Structural and electrical characteristics of gallium modified PZT ceramics

Similar documents
PREPARATION & DIELECTRIC STUDY OF UNDOPED SODIUM SILICATE

Investigation on microstructure and dielectric behaviour of (Ba x Gd Cr x )TiO 3 ceramics

ARTICLE IN PRESS. Journal of Alloys and Compounds xxx (2007) xxx xxx

Chapter 6 ELECTRICAL CONDUCTIVITY ANALYSIS

Structural Analysis and Dielectric Properties of Cobalt Incorporated Barium Titanate

Structural and Electrical Properties of Lead Zirconate Titanate [Pb(Zr x Ti 1-x )O 3 ] Ceramics

Relaxor characteristics of ferroelectric BaZr 0.2 Ti 0.8 O 3 ceramics

Physical and Dielectric Properties of Silver Lithium Niobate Mixed Ceramic System

Structural and dielectric properties of Pb(Lil/4Sml/4Mol/2)O3 ceramics

Charge Polarization and Dielectric Relaxation in. Lead-Free Relaxor Ferroelectric

Structural and electrical properties of y(ni 0.7 Co 0.2 Cd 0.1 Fe 2 O 4 ) + (1-y)Ba 0.9 Sr 0.1 TiO 3 magnetoelectric composite

Barrier Layer; PTCR; Diffuse Ferroelectric Transition.

Effect of grain size on the electrical properties of Ba,Ca Zr,Ti O 3 relaxor ferroelectric ceramics

Chapter 3 Chapter 4 Chapter 5

High tunable dielectric response of Pb 0.87 Ba 0.1 La 0.02 (Zr 0.6 Sn 0.33 Ti 0.07 ) O 3 thin film

Impedance spectroscopy studies on lead free (Ba )O 3 ceramics

Impedance Analysis and Low-Frequency Dispersion Behavior of Bi 4 Ti 3 O 12 Glass

Impedance spectroscopy analysis of double perovskite Ho 2 NiTiO 6

Synthesis, impedance and dielectric properties of LaBi 5 Fe 2 Ti 3 O 18

Impedance spectroscopy analysis of Mg 4 Nb 2 O 9 with excess of MgO and different additions of V 2 O 5 for microwave and radio frequency applications.

Dielectric, piezoelectric and pyroelectric properties of PMN-PT (68:32) system

Dielectric and ferroelectric characteristics of barium zirconate titanate ceramics prepared from mixed oxide method

Advanced Materials Letters Copyright 2013 VBRI Press

Effect of Zr on dielectric, ferroelectric and impedance properties of BaTiO 3 ceramic

CHAPTER-4 Dielectric Study

Effect of Ni doping on structural and dielectric properties of BaTiO 3

Supplementary Information

Rietveld analysis, dielectric and impedance behaviour of Mn 3+ /Fe 3+ ionmodified

Microstructures and Dielectric Properties of Ba 1 x Sr x TiO 3 Ceramics Doped with B 2 O 3 -Li 2 O Glasses for LTCC Technology Applications

Hall effect and dielectric properties of Mn-doped barium titanate

File Name: Supplementary Movie 1 Description: An electronic watch is powered and a capacitor is charged quickly while a TENG works in high vacuum.

STRUCTURAL, DIELECTRIC AND ELECTRICAL PROPERTIES OF ZIRCONIUM DOPED BARIUM TITANATE PEROVSKITE

Ferroelectric Ceramic Technology for Sensors. Jim McIntosh Ceramic Operations Manager PCB Piezotronics

Ferroelectric materials contain one or more polar axes along which a spontaneous

Determination of the lead titanate zirconate phase diagram by the measurements of the internal friction and Young s modulus

CHAPTER 6 DIELECTRIC AND CONDUCTIVITY STUDIES OF ZIRCONIUM TIN TITANATE (ZST)

DIELECTRIC STUDY OF BaZr 0.5 Ti 0.5 O 3 FERROELECTRIC RELAXOR CERAMIC

Lead-free piezoelectric material AgNbO 3

Piezoelectric and Dielectric Characterization of BNBT6: 4Eu Ceramics

Supporting Information

Dielectric, Piezoelectric and Nonlinear Optical Properties of Lead Titanate based Ferroelectric Thin films

