CONTROL DESIGN FOR SET POINT TRACKING

Similar documents
POLE PLACEMENT. Sadegh Bolouki. Lecture slides for ECE 515. University of Illinois, Urbana-Champaign. Fall S. Bolouki (UIUC) 1 / 19

TRACKING AND DISTURBANCE REJECTION

5. Observer-based Controller Design

Control Systems Design

EL 625 Lecture 10. Pole Placement and Observer Design. ẋ = Ax (1)

University of Toronto Department of Electrical and Computer Engineering ECE410F Control Systems Problem Set #3 Solutions = Q o = CA.

ẋ n = f n (x 1,...,x n,u 1,...,u m ) (5) y 1 = g 1 (x 1,...,x n,u 1,...,u m ) (6) y p = g p (x 1,...,x n,u 1,...,u m ) (7)

Control Systems Design, SC4026. SC4026 Fall 2010, dr. A. Abate, DCSC, TU Delft

State Regulator. Advanced Control. design of controllers using pole placement and LQ design rules

6 OUTPUT FEEDBACK DESIGN

Zeros and zero dynamics

Intro. Computer Control Systems: F9

Topic # Feedback Control. State-Space Systems Closed-loop control using estimators and regulators. Dynamics output feedback

SYSTEMTEORI - ÖVNING 5: FEEDBACK, POLE ASSIGNMENT AND OBSERVER

Module 07 Controllability and Controller Design of Dynamical LTI Systems

Intro. Computer Control Systems: F8

Pole placement control: state space and polynomial approaches Lecture 2

Topics in control Tracking and regulation A. Astolfi

Stability, Pole Placement, Observers and Stabilization

Module 08 Observability and State Estimator Design of Dynamical LTI Systems

Control Systems Design, SC4026. SC4026 Fall 2009, dr. A. Abate, DCSC, TU Delft

Nonlinear Control Systems

Module 03 Linear Systems Theory: Necessary Background

ECE 388 Automatic Control

Linear State Feedback Controller Design

Control Systems Design, SC4026. SC4026 Fall 2010, dr. A. Abate, DCSC, TU Delft

Course Outline. Higher Order Poles: Example. Higher Order Poles. Amme 3500 : System Dynamics & Control. State Space Design. 1 G(s) = s(s + 2)(s +10)

1 (30 pts) Dominant Pole

1. Find the solution of the following uncontrolled linear system. 2 α 1 1

Linear System Theory

ECEN 605 LINEAR SYSTEMS. Lecture 7 Solution of State Equations 1/77

Chap. 3. Controlled Systems, Controllability

EE C128 / ME C134 Fall 2014 HW 9 Solutions. HW 9 Solutions. 10(s + 3) s(s + 2)(s + 5) G(s) =

Lec 6: State Feedback, Controllability, Integral Action

D(s) G(s) A control system design definition

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science : Dynamic Systems Spring 2011

16.31 Fall 2005 Lecture Presentation Mon 31-Oct-05 ver 1.1

Fall 線性系統 Linear Systems. Chapter 08 State Feedback & State Estimators (SISO) Feng-Li Lian. NTU-EE Sep07 Jan08

NPTEL Online Course: Control Engineering

1 Continuous-time Systems

Internal Model Principle

Problem Set 5 Solutions 1

Multivariable Control. Lecture 03. Description of Linear Time Invariant Systems. John T. Wen. September 7, 2006

Modeling and Analysis of Dynamic Systems

Full-State Feedback Design for a Multi-Input System

EE C128 / ME C134 Final Exam Fall 2014

Control Systems. Laplace domain analysis

Control System Design

Power Systems Control Prof. Wonhee Kim. Ch.3. Controller Design in Time Domain

Chapter 3. State Feedback - Pole Placement. Motivation

Robust Control 2 Controllability, Observability & Transfer Functions

Control engineering sample exam paper - Model answers

Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science : MULTIVARIABLE CONTROL SYSTEMS by A.

