QUESTIONS ON QUARKONIUM PRODUCTION IN NUCLEAR COLLISIONS

Similar documents
Framework for functional tree simulation applied to 'golden delicious' apple trees


PHY397K - NUCLEAR PHYSICS - 2

Transport Theoretical Studies of Hadron Attenuation in Nuclear DIS. Model Results Summary & Outlook

LA PRISE DE CALAIS. çoys, çoys, har - dis. çoys, dis. tons, mantz, tons, Gas. c est. à ce. C est à ce. coup, c est à ce

Outlook: 1) Hard probes: definitions. 2) High p T hadrons. 3) Heavy Flavours

The Quark-Gluon Plasma and the ALICE Experiment

Space-time Evolution of A+A collision

Quarkonia physics in Heavy Ion Collisions. Hugo Pereira Da Costa CEA/IRFU Rencontres LHC France Friday, April

Optimal Control of PDEs

" #$ P UTS W U X [ZY \ Z _ `a \ dfe ih j mlk n p q sr t u s q e ps s t x q s y i_z { U U z W } y ~ y x t i e l US T { d ƒ ƒ ƒ j s q e uˆ ps i ˆ p q y

An Example file... log.txt

Jet quenching in heavy-ion collisions at the LHC. Marta Verweij CERN

New BaBar Results on Rare Leptonic B Decays

OC330C. Wiring Diagram. Recommended PKH- P35 / P50 GALH PKA- RP35 / RP50. Remarks (Drawing No.) No. Parts No. Parts Name Specifications

Introduction to Relativistic Heavy Ion Physics

Ultra-relativistic nuclear collisions and Production of Hot Fireballs at SPS/RHIC

Vectors. Teaching Learning Point. Ç, where OP. l m n

Charm production at RHIC

Redoing the Foundations of Decision Theory

An Introduction to Optimal Control Applied to Disease Models

Principal Secretary to Government Haryana, Town & Country Planning Department, Haryana, Chandigarh.

High-p T Neutral Pion Production in Heavy Ion Collisions at SPS and RHIC

Preparations for the ATLAS Heavy Ion Physics Program at the LHC. Deepak Kar IKTP, TU Dresden On behalf of the ATLAS Collaboration

Beijing. Charmed hadron signals of partonic medium. Olena Linnyk

1. Allstate Group Critical Illness Claim Form: When filing Critical Illness claim, please be sure to include the following:

The Quark-Gluon plasma in the LHC era

QCD in Heavy-ion collisions

Optimization of a parallel 3d-FFT with non-blocking collective operations

Photoproduction of J/ψ on Nuclei

Max. Input Power (W) Input Current (Arms) Dimming. Enclosure

Phenomenology of Heavy-Ion Collisions

QGP event at STAR. Patrick Scott

Studies of QCD Matter From E178 at NAL to CMS at LHC

The ALICE experiment at LHC. Experimental conditions at LHC The ALICE detector Some physics observables Conclusions

ETIKA V PROFESII PSYCHOLÓGA

Threshold Photo-production of J/5 Mesons J. Dunne Jefferson Lab

Hadronic Effects on T cc in Relativistic Heavy Ion Collisions

QGP Hydrodynamics. Mahnaz Q. Haseeb Department of Physics CIIT, Islamabad

UNIQUE FJORDS AND THE ROYAL CAPITALS UNIQUE FJORDS & THE NORTH CAPE & UNIQUE NORTHERN CAPITALS

Review of collective flow at RHIC and LHC

Elliptic flow. p y. Non-central collision of spherical nuclei or central collision of deformed nuclei. Overlapping zone is of almond shape

Lattice QCD based equation of state at finite baryon density

Heavy-ion collisions in a fixed target mode at the LHC beams

Towards a numerical solution of the "1/2 vs. 3/2" puzzle


Pharmacological and genomic profiling identifies NF-κB targeted treatment strategies for mantle cell lymphoma

J/ suppression in relativistic heavy-ion collisions

Opportunities in low x physics at a future Electron-Ion Collider (EIC) facility

Disintegration of quarkonia in QGP due to time dependent potential

High Energy Frontier Recent Results from the LHC: Heavy Ions I

Introduction to the physics of hard probes in hadron collisions: lecture I. Michelangelo Mangano TH Division, CERN