Dielectric Properties of Two-Stage Sintered PMN-PT Ceramics Prepared by Corundum Route

5. Building Blocks I: Ferroelectric inorganic micro- and nano(shell) tubes

EFFECT OF ZnO ON DIELECTRIC PROPERTIES AND ELECTRICAL CONDUCTIVITY OF TERNARY ZINC MAGNESIUM PHOSPHATE GLASSES

Modifying the Electrical Properties of Ba 0 85 Ca 0 15 Zr 0 1 Ti 0 9 O 3 Ceramics by the Nanocrystals-Induced Method

Recent Developments in Magnetoelectrics Vaijayanti Palkar

ISSN: ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 4, Issue 1, July 2014

Effect of Ni doping on ferroelectric, dielectric and magneto dielectric properties of strontium barium niobate ceramics

Effects of Crystal Structure on Microwave Dielectric Properties of Ceramics

Effect of La-ions on Debye s Relaxation Time and Activation Energy of (Pb 1-1.5x La x )TiO 3 Ceramics

Investigation of Complex Impedance and Modulus Properties of Nd Doped 0.5BiFeO 3-0.5PbTiO 3 Multiferroic Composites

AC CONDUCTIVITY AND DIELECTRIC RELAXATION STUDIES OF SANDSTONE- A CORRELATION WITH ITS THERMOLUMINESCENCE

Structural, dielectric and electrical properties of Li 2 Pb 2 La 2 W 2 Ti 4 Nb 4 O 30 ceramic

8Y-Stabilized Cubic Zirconia Addition Effect on Barium Titanate

Characterisation of barium titanate-silver composites part II: Electrical properties

New lithium-ion conducting perovskite oxides related to (Li, La)TiO 3

Electrodeposited nickel hydroxide on nickel foam with ultrahigh. capacitance

Dielectric and micromechanical studies of barium titanate substituted (1-y)Pb (Zn 1/3 Nb 2/3 )O 3 -ypt ferroelectric ceramics

Thin Film Bi-based Perovskites for High Energy Density Capacitor Applications

Electrical conduction in Ba(Bi 0.5 Nb 0.5 )O 3 ceramics Impedance spectroscopy analysis

Panadda Sittiketkorn, Sarawut Thountom and Theerachai Bongkarn*

INVESTIGATION OF TEMPERATURE DEPENDENCES OF ELECTROMECHANICAL PROPERTIES OF PLZT CERAMICS

DIELECTRIC AND PIEZOELECTRIC PROPERTIES OF COMBINATORY EFFECT OF A-SITE ISOVALENT AND B-SITE ACCEPTOR DOPED PLZT CERAMICS

Impedance analysis of Pb 2 Sb 3 LaTi 5 O 18 ceramic

Supporting information

Dielectric behaviour and a.c. conductivity in Cu x Fe 3 x O 4 ferrite

International Journal of Advance Engineering and Research Development

Introduction to solid state physics

AC impedance and dielectric spectroscopic studies of Mg 2+ ion conducting PVA PEG blended polymer electrolytes

Study the Effect of Dopants on Structural and Electrical Properties of BaTiO 3 Perovskite Ceramics

Micro-Brilouin scattering study of field cooling effects on ferroelectric relaxor PZN-9%PT single crystals

Ferroelectric Relaxor Behavior and Spectroscopic Properties of Ba2+ and Zr4+ Modified Sodium Bismuth Titanate

The Effect of Simultaneous Homo- and Heterogeneous Doping on Transport Properties of Ba 2 In 2 O 5

Supporting Information

Energy storage: high performance material engineering

Aging effect evolution during ferroelectricferroelectric phase transition: A mechanism study

Study of Structural and Dielectric Properties of PZT (La, Na) Ceramics

International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August ISSN

DIELECTRIC AND AC CONDUCTION STUDIES OF LEAD PHTHALOCYANINE THIN FILM

Department of Physics & Astronomy. National Institute of Technology, Rourkela , Odisha, India. August 2014