EECS C128/ ME C134 Final Wed. Dec. 15, am. Closed book. Two pages of formula sheets. No calculators.

CALIFORNIA INSTITUTE OF TECHNOLOGY Control and Dynamical Systems. CDS 110b

State Feedback and State Estimators Linear System Theory and Design, Chapter 8.

EEE582 Homework Problems

Solution of Linear State-space Systems

RECURSIVE ESTIMATION AND KALMAN FILTERING

MODERN CONTROL DESIGN

ECEEN 5448 Fall 2011 Homework #4 Solutions

Topic # /31 Feedback Control Systems

Power System Control

EEE 184: Introduction to feedback systems

Synthesis via State Space Methods

Full State Feedback for State Space Approach

Final: Signal, Systems and Control (BME )

Feedback Linearization

Controllability, Observability, Full State Feedback, Observer Based Control

There are none. Abstract for Gauranteed Margins for LQG Regulators, John Doyle, 1978 [Doy78].

Identification Methods for Structural Systems

Multivariable MRAC with State Feedback for Output Tracking

Chapter 3. LQ, LQG and Control System Design. Dutch Institute of Systems and Control

ACM/CMS 107 Linear Analysis & Applications Fall 2016 Assignment 4: Linear ODEs and Control Theory Due: 5th December 2016

Supplementary chapters

Modern Control Systems

DESIGN OF LINEAR STATE FEEDBACK CONTROL LAWS

CDS Solutions to Final Exam

ONGOING WORK ON FAULT DETECTION AND ISOLATION FOR FLIGHT CONTROL APPLICATIONS

System Types in Feedback Control with Saturating Actuators

Topic # Feedback Control Systems

BUMPLESS SWITCHING CONTROLLERS. William A. Wolovich and Alan B. Arehart 1. December 27, Abstract

Design Methods for Control Systems

MEM 355 Performance Enhancement of Dynamical Systems

Integral action in state feedback control

4F3 - Predictive Control

Topic # Feedback Control Systems

Kalman Decomposition B 2. z = T 1 x, where C = ( C. z + u (7) T 1, and. where B = T, and

2.4 REALIZATION AND CANONICAL FORMS

Singular Value Decomposition Analysis

Lecture 4 Continuous time linear quadratic regulator

State Feedback and State Estimators Linear System Theory and Design, Chapter 8.

Topic # /31 Feedback Control Systems

EE221A Linear System Theory Final Exam

Time Response Analysis (Part II)

MULTIVARIABLE ZEROS OF STATE-SPACE SYSTEMS

Steady State Kalman Filter

LMIs for Observability and Observer Design

Output Adaptive Model Reference Control of Linear Continuous State-Delay Plant

Problem 2 (Gaussian Elimination, Fundamental Spaces, Least Squares, Minimum Norm) Consider the following linear algebraic system of equations:

Transcription:

Chapter 5 CONTROL DESIGN FOR SET POINT TRACKING In this chapter, we extend the pole placement, observer-based output feedback design to solve tracking problems. By tracking we mean that the output is commanded to track asymptotically a reference trajectory. We shall first show how to solve the problem using state feedback. Applying the separation principle, we can then solve the problem also using observer-based output feedback design. While the tracking problem has been solved for much more general classes of reference inputs, we focus on constant step reference inputs. This is the most important class, since the most common tracking problem is that of set point tracking. The results are also easiest to discuss and understand. 5. Tracking Constant References Using State Feedback Consider the linear system ẋ(t) Ax(t) Bu(t) y(t) Cx(t) (5.) Let y d denote the desired constant value for the output y(t) to track asymptotically. We assume y d, and for convenience, we also use y d (t) y d to denote the constant desired reference trajectory. For simplicity, we shall assume that the number of inputs is equal to the number of outputs, i.e., p m. For now, assume that the state x and the reference y d are avaible. The control objective is to design a control law, which may depend on x and y d, so that the closed loop control system is stable and that the tracking error e(t) y d (t) y(t) tends to zero as t. Since y d, the steady state value of x(t) cannot be. Assume that a control law has been chosen so that both x and u converge to steady state values as t. Let x lim x(t) t u lim u(t) t For asymptotic tracking, x and u must satisfy the equation [ [ [ A B x C u y d [ I where is a zero matrix of size n p, and I is the p p identity matrix. 73 y d (5.2)

