Lecture 3. Shot noise correlations: The two-particle Aharonv-Bohm effect. Markus Buttiker University of Geneva

Similar documents
Introduction to mesoscopic physics

Flying qubits in semiconductors

arxiv: v1 [cond-mat.mes-hall] 29 Jan 2013

Unconventional electron quantum optics in condensed matter systems

arxiv: v1 [cond-mat.mes-hall] 15 Mar 2010

MESOSCOPIC QUANTUM OPTICS

Coherence and indistinguishability of single electron wavepackets emitted by independent sources

Capri - 04/04/ Hanbury Brown and Twiss type experiments in elecronic conductors

Dephasing of an Electronic Two-Path Interferometer

arxiv: v1 [cond-mat.mes-hall] 28 Feb 2012

Réunion erc. Gwendal Fève. Panel PE3 12 mn presentation 12 mn questions

Single Photon Generation & Application

QUANTUM ELECTRON OPTICS AND ITS APPLICATIONS. 1. Introduction

Scattering theory of thermoelectric transport. Markus Büttiker University of Geneva

Semiclassical formulation

Quantum noise studies of ultracold atoms

Learning about order from noise

FRACTIONAL CHARGE & FRACTIONAL STATISTICS & HANBURY BROWN & TWISS INTERFEROMETRY WITH ANYONS

The Physics of Nanoelectronics

arxiv: v2 [cond-mat.mes-hall] 21 Jan 2014

Quantum Noise as an Entanglement Meter

QUANTUM ELECTRONICS ON THE TRAY* *Sur le plateau (de Saclay)

Observation of neutral modes in the fractional quantum hall effect regime. Aveek Bid

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 25 Jun 1999

arxiv: v2 [cond-mat.mes-hall] 18 Oct 2010

Current and noise in chiral and non chiral Luttinger liquids. Thierry Martin Université de la Méditerranée Centre de Physique Théorique, Marseille

Interferometric and noise signatures of Majorana fermion edge states in transport experiments

Quantum Memory with Atomic Ensembles

Types of electrical noise

Cooper-pair splitter: towards an efficient source of spin-entangled EPR pairs

Introduction to Theory of Mesoscopic Systems

Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions

Quantum Optics with Propagating Microwaves in Superconducting Circuits. Io-Chun Hoi 許耀銓

Shot-noise and conductance measurements of transparent superconductor/two-dimensional electron gas junctions

AP/P387 Note2 Single- and entangled-photon sources

arxiv: v1 [cond-mat.mes-hall] 12 Sep 2016

Superconducting Qubits Lecture 4

Bruit de grenaille mesuré par comptage d'électrons dans une boîte quantique

Quantum Shot Noise. arxiv:cond-mat/ v1 [cond-mat.mes-hall] 30 Apr 2006

Hong-Ou-Mandel effect with matter waves

Quantum optics. Marian O. Scully Texas A&M University and Max-Planck-Institut für Quantenoptik. M. Suhail Zubairy Quaid-i-Azam University

Currents from hot spots

M12.L6 Low frequency noise in magnetic tunnel junctions. Shot noise: from photons to electrons

Ballistic quantum transport through nanostructures

Mesoscopic quantum measurements

Quantum coherence in quantum dot - Aharonov-Bohm ring hybrid systems

Path Entanglement. Liat Dovrat. Quantum Optics Seminar

Interactions and Charge Fractionalization in an Electronic Hong-Ou-Mandel Interferometer

Simple scheme for efficient linear optics quantum gates

Three-terminal quantum-dot thermoelectrics

Differential Phase Shift Quantum Key Distribution and Beyond

arxiv: v1 [cond-mat.mes-hall] 20 Apr 2016

Splitting of a Cooper pair by a pair of Majorana bound states

Detecting noise with shot noise: a new on-chip photon detector

Content of the lectures

New schemes for manipulating quantum states using a Kerr cell. Istituto Elettrotecnico Nazionale Galileo Ferraris, Str. delle Cacce 91, I Torino

Martes Cuánticos. Quantum Capacitors. (Quantum RC-circuits) Victor A. Gopar

Scattering theory of current-induced forces. Reinhold Egger Institut für Theoretische Physik, Univ. Düsseldorf

Electron counting with quantum dots

arxiv: v2 [cond-mat.mes-hall] 14 Dec 2009

Entanglement Enabled Intensity Interferometry

Quantum dots and Majorana Fermions Karsten Flensberg

Dynamical Casimir effect in superconducting circuits

Learning about order from noise

What is Quantum Transport?