Structural and electrical characterization of epitaxial, large area ferroelectric films of Ba 2 Bi 4 Ti 5 O 18 grown by pulsed excimer laser ablation

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

Influence of Some Preparation Conditions on Debye s Relaxation Time and Related Properties of (Pb, La)TiO 3 Ceramics

Lead-Free Ceramic-Polymer Composites for Embedded Capacitor and Piezoelectric Applications P. Kumar *

Electromechanical-induced antiferroelectric ferroelectric phase transition in PbLa(Zr,Sn,Ti)O 3 ceramic

Dielectric Properties and Lattice Distortion in Rhombohedral Phase Region and Phase Coexistence Region of PZT Ceramics

STABILITY OF MECHANICAL AND DIELECTRIC PARAMETERS IN PZT BASED CERAMICS JAN ILCZUK, JUSTYNA BLUSZCZ, RADOSŁAW ZACHARIASZ

The electric field induced strain behavior of single. PZT piezoelectric ceramic fiber

STRUCTURAL AND ELECTRICAL PROPERTIES OF PbO - DOPED SrTiO 3 CERAMICS

Phase transition behavior and high piezoelectric properties in lead-free BaTiO 3 CaTiO 3 BaHfO 3 ceramics

Frequency and temperature dependence behaviour of impedance, modulus and conductivity of BaBi 4. Ti 4 O 15

What so special about LaAlO3/SrTiO3 interface? Magnetism, Superconductivity and their coexistence at the interface

CHAPTER 3 EXPERIMENTAL METHODS AND THEIR THEORETICAL BACKGROUND

Transport and Magnetic Properties of La 0.85 Ca Mn 1-x Al x O 3 Manganites

Structural Study of [Nd 0.5 (Ca 0.25 Ba 0.25 ) MnO 3 ] and [Nd 0.5 (Ca 0.25 Sr 0.25 )MnO 3 ] Perovskites at Room Temperature

Dielectric properties of Ti x Li 1 x La 0.1 Fe 1.9 O 4 ferrite thin films

Electrical Characterization by Impedance Spectroscopy of Zn 7

Ceramic Processing Research

Ceramic Processing Research

Joshua Whittam, 1 Andrew L. Hector, 1 * Christopher Kavanagh, 2 John R. Owen 1 and Gillian Reid 1

Transcription:

Processing and Application of Ceramics 11 [3] (2017) 171 176 https://doi.org/10.2298/pac1703171s Structural and electrical characteristics of gallium modified PZT ceramics Pulkit Sharma 1, Sugato Hajra 1, Sushrisangita Sahoo 2, Pravat Kumar Rout 1,, Ram Naresh Prasad Choudhary 2 1 Department of Electrical and Electronics Engineering, Siksha O Anusandhan University, Bhubaneswar - 751030, India 2 Multifunctional and Advanced Materials Research Lab, Department of Physics, Siksha O Anusandhan University, Bhubaneswar- 751030, India Received 3 April 2017; Received in revised form 21 May 2017; Received in revised form 10 June 2017; Accepted 20 June 2017 Abstract In the present paper, the gallium modified lead zirconate titanate ceramics with Zr/Ti = 48/52 (near the morphotropic phase boundary, MPB), having a chemical formula Pb 0.98, was synthesized by a mixed-oxide reaction method and sintered. Analysis of phase formation confirmed the co-existence of two phases (tetragonal and monoclinic symmetry) in the system. Microstructural study by scanning electron microscope showed a non-uniform distribution of large grains over the sample surface and presence of a small amount of micro-size pores. Modulus and impedance studies were carried out at various frequencies (1 khz 1 MHz) and temperatures (300 350 C) and showed the contributions of grains in capacitive and resistive properties of the material. The resistance and capacitance of the complex impedance plots are contributed by grains as observed from the Nyquist plots. The experimental data obtained from the Nyquist plot were implemented in an equivalent electrical circuit (RQC). The value of grain resistance and capacitance were obtained using fitting steps with precision at all temperatures. It is assumed that increase of dielectric constant at higher temperatures is due to the substitution of Ga + ions at the Pb-site. Keywords: Pb(Zr,Ti), solid-state synthesis, structural characterization, electrical and dielectric properties I. Introduction Lead based ferroelectrics belonging to perovskite structural family are widely used for some industrial applications, such as, bypass capacitor, micro electric motors, FeRAM/DRAM capacitors, linear gate arrays, and other ferroelectric related devices [1 5]. They have drawn lot of attention of material scientists due to the existence of their excellent ferroelectric, dielectric and piezoelectric properties [6,7]. One of the lead based compounds, lead zirconate titanate Pb(Zr,Ti) (PZT) belongs to the perovskite structural family of a general formula AB in which Pb 2+ and Zr 4+ /Ti 4+ ions occupy the A- and B-sites, respectively, by maintaining proper electrical neutrality and structural stability. PZT Corresponding author: tel:+91 9337261952, e-mail: pkrout_india@yahoo.com is formed by combination of ferroelectric PbTi (T c = 490 C) and antiferroelectric PbZr (T c = 230 C) with various ratios of Zr/Ti [8]. The presence of defects, dipoles and phase boundaries contributes to the extrinsic characteristics of the materials [9]. The physical properties of the material are strongly affected by deviations of many factors, such as, charge neutrality, solubility and ionic radius. The most important factor among them is Zr/Ti ratio which strongly affects the physical properties and the existence of different structural phases (tetragonal, rhombohedral and orthorhombic) in PZT at room temperature. Though structural and physical properties of PZT have been tailored by various substitutions at the A/B-sites, the gallium (Ga) substitution at the Pb-sites leads to a considerable A-site disordering which fulfils the vacancies created by Pb + 2. The long range ordering of ferroelectrics gets unsettled due to the occurrence of two types of defects. The detailed literature survey has 171