Heavy quark and quarkonium evolutions in heavy ion collisions

Overview* of experimental results in heavy ion collisions

Examination paper for TFY4240 Electromagnetic theory

Heavy Probes in Heavy-Ion Collisions Theory Part IV

F O R SOCI AL WORK RESE ARCH

Symbols and dingbats. A 41 Α a 61 α À K cb ➋ à esc. Á g e7 á esc. Â e e5 â. Ã L cc ➌ ã esc ~ Ä esc : ä esc : Å esc * å esc *

Heavy-Quark Transport in the QGP

The Origin of the Visible Mass in the Universe

Glauber modelling in high-energy nuclear collisions. Jeremy Wilkinson

Big Bang to Little Bang ---- Study of Quark-Gluon Plasma. Tapan Nayak July 5, 2013

Charmed hadrons from coalescence plus fragmentation in relativistic nucleus-nucleus collisions at RHIC and LHC

1992 Predictions for RHIC with HIJING

Charmonium Production and the Quark Gluon Plasma

Hints of incomplete thermalization in RHIC data

Constructive Decision Theory

Loop parallelization using compiler analysis

Bulk Thermodynamics: What do we (want to) know?

J/Ψ-suppression in the hadron resonance gas

Opportunities with diffraction

LLR, École polytechnique IN2P3/CNRS, Palaiseau, France 2. LAPTh, Université de Savoie CNRS, Annecy-le-Vieux, France 3

Matrices and Determinants

$%! & (, -3 / 0 4, 5 6/ 6 +7, 6 8 9/ 5 :/ 5 A BDC EF G H I EJ KL N G H I. ] ^ _ ` _ ^ a b=c o e f p a q i h f i a j k e i l _ ^ m=c n ^

Soft physics results from the PHENIX experiment

Origin of Nucleon Mass in Lattice QCD

Heavy quarks and charmonium at RHIC and LHC within a partonic transport model

Heavy flavor with

The University of Bath School of Management is one of the oldest established management schools in Britain. It enjoys an international reputation for

SOLAR MORTEC INDUSTRIES.

Heavy Quarks in Heavy-Ion Collisions

Q a u r a k k m a m t a t t e t r e p r p ob o e b d e d b y b y di d l i e l p e t p o t n o s

Recent Results from RHIC: On the trail of the Quark-Gluon Plasma

Year- 1 (Heavy- Ion) Physics with CMS at the LHC

Measures of charge fluctuations in nuclear collisions

Heavy Ions at the LHC: First Results

Steffen Hauf

CGC effects on J/ψ production

Quarkonium production in proton-nucleus collisions

Perspectives for the measurement of beauty production via semileptonic decays in ALICE

THE NUCLEUS AS A QCD LABORATORY: HADRONIZATION, 3D TOMOGRAPHY, AND MORE

Probing the small-x regime through photonuclear reactions at LHC

B œ c " " ã B œ c 8 8. such that substituting these values for the B 3 's will make all the equations true

Quarkonium production measurement in Pb-Pb collisions at forward and mid rapidity with the ALICE experiment

The Flavors of the Quark-Gluon Plasma

FUTURE SPIN EXPERIMENTS AT SLAC

Constraining the QCD equation of state in hadron colliders

Suppression of Heavy Quarkonium Production in pa Collisions

Disintegration of quarkonia in QGP due to time dependent potential

Mapping the Nuclear Matter Phase Diagram with STAR: Au+Al at 2.8 AGeV and Au+Au at 19.6 GeV

Transcription:

International Workshop Quarkonium Working Group QUESTIONS ON QUARKONIUM PRODUCTION IN NUCLEAR COLLISIONS ALBERTO POLLERI TU München and ECT* Trento CERN - November 2002 Outline What do we know for sure? What do we claim to know, but we are not sure? What we don t know, but we can soon find out? What we really don t know and we don t have a clue?