Spectroscopies for Unoccupied States = Electrons

Quantum Ghost Imaging by Measuring Reflected Photons

Single-photon NV sources. Pauli Kehayias March 16, 2011

Lab 1 Entanglement and Bell s Inequalities

QUANTUM MECHANICS. Franz Schwabl. Translated by Ronald Kates. ff Springer

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris

Defense Technical Information Center Compilation Part Notice

A Guide to Experiments in Quantum Optics

Innovation and Development of Study Field. nano.tul.cz

Problem Set: TT Quantum Information

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 27 Feb 2007

Quantum Physics in the Nanoworld

Preface. Preface to the Third Edition. Preface to the Second Edition. Preface to the First Edition. 1 Introduction 1

Strong back-action of a linear circuit on a single electronic quantum channel F. PIERRE

Theory and Experiment

The Hanbury Brown Twiss effect for matter waves. Chris Westbrook Laboratoire Charles Fabry, Palaiseau Workshop on HBT interferometry 12 may 2014

Remote entanglement of transmon qubits

Interference and the lossless lossy beam splitter

January 2010, Maynooth. Photons. Myungshik Kim.

Scanning gate microscopy and individual control of edge-state transmission through a quantum point contact

Adiabatic quantum motors

Quantum Optics and Quantum Information Laboratory

Quantum. Mechanics. Y y. A Modern Development. 2nd Edition. Leslie E Ballentine. World Scientific. Simon Fraser University, Canada TAIPEI BEIJING

Time-dependent single-electron transport: irreversibility and out-of-equilibrium. Klaus Ensslin

Lecture 11, May 11, 2017

Beam Splitters, Interferometers and Hong-Ou-Mandel Effect for Interacting Bosonic and Fermionic Walkers in a Lattice

Enhancing sensitivity of gravitational wave antennas, such as LIGO, via light-atom interaction

Andreev Reflection. Fabrizio Dolcini Scuola Normale Superiore di Pisa, NEST (Italy) Dipartimento di Fisica del Politecnico di Torino (Italy)

Quantum dynamics in many body systems

Lectures on Quantum Optics and Quantum Information

LECTURES ON QUANTUM MECHANICS

Charge carrier statistics/shot Noise

Quantum computation and quantum information

Correlation functions in optics; classical and quantum 2. TUW, Vienna, Austria, April 2018 Luis A. Orozco

Entanglement, Fluctuations Quantum Quenches

Transcription:

Lecture 3 Shot noise correlations: The two-particle haronv-bohm effect 1 6 1 C 3 B 8 5 4 D 3 4 7 Markus Buttiker University of Geneva IV-th Windsor Summer School on Condensed Matter Theory, organized by B. ltshuler, P. Littlewood and J. von Delft. Cumberland Lodge, Windsor Royal Park, Windsor, UK, 06-19 ugust, 007.

Shot Noise: Multi-terminal 4 Mesoscopic conductor with N contacts 3 1 S= s s s s s s 11 1 13 1 3 s s s 31 3 33 s 1N t kt = 0, N s N1 s NN 4 t kt = 0, M contacts with N-M contacts at M=1, partition noise M > 1, relative phase of scattering matrix elements becomes important Exchange interference effects: Buttiker, PRL 68, 843 (199)

Intensity-Interferometers 5 Hanbury Brown and Twiss, Nature 177, 7 (1956) Mandel, Phys. Rev. 8, 99 (1983) star θ d 0 1 0 1 I (t) I (t+ τ) B Interference of independent photons: R. Kaltenbach et al. (Zeilinger), PRL 96, 4050 (006) (synchronization) M. Halder, et al. (Gisin), unpublished. (down conversion)

HBT-Intensity Interferometer Hanbury Brown and Twiss, Nature 177, 7 (1956) 6 Interference not of amplitudes but of intensities Optics: classical interpretation possible Quantum mechanical explanation: Purcell, Nature 178, 1449 (1956) Indistinguishable particles: Statistics, exchange amplitudes θ star d 0 1 0 1 I (t) I (t+ τ) B "The Quantum Phase of Flux Correlations in Wave Gudies", Buttiker, Physica B175, 199 (1991); PRL 68, 843, (199).