shown that the work on gallium-substituted PZT was not previously conducted. This has attracted us to carry out the systematic studies on Ga-substituted PZT in MPB region (Zr/Ti = 48/52), which has not been reported earlier except some work on rare earth ions modified PZT [10]. Therefore, an initiative attempt has been made to study the effect of small amounts (2 at.%) of Ga substitution on structural, microstructural, dielectric and electric properties of Pb 0.98 ceramics. II. Experimental 2.1. Sample preparation Lead monoxide (Loba Chemie Pvt. Ltd., India, 99%- purity), titanium dioxide (Loba Chemie Pvt. Ltd., India, 99.5%-purity), gallium oxide (OTTO-Chemika- Biochemica-Reagents, 99.999%-purity) and zirconium oxide (Himedia Chemie Pvt. Ltd., India, 99%-purity) were used as raw materials for the synthesis of PGaZT-2 sample. All the oxides were weighed (according to the stoichiometry), and thoroughly mixed in an agate mortar. The homogeneous mixture was obtained by dry grinding, followed by wet grinding in methanol until the methanol evaporated from the agate mortar. The mixed powder was put into a high-temperature furnace using an alumina crucible with alumina cover and calcined at 1000 C for 12 h. To maintain desired stoichiometry, Pb loss was compensated by initially adding 2 wt.% excess of PbO, and heating the material in covered crucible. The disc shaped pellets were fabricated from the calcined powder uni-axially compacted at pressure of 4 10 6 N/m 2. The pellets were sized to a diameter of 12 mm and thickness of 0.1 0.2 cm. Polyvinyl alcohol (PVA) was used as a binder to facilitate the compactness of the powder. The sintering was carried out through a conventional, but a cost effective sintering process at 970 C for 4 h. The prepared sample (Pb 0.98 ) hereafter is referred as PGaZT-2. The surface of the sintered discs was polished and painted with high-conductive silver paint. The conductive silver paste was applied to both parallel surfaces of pellets for carrying out electrical (dielectric, impedance, conductivity and modulus characteristics) measurements. The silver coated samples were dried in a high temperature oven at 150 C for 2 h before electrical measurements. 2.2. Characterization X-ray diffraction data of the sample were collected with Bruker D8 Advance diffractometer with increment of 0.052 and measuring time of 0.75 s using CuKα radiation in Bragg s angle range 20 2θ 80. A gold-coated sample was used to investigate the texture and microstructure of the material surface at different magnifications, using field emission scanning electron microscope (FESEM, ZEISS SUPRA 40) operated at 5 kv. The electrode was connected to the samples using a silver paint with zero contact resistance for dielectric and loss analysis. The measurements of electric and dielectric properties were performed using a computer-controlled phase sensitive meter (PSM LCR 4NL: 1735, UK) at variable frequency (1 khz to 1 MHz) and in temperature range 300 350 C. A thermocouple coupled with sample holder was placed in a laboratoryfabricated furnace. III. Results and discussion 3.1. Structural and microstructural analysis Figure 1 shows a room temperature XRD pattern of the powder sample which indicates the formation of two phases (major tetragonal symmetry and minor monoclinic symmetry). The matched PZT peaks correspond to the tetragonal phase and extra prominent peaks represent minor monoclinic phases. The PZT peaks were compared with reference ones by using Match Powder Diffraction software. The reflection peaks of the pattern were indexed by using available commercial software called POWD- MULT [11]. As expected, the high intensity peak of the sample is observed at around 32. The co-existence of two phases observed in the XRD pattern might be due to many reasons like metastable coexistence, solubility gap, fluctuation in the composition (rate of diffusion of Ti is much higher than the rate of diffusion of Zr) [12 14]. Figure 2 shows the micrograph image of the PGaZT- 2 pellet recorded with field emission scanning electron microscope at room temperature. Some pores are found in the sample due to the improper treatment of the PVA binder. The surface texture has non-uniform distribution with polycrystalline grains of different shape and size. Thus, microstructure also highlights formation of twophase system. It also clearly confirms a high-density grain growth and a small degree of porosity in the sample. Figure 1. XRD pattern of PGaZT-2 sample 172