74 CHAPTER 5. CONTROL DESIGN FOR SET POINT TRACKING [ A B By assumption of equal number of inputs and outputs, is a square matrix. Since we would C [ x like to track any set point changes, y d is arbitrary. Equation (5.2) can be solved uniquely for if and only if [ A B C Assume that (5.3) is true. We can then express where [ Mx M u is nonsingular. (5.3) x M x y d (5.4) u M u y d (5.5) [ A B C [ I Let x x x, u u u, and y y Cx y y d. We can write a differential equation for x If we can find a feedback law of the form u (5.6) x A x B u (5.7) y C x u K x (5.8) such that the closed loop system for (5.7) is stable, then x as t, resulting in y as well. The closed loop system is given by x (A BK) x (5.9) But the stability of (5.9) means A BK is stable. Hence the control law (5.8). written in the form u u K(x x ) (M u KM x )y d Kx gy d Kx (5.) where g M u KM x, does stabilize (5.) and solves the required tracking problem. Using (5.6), we can also express g [ K I [ [ A B (5.) C I The following simulink block diagram shows the structure of the control design.

5.. TRACKING CONSTANT REFERENCES USING STATE FEEDBACK 75 Step reference input g B s Integrator C Scope A K Control Configuration for Constant Set Point Tracking Let us give an interpretation to condition (5.3). Suppose the input to (5.) is given by e λt θ. For zero initial conditions, the solution x(t) is given by e λt ξ. Substituting into (5.), we get the following equation Suppose this input results in no output. Then we must also have λξ Aξ Bθ (5.2) Cξ (5.3) In the single-input single-output case (i.e., θ is a scalar), this gives the condition Such a λ is therefore a zero of the transfer function C(λI A) B (5.4) H(s) C(sI A) B For the multivariable case, we can combine equations (5.2) and (5.3) into (5.5) can be solved for nonzero [ ξ θ [ (A λi) B C if and only if [ (A λi) B C [ ξ θ (5.5) is not full rank (5.6) By analogy with the single-input single-output case, we call such a λ a transmission zero of the system. From this discussion, we see that condition (5.3) corresponds to having no transmission zero at the origin. We can now state the conditions for solvability of the tracking problem:. (A, B) stabilizable 2. The system (5.) has no transmission zeros at

76 CHAPTER 5. CONTROL DESIGN FOR SET POINT TRACKING If, in addition, (A,B) is in fact controllable, then the rate of convergence to of the tracking error can be pre-assigned. Example : Let A 24 B The characteristic polynomial of the plant is given by The transfer function is given by C [ det(si A) s 3 s 2 24s s(s 2 s 24) s(s 2)(s 2) H(s) s(s 2)(s 2) so that there are no transmission zeros at. To solve for the steady state values x and u, we set [ x 24 u y d Successively from the equation for each row, we see that x 2, x 3, u, and x y d. Note that (A, B) is controllable. Suppose we choose the closed loop poles to be at, ± i. This corresponds to the desired characteristic polynomial r(s) (s 2 2s 2)(s ) s 3 3s 2 4s 2 Since (A,B) is in controllable canonical form, we immediately obtain K [ 2 28 7 From (5.), we obtain the desired control law u [ 2 28 7 2e 28x 2 7x 3 x y d x 2 x 3 To determine the transfer function from the reference input y d (t) to the output y(t), first note that A BK 24 2 28 7 2 4 3 (5.7) Writing u K(x y d )