Optical and Electrical Mach-Zehnder- Interferometer 0 1 0 1 1 7 1 3 One particle haronov-bohm effect 4 ϕ B 4 0 1 0 1 0 1 0 1 00 11 0 1 0 1 Φ ϕ Ji et al (Heiblum), Nature 4, 415 (003) 3

Electrical Mach-Zehnder-Interferometer Ji et al (Heiblum), Nature 4, 415 (003) 8 0 1 0 1 1 ϕ B 4 Φ 0 1 0 1 0 1 0 1 00 11 ϕ 0 1 0 1

Two-particle interferometer Samuelsson, Sukhorukov, Buttiker, PRL 9, 06805 (004) 9 6 5 1 4 1 C D 3 B 8 7 5 1 00 11 0 1 0 1 00 11 1 6 4 0 1 0 1 00 11 Φ 00 11 C 0 1 0 1 00 11 0 1 D 00 11 B 7 4 3 00 11 00 11 8 3 4 Yurke and Stoler, PR 46, 9 (199) 3 00 11 ll elements of the conductance matrix are independent of B-flux

Two-particle haronov-bohm Effect 0 00 0 0 00 1 11 1 1 11 00 0 0 11 1 1 00 11 00 11 00 11 0 0 00 1 1 11 00 11 1 6 5 7 8 3 4 1 3 4 B C D Φ 1 3 4 5 6 7 8 1 D C 3 4 B Samuelsson, Sukhorukov, Buttiker, PRL 9, 06805 (004) For 10 Spin polarized [N > ; Sim and Sukhorukov (006)]

Two-particle haronov-bohm effect: Experiment I I. Neder, N. Ofek, Y. Chung, M. Heiblum, D. Mahalu and V. Umansky, Nature 448, 333 (007). 11

gate voltage Two-particle haronov-bohm effect: Experiment II I. Neder, N. Ofek, Y. Chung, M. Heiblum, D. Mahalu and V. Umansky, Nature 448, 333 (007). 1 flux

Spin entanglement 13 + + S a b B..a kind of correlation quite different from previously known correlations.. Quantum communication Quantum computation? Here: Orbital entanglement

Orbital entanglement 14 U + + B a D b NS-structures Pair-tunneling picture Normal conductors Electron-hole picture Samuelsson, Sukhorukov, Büttiker, PRL 91, 15700 (003) Beenakker, Emary, Kindermann, van Velsen, PRL 91, 147901 (003)

Two-particle entanglement Electron side Hole side 0 0 1 1 00 11 00 11 00 11 0 0 00 1 1 11 00 11 00 0 11 1 1 6 5 7 8 3 4 1 3 4 B C D Tunnel limit: orbitally entangled e-h-state incident state tunneling limit Samuelsson, Sukhorukov, Buttiker, PRL 9, 06805 (004) 15

Entanglement test: Bell Inequality 16 Comparison of classical local theory with quantum mechanical prediction. Here: entanglement test Bell Inequality: Clauser et al, PRL 3, 880 (1969) 16 measurements Orbital + 1 B S B + Samuelsson et al. PRL 91, 15700 (003) Chtchelkatchev et al, PRB 66, 16130 (00); Faoro, Taddei, Fazio, PRB 69, 1536 (004) violation of BI implies entanglement but not all entgangled states violate BI not invarinant under local rotations

Electron-electron entanglement through postselection Symmetric interferometer Electron-hole picture not appropriate Incident electron state is a product state: no intrinsic entanglement Two-particle effects nevertheless persists Bell Inequality can be violated Explanation: Entanglement through ``postselection'' (measurement) Joint detection probability 17 Bell parameter (Bell Inequality): α 3 β α 3 β Short time statistics: Pauli principle leads to injection of at most one electron in a short time interval: only two-particle transmission probability enters

Black body radiation sources 18 1 6 1 C 3 B 8 5 4 D 7 Sources: black body Energy window: narrow band filters 3 4 No violation: In contrast to electron injection through a single quantum channel where in each time-slot only one particle is injected, in the bosonic case, many particles can be injected.