Figure 2. FESEM micrographs of sintered PGaZT-2 sample Figure 3. Variation of Z vs Z at various temperatures (Nyquist plot) 3.2. Impedance spectroscopy Complex impedance spectroscopy (CIS), a nondestructive method, is used to study the electrical behaviour of the material at various temperatures and frequencies. The real (Z ) and imaginary (Z ) components of complex impedance can easily be separated by this method, and the material properties are truly highlighted. By using the CIS method, symmetric and asymmetric (depressed) arcs might generally be observed in the Z -Z plots. In the case of asymmetric arcs the ideal capacitor (Debye type) cannot be used for fitting the data and modified formula should be applied [16]. The complex impedance components can be written as [16]: Z = Z + j Z (1) Z R = (1+ω τ) 2 (2) Z = ω R τ (1+ω τ) 2 (3) In CIS technique, we apply an alternating voltage signal to the sample, and obtain corresponding phase shifted current response. The real (Z ) and imaginary (Z ) components of the complex (*) electrical parameters, such as Z (impedance), modulus (M), and dielectric constant (ε), can be separated by the CIS technique. Impedance data containing capacitance, resistance and angular frequency can be analysed by using Nyquist plots leading to corresponding semicircles. An equivalent circuit traced with impedance and modulus data collected in different experimental conditions (temperature, frequency) is used to understand a physical process and mechanism in the material. The presence of frequency peaks on semicircles can be explained on the basis of following equation 2π f max τ=1, whereτ is the mean relaxation time. The non-debye condition can also be clearly detected and is characterized with presence of imperfect semicircular arcs [17,18]. Figure 3 shows the complex impedance spectra (Nyquist plot), at various temperatures (300 350 C), of the sintered PGaZT-2 sample. It seems that the spectra show a depressed arc whose evolution pattern changes upon a rise in the temperature. By using ZSIMP WIN Version 2 software, the observed data are compared with a theoretically fitted data (solid line) and the fitted parameters of the bulk resistance (R g ), bulk capacitance (C g ) along with bulk DC conductivity (σ DC ) are shown in Table 1. Figure 4a determines the variation of the real part of impedance as a function of frequency at different temperatures (300 350 C) for the sintered PGaZT-2 sample. It can be seen that Z decreases with a rise in temperature, which clearly indicates the negative temperature coefficient of resistance (NTCR) in the sample. The variation of the imaginary part of the impedance with frequency at various temperatures (300 350 C), presented in Fig. 4b, shows that there is continues decrease of Z with frequency without any distinguishable peak. In general, the presence of a peak suggests that the relaxation process is associated with the material. The decrease in Z with rise in temperature is caused due to the absence of mobile electrons at the investigated temperatures [19]. 173