5.. TRACKING CONSTANT REFERENCES USING STATE FEEDBACK 77 we can write the closed loop system as ẋ (A BK)x BK (A BK)x 2 y d y d (5.8) Noting that (5.8) is again in controllable canonical form, we can immediately write down the transfer function from y d to y as y(s) C(sI A BK) 2 y d (s) s [ s 2 s 3 3s 2 4s 2 2y d(s) 2 s 3 3s 2 4s 2 y d(s) H cl (s)y d (s) (5.9) Since y d (s) y d s and the closed loop system is stable, the steady state value of y can be determined from the final value theorem of Laplace transforms 2 lim y(t) lim t s s 3 3s 2 4s 2 y d H cl ()y d y d so that asymptotic tracking is indeed achieved. This asymptotic tracking condition can be interpreted as requiring H cl (s), the transfer function from y d to y to have DC-gain H cl (). In this example, the term u is not needed since there is a pole at the origin for the open loop plant. From classical control theory, we know that for such (type-) systems, asymptotic step tracking is guaranteed using unity feedback as long as the closed loop system is stable. The state space formulation gives exactly this structure. We can also interpret the asymptotic tracking condition directly using the state equations without computing the transfer function from y d to y. For the example, g M u KM x 2. The closed loop equation (5.8) can be expressed as ẋ (A BK)x Bgy d (5.2) Hence H cl (s), the transfer function from y d to y is given by The DC-gain is therefore given by which is readily verified to be. y(s) C(sI A BK) Bgy d (s) (5.2) H cl () C(A BK) Bg (5.22)

78 CHAPTER 5. CONTROL DESIGN FOR SET POINT TRACKING Since our control design is carried out using state equations, (5.22) is usually the preferred method to check the DC-gain of the closed loop system. It is also worth noting that the tracking problem for example can be reformulated into a regulation problem. Let z x y d y y d, z 2 x 2, and z 3 x 3. Using z [ z z 2 z 3 T as the state, and noting that y d is a constant, we get This gives the same form of the state equation for z as x: ż z 2 (5.23) ż 2 z 3 (5.24) ż 3 24z 2 z 3 u (5.25) ż Az Bu Since y d is known, measuring x is equivalent to measuring z. If we design a control law u Kz to cause the state z to be regulated to asymptotically, the tracking error, which is the same as z, will also go to asymptotically. We can do this reformulation in example because the only appearance of x in the state equation for x is in the form of ẋ in the first equation. Equivalently, the first column of A is identically. Example 2: As another example, consider the linear system (5.), but with A 2 2 B C [ Since the first column of A is not identically, we cannot readily reformulate the tracking problem into a regulation problem. We apply the more general formulation described earlier in this section. The open loop characteristic polynomial is given by det(si A) s 3 2s 2 s 2 (s )(s )(s 2) To solve for the steady state values of x and u, put [ x 2 2 u y d First, second, and 4th rows give respectively x 2, x 3, x y d, while the 3rd row gives u 2y d. Suppose we would like to place the closed loop poles at 2, ± i, so that the desired characteristic polynomial is r(s) (s 2 2s 2)(s 2) s 3 4s 2 6s 4 This results in The control law is given by K [ 2 7 6 u u K(x x ) 4y d 2x 7x 2 6x 3 (5.26)