Quantum Tomography with current and shot noise measurements complete reconstruction of one and two particle density matrices with current and shot-noise mesurements Samuelsson, Büttiker, Phys. Rev. B 73, 041305 (006) 19 Matrix elements Entanglement determined by

Quantum state tomography with quantum shot noise P. Samuelsson and M. Buttiker, Phys. Rev. B 73, 041305 (006) 0 + 1 S B1 B B B + Reconstruction of one-particle d.m. Setting I II III IV Parameters T =0, arb. T =1, arb. T =1/, =0 T =1/, =π/ 1 1 3 S 0 1 0 1 0 1 0 1 0 1 0 1 0 1 4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 B1 B

Quantum State Tomography with shot noise P. Samuelsson and M. Buttiker, Phys. Rev. B 73, 041305 (006) 1 Setting I II III IV Parameters T =0, arb. T =1, arb. T =1/, =0 T =1/, =π/ reduced density matrix single particle 1 1 3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 S 4 B1 B two particle 8 current measurements 16 current correlation measurements ( same as for BI but in contrast to BI, completely determines entanglement )

Summary Interference of independently emitted electrons Two-particle haronov-bohm effect Orbital entanglement Bell test of orbital entanglement Orbital quantum state tomography Pumping of entanglement

Quantum electronics: from Schottky to Bell Markus Büttiker University of Geneva Coherence and Quantum Optics 9 Rochester, NY, June 13, 007 EKO

Quantum optics/electronics Experiments and theory of quantum coherent electron transport resemble more and more quantum optics Important difference: Electrons are Fermions and carry charge Counting statistics Quantum measurements Generation of entangled states

Quantum Point Contact + Edge 5 States = Beam Splitter Quantum Point Contact Solid State Beam Splitter Edge state Transmission probability is a function of gate voltage

Opening the tool box.. Making quantum mechanics visible in man made structures Looking at individual quantum systems Webb et al. (1985) Persistent currents haronov-bohm effect Universal conductance fluctuations diffusive Conductance quantization. ballistic

Spin entanglement + + S a b B 4 S N N Dot & superconductor entanglers Recher et al. PRB 63 165314 (001) Lesovik et al. EPJB 4, 87 (001) Taddei and Fazio, PRB 65, 075317 (00) Oliver et al PRL 88 037901 (00) Bena et al PRL 89 037901 (00) Saraga and Loss, PRL 90 166803 (003)... + Long spin coherence length - Difficult to manipulate/detect

Quantum versus classical shot noise 6 Classical shot noise: W. Schottky, nn. Phys. (Leipzig) 57, 541 (1918) Quantum shot noise: Khlus (1987), Lesovik (1989), Yurke and Kochanski (1989), Buttiker (1990), Beenakker and van Houten (1991) r t

Shot Noise: Two-terminal 7 L ^ a L ^ a R R T μ L L sample T μ R R b ^ L ^ b R Quantum partition noise: kt = 0, V>0, If all Buttiker (1990) Fano factor Schottky (Poisson) Experiments: Reznikov (Heiblum) et al. PRL 75, 3340 (1995) Kumar, (Glattli) et al. PRL 76, 778 (1996)

Partition noise of fermions Oberholzer, Henny, Strunk et al, Physica E6, 314 () 9 κ=1 λ 1 3 00 11 T=1 R See also: Henny, et al., Science 84, 96 (1999); Oliver et al. Science 84, 99 (1999)