Table 1. Values of grain capacitance (C g ), grain resistance (R g ) and bulk conductivity (σ DC ) for sintered PGaZT-2 sample at various temperatures Temperature [ C] R g [Ω] C g [F] σ DC [Ω -1 m -1 ] a a σ DC = t/r g A 300 1.381 10 8 1.667 10 10 8.200 10 8 310 7.430 10 7 1.683 10 10 1.444 10 7 320 1.279 10 7 1.695 10 10 8.601 10 7 330 5.851 10 6 1.707 10 10 1.835 10 6 340 4.329 10 6 1.730 10 10 2.481 10 6 350 2.490 10 6 1.756 10 10 4.314 10 6 Figure 4. Variation of Z (a) and Z (b) with frequency at different temperatures for sintered PGaZT-2 sample 3.3. Dielectric properties Figure 5 exhibits the variation of relative dielectric constantε r with temperature at various frequencies (1, 10 and 100 khz) for the sintered PGaZT-2 sample. It clearly shows that there is almost constantε r value up to 200 C, and an increase in the dielectric constant with further rise in temperature to its maximum value. Behera et al. [20] observed the ferroelectric to paraelectric phase transition for PZT ceramics at around 432 C at frequency of 100 khz. The trend of disappearance of T c at MPB or its movement towards higher temperature is considered, as the elementary dipoles merge with each other giving rise to an internal field which aligns dipoles. Moreover, the non-occurrence of ferroelectric-paraelectric phase transition is accompanied by the polar/non-polar symmetry change with crystal polarization loss. Though this observation is controversial, it can be restructured by the reconstructive transitional characteristics and by the structural hindrances in the low-temperature phase [21]. Figure 6 shows that the dielectric constant of the doped PZT sample decreases with a rise in frequency at selected temperatures. The polarizations at lower frequency occur due to interfacial, ionic, dipolar and electronic contributions, and cause the observed high values ofε r [22]. The dielectric constant decreases with decrease in frequency, as some of the polarizations become ineffective. Thus, the interfacial polarizations play an important role at low frequencies, but it was ineffective at higher frequencies. Figure 5. Variation of dielectric constantε r with temperature at frequencies 1, 10 and 100 khz 174

Figure 6. Variation of dielectric constantε r with frequency at different temperatures (300 350 C) 3.4. AC conductivity analysis Variation of AC conductivity (determined by following relationσ AC =ω ε 0 ε r tanδ) with frequency at some preferred temperatures is presented in Fig. 7. AC conductivity progressively rises with temperature increase. The rise of AC conductivity can be explained with a thermally-activated electrical conduction of charge carriers. It is well known that the oxygen vacancies created during material processing decrease activation energy in ceramic technology. In perovskite ferroelectrics, oxygen vacancies are usually considered as primary mobile charge carriers [23,24]. The Jonscher s equation:σ AC = A ω n was used to fit the frequency response of AC conductivity data. The parameters (A, n) fitted at various temperatures of the sintered PGaZT-2 sample are given in Table 2. 3.5. Modulus characteristics The materials which inherit the same resistance, but varying capacitances can be determined by electrical modulus spectroscopy plots. The other reason of this formalism is to verify the effect of electrode, which should be suppressed in our material. Due to these reasons, the complex electric modulus has been chosen. Study on complex modulus M formalism also gives us the idea about the relaxation process associated with the material. The variations of real (M ) and imaginary (M ) parts of the electric modulus as a function of frequency at various temperatures are shown in Fig. 8. As shown in Fig. 8a, at higher frequencies, M achieves a steady value. It confirms the presence of possible ionic polarization as at lower frequencies M reaches 0. The variation of M from low-frequency limit to highfrequency limit increases. As temperature increases, the dispersion shifts towards higher frequencies [25]. It was also found that M decreases with frequency and attains a constant value at higher frequency at all investigated temperatures (Fig. 8b). The position of M curve moves towards the higher frequency and the nature of dielectric relaxation suggests that the hop- Figure 7. Deviation of AC conductivity with frequency at different temperatures for sintered PGaZT-2 sample Table 2. Jonscher s universal law, AC conductivity fitting parameters of PGaZT-2 Temperature [ C] n A 300 0.51177 7.892 10 8 325 0.42052 3.926 10 7 350 0.39537 9.014 10 7 Figure 8. Variation of M (a) and M (b) with frequency at different temperatures (300 350 C) for sintered PGaZT-2 sample 175

