used because the cell voltage is not only in a range of safe voltage (36.0 V), but also gives increase in the treatment efficiency. Effect of treatment time on photoelectrochemical degradation efficiency. The efficiencies of the decolorization and COD removal at different treatment time are presented in Fig. 3. It is seen that the decolorization efficiency and reduction of COD removal both increased with increasing reaction time. The highest decolorization efficiency of about 94.6% was obtained in the photoelectrochemical process and the highest removal of COD reached.4% within 30 min. From the high decolorization and COD removal efficiencies, we can infer that most of MB was completely mineralized. Additionally, the decolorization efficiencies are always higher than that of COD removal in all the processes. This finding is not surprising, given that many intermediates are involved in oxidative decontamination of MB. Effect of concentration of nano TiO 2. For various photoreactors, the optimal concentration of nano titanium dioxide has to be determined since it strongly depends on the geometry of the photoreactor and the incident flux, and the mean

104 Taicheng An, Guiying Li, Ya Xiong, Xihai Zhu, Hengtai Xing and Guoguang Liu 40 20 0 0 0 5 10 15 20 25 30 35 Treatment time [min] Fig. 3. Effect of treatment time on decolorization and COD removal efficiencies (cell voltage: 30 V; concentration of TiO 2 : 5 g. l -1 and initial concentration of MB: 1 mmol. l -1 ). 40 20 optical pathway [23]. Therefore, the influence of the concentration of TiO 2 material on the reaction rate of photoelectrochemical degradation was studied in a range of 0.0 ~ 6.0 g l -1. The data is shown in Fig. 4. It can be seen that the decolorization and COD removal efficiencies have the similar change trends. They increased rapidly first and then vary slightly with increase in TiO 2 concentration. The results can be interpreted that, at the low TiO 2 concentration, more active sites were presented with TiO 2 increase, leading to an increase in reaction rate. However, at high TiO 2 concentration, the catalytic rates improve gently because of scattering of ultraviolet light [23]. Therefore, it is essential to select a suitable dosage of TiO 2 in the reactor. From Fig. 4, the desired amount of TiO 2 is 5 g l -1 for this photoreactor. Effect of initial concentration of MB. The electrochemically assisted photocatalytic degradation was studied by changing the initial concentration of MB solution from 0.25 to 2.00 mm. The profiles of COD and decolorization efficiencies versus the initial concentrations are shown in Fig. 5. It is seen that the initial concentration of MB solution has a 0 1 2 3 4 5 6 Concentration of photocatalyst [gl -1 ] Fig. 4. Effect of concentration of nano TiO 2 on decolorization and COD removal effiencies (cell voltage: 30 V; initial concentration of MB: 1 mmol. l -1 and reaction time: 30 min).

Photoelectrochemical degradation of methylene blue with nano TiO 2 under high potential bias 105 0 5 10 15 20 Initial concentration of MB [x10 4 mol l -1 ] Fig. 5. Effect of initial concentration of MB on decolorization and COD removal effiencies (cell voltage: 30 V; concentration of TiO 2 : 5 g. l -1 and reaction time: 30 min). significant effect on the decolorization and COD removal efficiency. The removal of COD decreases with increase of initial concentration while the decolorization efficiency just begins to decrease at concentration >1.00 10-3 mol. l -1. This decrease is because the transparency of the MB solution reduces dramatically at high concentration, hence the transmission intensity of ultraviolet light reduces and the photosensitization of the photocatalyst is significantly cut down. 4. CONCLUSIONS The experimental results show that photoeletcrochemical technology is a more effective process than a photocatalytic process for degrading MB in water. The optimal experimental efficiencies were obtained at a cell voltage of 30.0 V, a concentration of TiO 2 semiconductor of 5.0 g l -1, an initial concentration of MB of 1 mm and a reaction time of 30.0 min. ACKNOWLEDGMENTS Financial support by NSF of China (299730), NSF of Guangdong Province, China (9274), R. & D. project of EPA of Guangdong province, China (1999-14) and The Key Lab of Environmental Science and Technology of High Education of Hennan Province, China. REFERENCES [1] M. A. Fox // Chemtech. (1992) 6. [2] M. R. Hoffmann, S. T. Martin and W. Choi // Chem. Rev. 95 (1995) 69. [3] I. Sopyan, M. Watanabe and S. Murasawa // J. Photochem. Photobiol: A: chem. 98A (1996) 79. [4] A. Mills, R. H. Davies and D. Worsley // Chem. Soc. Rev. 22 (1993) 417. [5] A. K. Rayand and A. A. Beenackes // Catal. Today. 40 (1998) 73. [6] J. M. Kesselman, N. S. Lewis and M. R. Hoffmann // Environ. Sci. Technol. 31 (1997) 2298. [7] K. Vinodgopal, S. Hotchandani and P. V. Kamat // J. Phys. Chem. 97 (1993) 40. [8] K. Vinodgopal and P. V. Kamat // Environ. Sci. Technol. 29 (1995) 841. [9] K. Vinodgopal and P. V. Kamat // Chemtech. 26 (1996) 18. [10] J. A. Byrne and B. R. Eggins// J. Electroanal. Chem. 457 (1998) 61. [11] Y. Xiong and H. T. Karlsson // J. Environ. Sci. Health, Part A 36 (2001) 321. [12] C. L. K. Tennakoon, R. C. Bhardwaj and J. O. Bockris // J. Appl. Electrochem. 26 (1996) 18. [13] J. S. Do and W. Yeh // J. Appl. Electrochem. 28 (1998) 3. [14] S. Hyun and K. Lee // Memburein 6 (1996) 101.

106 Taicheng An, Guiying Li, Ya Xiong, Xihai Zhu, Hengtai Xing and Guoguang Liu [15] T. C. An, J. Z. Gao, H. Chen and X. H. Zhu // Chem. J. Internet 3 (2001) 14. [16] Y. Xiong, S. Peter, H.Y. Xia and X. H. Zhu // Water Res. 37(2001) 4228. [17] A. J. Bard // J. Photochem. 10 (1979) 59. [18] B. Kraeutler and A. J. Bard // J. Am. Chem. Soc. (1978) 2239. [19] A. J. Bard // Nature 207 (19) 139. [20] W. W. Dunn, Y. Aikawa and A. J. Bard // J. Electrochem. Soc. 128 (1981) 222. [21] M. W. Peterson, J. A. Turner and A. J. Nozik // J. Phys. Chem. 95 (1991) 221. [22] A. Fujishima and K. Honda // Nature 238 (1972) 37. [23] A. Assabane, Y. Ichou, H. Tachiri, C. Guillard and J. M.Herrmann // Appl. Catal. B: Environ. 24 (2000) 71.