5.2. OBSERVER-BASED OUTPUT FEEDBACK CONTROL 79 The transfer function from y d to y is easily evaluated to be y(s) Once again its DC gain is so that asymptotic tracking is achieved. Equivalently, we check that A BK Bg 4 6 4 4 4 s 3 4s 2 6s 4 y d(s) (5.27) and C(A BK) Bg Example 3: We give an example to show when the set point tracking problem is unsolvable. Let [ [ A B C [ The matrix is clearly singular, and the equation [ A B C [ Mx M u has no solution. The transfer function from u to y is given by G(s) C(sI A) B s s 2 which is at s. Equivalently, we can verify that the DC-gain CA B directly from the state equations. This means that there is a transmission zero at, and the set point tracking problem is not solvable. 5.2 Observer-Based Output Feedback Control The extension to observer-based output feedback is straightforward using the separation principle. Assuming observability and applying the separation principle, we replace the control law (5.) with u (M u KM x )y d Kˆx (5.28) We now show that the output feedback law (5.28) also solves the tracking problem. Consider first the case of using the full order observer to estimate x. The estimation error e x ˆx satisfiies ė (A LC)e

8 CHAPTER 5. CONTROL DESIGN FOR SET POINT TRACKING The output feedback control law (5.28) can be expressed as u (M u KM x )y d K(x e) Kx Ke (M u KM x )y d (5.29) Again, write g M u KM x. We combine the closed loop equation for x together with the equation for e to give the augmented system [ [ [ [ d x A BK BK x Bg y dt e A LC e d (5.3) [ x A aug B e aug y d (5.3) y [ C [ [ x x C e aug (5.32) e Note that (si A aug ) Using (5.33), the transfer function from y d to y is given by [ si A BK BK si A LC [ (si A BK) (si A BK) BK(sI A LC) (si A LC) (5.33) y(s) C(sI A BK) Bgy d (s) (5.34) which, on comparison with (5.2), is the same as that obtained using state feedback. Thus the asymptotic tracking properties are the same whether state feedback or observer-based output feedback is used. This is a vivid demonstration of the power of the separation principle and the state space approach. To illustrate the design procedure as described by (5.28), we re-visit example 2, using the full order observer. We first check observability of (C, A). O CA Suppose the observer poles are located at 4, 4, 4. With standard pole placement for A T C T L T, we find that 4 L 77 23 The observer is therefore given by the equation Substituting (5.28) into (5.36), we obtain ˆx Aˆx Bu L(y Cˆx) (5.35) 4 ˆx u 77 (y [ ˆx) (5.36) 2 2 23 ˆx (A BK LC)ˆx Ly Bgy d (5.37) 4 4 77 ˆx 77 y y d (5.38) 234 6 4 23 4

5.3. INTEGRAL CONTROL 8 The two equations (5.38) and (5.28) define the controller for this system. The general result given in (5.34) shows that this controller will achieve asymptotic tracking. Yet another way to represent the closed loop system is to use [ x ˆx T for the state of the combined system. Putting (5.28) into the state equation and combining with (5.37), we get d dt For the example, (5.39) becomes d dt [ x ˆx [ x ˆx [ A BK LC A BK LC [ x ˆx 2 2 2 7 6 4 4 77 77 23 234 6 4 y [ [ x ˆx [ Bg Bg [ x ˆx y d (5.39) 4 y d (5.4) 4 (5.4) The DC-gain from y d to y can be readily verified to be, as expected. Observer-based controller design can also be carried out using minimal observers. Since no new concepts are introduced, we leave the details and an illustrative example to the Appendix to Chapter 5. 5.3 Integral Control Observer-based control design solves the tracking problem provided the system matrices are known exactly. If the system parameters are not precisely known, asymptotic tracking may not be achieved. In this section, we discuss the use of integral control to achieve asymptotic tracking. We shall see that integral control is more robust in that as long as the closed loop system is stable, asymptotic tracking will be attained. The price to be paid is the increase in the dimension of the system. Again consider the linear system (5.). We augment the system with a differential equation ξ y y d (5.42) We may choose the initial condition ξ arbitrarily, usually taken to be. Since y and y d are both measured, we can determine ξ(t). It is in fact given by, for ξ, ξ(t) t [y(τ) y d (τ)dτ We shall be using ξ as part of the feedback, hence the name integral control. We can write the augmented system in the form [ [ [ [ [ ẋ A x B u y ξ C ξ I d (5.43) Control laws are taken to be of the form u Kx K I ξ (5.44) Observe that if the augmented system (5.43) can be stabilized with the control law (5.44) for suitable choice of K and K I, then we will get lim t ξ(t). This results in limt y(t) y d so that asymptotic