ping mechanism of charge carriers seizes intrinsically at higher temperature. The spread of relaxation with different time constants indicates the asymmetric nature, highlighting the existence of the non-debye type relaxation process in the material [26]. IV. Conclusions Gallium modified lead zirconate titanate (Pb 0.98 ) ceramics, with Zr/Ti near the morphotropic phase boundary, was synthesized by the mixed oxide reaction route and conventionally sintered. The study of crystal structure, surface morphology, dielectric and electrical characteristics of the material were carried out thoroughly. The structural analysis confirmed the co-existence of two phases (tetragonal and monoclinic symmetry), non-uniform distribution of large grains over the sample surface and presence of a small amount of micro-size pores. The complex impedance spectroscopy showed the semiconducting behaviour of the sintered Ga-modified PZT ceramics. The analysis of impedance and modulus characteristics indicated on non-debye relaxation and significant contributions of grains on electrical properties. The frequency and temperature response of conductivity was also analysed by Jonscher s power law and Arrhenius relation, respectively. Acknowledgements: The authors express their gratitude to Mr. Uttam Kumar Chandra and Mr. Manas Kumar Sahoo of School of Minerals, Metallurgical & Materials Engineering, Indian Institute of Technology Bhubaneswar for their kind help in the experimental work. References 1. G. Akcay, S.P. Alpay, G.A. Rossetti, J.F. Scott, Influence of mechanical boundary conditions on the electrocaloric properties of ferroelectric thin films, J. Appl. Phys., 103 (2008) 024104. 2. J.F. Scott, Applications of modern ferroelectrics, Science, 315 (2007) 954 959. 3. J.F. Scott, C.A.P. Dearaujo, Ferroelectric memories, Science, 246 (1989) 1400 1405. 4. G.H. Haertling, Ferroelectric ceramics: History and technology, J. Am. Ceram. Soc., 86 (1999) 797 818. 5. M.E. Lines, A.M. Glass, Principles and Applications of Ferroelectrics and Related Materials, New York, Oxford University Press, 1977. 6. C. Duran, S.T. McKinstry, G.L. Messing, Processing and electrical properties of 0.5Pb(Yb 1/2 Nb 1/2 ) - 0.5PbTi ceramics, J. Electroceram., 10 (2003) 47 55. 7. P. Lua, M. Zhu, W. Zou, Z. Li, C. Wang, Low-temperature sintering of PNW-PMN-PZT piezoelectric ceramics, J. Mater. Res., 22 (2007) 2410 2415 8. T. Maiti, R. Guo, A.S. Bhalla, Enhanced electric field tunable dielectric properties of BaZr x Ti 1-x relaxor ferroelectrics, Appl. Phys. Lett., 90 (2007) 182901. 9. G. Arlt, H. Dederichs, R. Herbiet, 90 -domain wall relaxation in tetragonally distorted ferroelectric ceramics, Ferroelectrics, 74 (1987) 37 53. 10. X. Dai, A. DiGiovanni, D. Viehland, Dielectric properties of tetragonal lanthanum modified lead zirconate titanate ceramics, J. Appl. Phys., 74 (1993) 3399 3405. 11. E. Wu, POWDMULT: An interactive powder diffraction data interpretation and indexing program version 2.1, School of Physical sciences, Flinders University of South Australia, 1989. 12. A.P. Wilkinson, J. Xu, S. Pattanaik, S.J.L. Billinge, Neutron scattering studies of compositional heterogeneity in sol-gel processed lead zirconate titanates, Chem. Mater., 10 (1998) 3611 3619. 13. S.A. Mabud, The morphotropic phase boundary in PZT solid solutions, J. Appl. Crystallogr., 13 (1980) 211 216 14. Y. Wang, Diffraction theory of nanotwin superlattices with low symmetry phase, Phys. Rev. B, 74 (2006) 104109. 15. N. Sahu, S Panigrahi, Rietveld analysis, dielectric and impedance behaviour of Mn 3+ /Fe 3+ ion modified Pb(Zr 0.65 Ti 0.35 ) perovskite, Bull. Mater. Sci., 36 (2013) 699 708. 16. S.C. Panigrahi, P.R. Das, B.N. Parida, H.B.K. Sharma, R.N.P. Choudhary, Effect of Gd-substitution on dielectric and transport properties of lead zincronate titanate ceramics, J. Mater. Sci.: Mater. Electron., 24 (2013) 3275 3283. 17. S. Sahoo, P.K. Mahapatra, R.N.P. Choudhary, M.L. Nandagoswami, A. Kumar, Structural, electrical and magnetic characteristics of improper multiferroic: GdFe, Mater. Res. Express, 3 (2016) 065017. 18. J. Xia, Q. Zhao, B. Gao, A. Chang, B. Zhang, P. Zhao, R. Maa, Sintering temperature and impedance analysis of Mn 0.9 Co 1.2 Ni 0.27 Mg 0.15 Al 0.03 Fe 0.45 O 4 NTC ceramic prepared by W/O microemulsion method, J. Alloys Compd., 617 (2014) 228 234. 19. S. Maity, D. Bhattacharya, S.K. Ray, Structural and impedance spectroscopy of pseudo-co-ablated (SrBi 2 Ta 2 O 9 ) (1-x) (La 0.67 Sr 0.33 Mn ) x composites, J. Phys. D: Appl. Phys., 44 (2011) 095403. 20. C. Behera, P.R. Das, R.N.P. Choudhary, Structural and electrical properties of mechanothermally synthesized NiFe 2 O 4 nanoceramics, J. Electron. Mater., 43 (2014) 3539 3549. 21. M. Szafranski, M. Jarek, Origin of spontaneous polarization and reconstructive phase transition in guanidinium iodide, Cryst. Eng. Comm., 15 (2013) 4617. 22. S. Sahoo, P.K. Mahapatra, R.N.P. Choudhary, Effect of sintering temperature on dielectric, electrical and magneto-electric characteristics of chemico-thermally synthesized (Ba 0.9 Gd 0.1 )(Ti 0.9 Fe 0.1 ), Ceram. Int., 42 (2016) 15955 15967. 23. B. Garbarz-Glos, W. Bąk, M. Antonova, M. Pawlik, Structural, microstructural and impedance spectroscopy study of functional ferroelectric ceramic materials based on barium titanate, Mater. Sci. Eng., 49 (2013) 012031. 24. T. Acharya, R.N.P. Choudhary, Development of ilmenitetype electronic material CdTi for devices, IEEE Trans. Dielec. Electric. Insulation, 22 (2015) 3521 3528. 25. B.C. Sutar, P.R. Das, R.N.P. Choudhary, Synthesis and electrical properties of Sr(Bi 0.5 V 0.5 ) electroceramic, Adv. Mater. Lett., 5 (2014) 131 137. 26. J. Ross McDonald, Note on the parameterization of the constant-phase admittance element, Solid State Ionics, 13 (1984) 147 149. 176