Why interference from independent sources? 11 Probably the most interesting effect of an independent particle description of transport Exchange can be made visible Vital * for implementation of quantum networks and quantum computing schemes: quantum repeaters Knill-Laflamme-Milburn (linear) quantum computing schemes In opitcs interference of independent sources is only possible with active synchronization of the sources. *Kaltenbaek (Zeilinger) et al. PRL 96, 4050 (006)

Visibility and violation of Bell Inequality (Dephasing) 0 0 0 0 1 1 1 1 0 0 1 1 00 11 0 0 1 1 1 6 5 7 8 3 4 1 3 4 B C D Φ Spatially seprated sources: qubit protectet against relaxation:

Two-particle Intensity Interferometers 0 Glattli et al. Schoenenberger Heiblum et al. 004 but no success!

Electrical Mach-Zehnder Interferometer II Neder, Heiblum, Levinson, Mahalu, Umansky, PRL 96, 016804 (006) 1 old!

Electrical Mach-Zehnder Interferometer III Litvin, Tranitz, Wegscheider and Strunk, PRB 75, 033315 (007) Chung, Samuelsson, and Buttiker, PRB 7, 1530 (005)

Electrical Mach-Zehnder Interferometer IV Roulleau, Portier, Glattli, Roche, Faini, Gennser, and D. Mailly, cond-mat/0704.0746 phase fluctuations! 3

Failure to see two-particle B-effect: Is there something wrong with theory? 4 Theory missing Luttinger like physics Resonant dephasing of the electronic Mach-Zehnder interferometer E.V. Sukhorukov, V. V. Cheianov, cond-mat/060988 Electrons in different reservoirs already entangled Suppression of Visibility in a Two-Electron Mach-Zehnder Interferometer Ya. M. Blanter, Yuval Gefen, cond-mat/0703186

Tomography: Medical 7 Cormack and Hounsfield J. Radon, 1917

Pauli s question M. G. Raymer, Contemporary Physics, 38, 343 (1997) Pauli s question (1933) : Can the wave function be determined uniquely from the distribution of position and momentum? No: such data is not tomographically complete. Pauli question generalized: Can one infer the whole complex function from some series of measurements on a large collection of identically prepared particles? Yes. J. Bertrand and P. Bertrand, Found. Phys., 17, 397 (1997)

Continuous variable tomography 3 Wigner function measure with Radon transformation obtain Wigner function from Wigner obtain via inverse Fourier transform taking gives

Quantum State Tomography: Experiments 4 ngular momentum state of an electron in hydrogene atom J.R. shburn et al, Phys. Rev. 41, 407 (1990). Quantum state of squeezed light D.T. Smithey et al, Phys. Rev. Lett. 70, 144 (1993). Vibrational state o a molecule T.J. Dunn, et al, Phys. Rev. Lett. 74, 884 (1995). Trapped ions D. Liebfried et al, Phys. Rev. Lett. 77, 481 (1996). tomic wave packets Ch. Kurtsiefer, T. Pfau, and Mlynek, Nature 386, 150 (1997). Polarization entangled photons P.G. Kwiat, et al, Nature 409, 1014 (001); T. Yamamoto et al ibid 41, 343 (003). Entanglement of two superconducting qubits Matthias Steffen et al, Science 313, 143 (006)

Dynamic electron-hole generation Samuelsson and Buttiker, Phys. Rev. B 7, 15536 (005) C 0 (a) (b) V C(t) 4 (c) (d) 1 V (t) D 3 B D 1 e h e 3 V 1 (t) Δ V (t) e h Rychkov, Polianski, Buttiker, Phys. Rev. B 7, 15536 (005) h 4 C. W. J. Beenakker, M. Titov, and B. Trauzettel, Phys. Rev. Lett. 94, 186804 (005) Multi-particle correlations of an oscillating scatterer, M. Moskalets, M. Buttiker, PRB 73, 15315 (006).

Summary 8 Shot noise correlations probe two-particle physics Two-particle haronov-bohm interferometer Orbital entanglement Bell test of orbital entanglement Orbital quantum state tomography Shot noise measurements determine the reduced two-particle density matrix up to local rotations Tomography delivers not only a criteria for entanglement but allows to experimentally quantify entanglement