82 CHAPTER 5. CONTROL DESIGN FOR SET POINT TRACKING tracking is achieved. Furthermore, this will happen even if the system matrices A and B are perturbed. As long as the closed loop system remains stable under the perturbation, lim t ξ(t) still guarantees asymptotic tracking. The structure of the integral control design is given by the following simulink diagram. Step reference input s Integrator Ki B s Integrator C Scope A K Integral Control Configuration for Tracking We now examine conditions under which the augmented system is controllable given that (A, B) is controllable. We shall apply the PBH test in the following formulation: (A, B) is controllable if and only if for all complex λ, there is no nonzero vector v such that v T [ A λi B. First note that the augmented system matrix [ A A a C has 2 sets of eigenvalues, those of A, and p poles at the origin, where p is the dimension of y. Suppose v i is a left eigenvector of A corresponding to the eigenvalue λ i, i.e., Then we have immediately that [ v T i [ A C v T i A λ iv T i [ vi TA [ λ i v T i so that [ v T i is a left eigenvector of A a. The augmented system input matrix is given by [ B B a Application of the PBH test will require [ v T i B a v T i B (5.45)

5.3. INTEGRAL CONTROL 83 Assumption of controllability of (A,B) guarantees that condition (5.45) is satisfied. For the eigenvalues at, we require that there be no nonzero vector v such that v T [ A a B a. Noting the special structure of A a, this is equivalent to having no nonzero vector v such at v T [ A B C Summarizing the above discussion, we see that the augmented system (A a,b a ) is controllable if and only if (A, B) is controllable, and that there are no transmission zeros at the origin. Similarly, the augmented system (A a,b a ) is stabilizable if and only if (A,B) is stabilizable, and that there are no transmission zeros at the origin. These conditions are the same conditions as those in observer-based feedback control. We can therefore say that by introducing additional dynamics, we can guarantee asymptotic tracking despite parameter perturbations. As an example, we re-design the controller for the system in Example 2 using integral control. The augmented system (5.43) is given by [ẋ ξ 2 2 [ x ξ u y d (5.46) Suppose we use state feedback to place the poles of the augmented system at 2, 2, ± i. This results in K [ 4 5 8 K I 8 The closed loop system after applying the feedback law (5.44) is given by [ẋ [ x ξ 6 4 6 8 ξ y d (5.47) y [ [ x (5.48) ξ Again, the DC-gain from y d to y can be verified to be. To illustrate the robustness of the integral controller under parameter variations, suppose the A matrix has been perturbed to A p 2 3 Using the same control law, we find that the closed loop system matrix is perturbed to A pc 5 3 5 8 which is still stable. One can check that the DC-gain for the perturbed closed loop system remains at. If state feedback is not available, then under the assumption of observability, we can construct a state estimate using an observer. Application of the separation principle shows that asymptotic tracking will again be achieved, now using output feedback only.

84 CHAPTER 5. CONTROL DESIGN FOR SET POINT TRACKING Appendix to Chapter 5: Observer-Based Control Design Using Minimal Order Observers We can also implement (5.28) using a minimal order observer instead of a full order observer. Assume, as in Chapter 4, that C [ I and that (C,A) is observable. Partitioning A and K as described in Chapter 4 into [ A A A 2 K [ K A 2 A K 2 22 the estimation error e 2 is given by ê 2 (A 22 LA 2 )e 2 with L chosen to place the poles of the minimal order observer. In terms of e 2, the observer state estimate ˆx is given by [ ˆx x so that (5.28) becomes [ x The augmented system for satisfies d dt e 2 [ x e 2 e 2 u gy d Kx K 2 e 2 (5.49) [ A BK BK2 A 22 LA 2 [ x e 2 [ Bg y d (5.5) [ x A raug B e raug y d (5.5) 2 y [ C [ [ x C e raug (5.52) 2 xe2 The same analysis shows that the transfer function from y d to y in the minimal order observer implementation is also y(s) C(sI A BK) Bgy d (s) (5.53) which is the same as that given in (5.34) so that asymptotic tracking is achieved. As an example, again we go back to example 2, but now using a minimal order observer to estimate x 2 and x 3 and employing the feedback law (5.28). The decomposed system equations are given by [ x2 x 3 [ 2 [ x2 x 3 ẋ [ [ x 2 x 3 Hence the reduced-order observer is given by [ [ ˆx2 ˆx 3 2 [ ˆx2 ˆx 3 [ [ u 2 [ [ u 2 [ l y l 2 y (ẏ [ [ ˆx 2 ˆx 3 ) (5.54)

APPENDIX TO CHAPTER 5 85 The system matrix for the observer is given by F [ l l 2 2 where l and l 2 are to be chosen to place the poles of the observer. Its characteristic polynomial is given by det(si F) s 2 (l 2)s (l 2 2l ) Let us choose the observer poles to be at 4, 4. The desired observer characteristic polynomial is given by r o (s) s 2 8s 6 On matching coefficients, we see that l and l 2 37. Thus the reduced-order observer is given by [ [ ˆx2 ˆx 3 36 2 [ ˆx2 ˆx 3 [ The augmented system for [ x e 2 T in this case is given by d dt [ x e 2 [ u 2 [ y 37 ẏ (5.55) [ 4 6 4 7 6 x e 2 4 y d (5.56) 36 2 (5.57) y [ [ x e 2 Again the DC-gain from y d to y is easily verified to be. We can also derive the controller transfer function for the minimal order observer-based control design. We start with the minimal order observer equation (5.55). The control law is given by Substituting the control law into (5.55), we find [ ˆx2 ˆx 3 [ [ ˆx2 36 2 ˆx 3 [ [ ˆx2 43 4 ˆx 3 u u Kx Kˆx 4y d 2ˆx 7ˆx 2 6ˆx 3 4y d 2y 7ˆx 2 6ˆx 3 (5.58) [ [ [ 7 (4y d 2y 6 [ 4y d 4 [ ˆx2 y ˆx 3 [ 37 [ ) 2 [ ˆx2 Using (5.59), we can determine the transfer functions from y and y d to as ˆx 3 [ ˆx2 (s) ˆx 3 (s) [ s 43 s 4 ([ ([ 4y d 4 [ y 37 ẏ ẏ (5.59) [ s 37s ) ) y

86 CHAPTER 5. CONTROL DESIGN FOR SET POINT TRACKING Finally, substituting into (5.58), we obtain u [ 7 6 [ s 43 s 4 ([ ([ 4y d 4 s2 8s 6 s 2 4s 83 4y d 2s2 4s 2 s 2 4s 83 y 292s2 79s s 2 4s 83 y [ s 37s ) ) y 4y d 2y 294s2 83s 2 s 2 y s2 8s 6 4s 83 s 2 4s 83 4y d (5.6) If we express (5.6) in the form u(s) F(s)y(s) C(s)y d (s) the closed loop transfer function from y d to y is given by Substituting, we finally get y(s) G(s) G(s)F(s) C(s)y d(s) y(s) 4(s 2 8s 6) s 5 2s 4 54s 3 6s 2 28s 64 y d(s) 4(s 2 8s 6) (s 4) 2 (s 2)(s 2 2s 2) y d(s) (5.6) In the final transfer function (5.6), the observer poles are in fact cancelled, leaving y(s) 4 (s 2)(s 2 2s 2) y d(s) (5.62) The transfer function is the same as that obtained using state feedback in (5.27). This derivation is a much more laborious calculation than that shown as a general result in (5.53).