QUARKONIUM (Q) FROM pp COLLISIONS We need to understand the process pp (γp) Q + X Is the CSM really wrong for our purposes? If yes, how do we improve it in a practical way? Why do we need to understand pp for nuclear collisions? = Nuclei resolve the space-time evolution of the process = The production mechanism is modified For our purposes we need to know the amplitude A pp Q+X (x F, p T ) In a wide enough interval in x F around zero With the correct p T behavior from zero up to few GeV Why is the cross section not enough? Nuclei resolve the production vertex in a p T - and x F -dependent way

THE pa BASELINE pa collisions give the baseline to study medium effects They are necessary in order to isolate anomalous behavior in AB pa Process dependent nuclear effects dn pa Q = dσ pp Q = dσ pp Q d 2 r T A ( r) S A ( r, p) A S A ( p) dn AB Q (b) = dσ pp Q d 2 r T A ( r + ) T B ( r ) S A ( r +, p) S B ( r, p) dσ pp Q T AB (b) S A ( p) S B ( p) y r ± = r ± b/2 b r x Not useful to extract S from fitting data in pa! Nuclear effects must be calculated!

SOME KNOWN FACTS ABOUT pa Yield of Q is reduced as compared to pp because of inelastic collisions with nucleons This normal absorption takes place on a length scale of the order of the radius R A of the nucleus Some very impostant features: t Formation time t f = 2 E Q M 2 Q M 2 Q Explains difference Q vs. Q x F < 0 states fully developed x F > 0 states are pre-resonances Energy dependence σ tot ΨN s 0.2 Faster growth than for light hadrons Because Q is a small object z R 2 A

LESS KNOWN FACTS ABOUT pa Initial state energy loss (Inferred from DY at E lab = 800 GeV) κ = E / L 2.5 GeV/fm R(x 1 ) = G( x 1) G(x 1 ) x 1 = E G E p E Q + κ L E p = x 1 + x 1 Effects due to large Coherence time t c = 2 E Q M 2 QQ λ mfp 2 fm Production amplitudes on different nucleons add up coherently and interfere destructively = Shadowing M 2 larger for QQG than for QQ fluctuation t c smaller but grows with collision energy More shadowing in pa than in γa production of Q! 1 Expected x F dependence in AA just from nuclear effects 1 x F +1

COMPARING SCALES A comparison of different scales λ mfp, R A, t f and t c 1e+00 1e-01 1e-02 x 2 1e-03 1e-04 1e-05 1e-06 Charmonium SPS RHIC LHC t f, t c [fm/c] 6 5 4 3 2 1 R A λ mfp 0-1 -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1 x F Many effects combine, difficult to compute and to disentangle them. Hard task for theory!

ANOMALOUS (MEDIUM) EFFECTS Anomalous effects are those not present in pa collisions Large impact = produced medium is very dense y ɛ( r, b) q n( r, b) b r x Need more information, otherwise any reasonable model works! Time dependence, medium evolution What are the active degrees of freedom? Phase space distribution f i ( x, p, t) Interface between Q (QQ) and f i = interaction Cross sections σ in πq, σin ρq, σin GQ, σin qq? Mean field effects? Other?

+* /. GF IH 10 )(?> 54 32 -, ON QP UT S SR R NATURE OF THE MEDIUM The structure of the medium evolves in time Does the system have enough time to thermalize? If yes, is the binding interaction screened on the same time scale or it takes longer? Are heavy quarks also thermalized? The available time should depends on kinematics and geometry l l l m m m \ \ \ l l l m m m š š š Z Z Z [ [ [ \ \ \ Z Z Z [ [ [ t t t u u u ƒ ƒ ƒ š š š ] ] ] t t t u u u ƒ ƒ ƒ $ $ $ % % % ] ] ] $ $ $ % % % < < < < = = = ^ ^ ^ _ _ _ < < < < = = = h h h œ œ œ i i i ˆ ˆ ˆ j j j j j j k k k ^ ^ ^ _ _ _ h h h i i i œ œ œ ˆ ˆ ˆ k k k v v v w w w ž ž ž Ÿ Ÿ Ÿ ` ` ` a a a v v v w w w 8 8 8 9 9 9 ž ž ž Ÿ Ÿ Ÿ z z z ` ` ` a a ax x x : : : ; ; ; 8 8 8 9 9 96 6 6 7 7 7 d d d e e e : : : ; ; ; 6 6 6 7 7 7 f f f y y y z z z { { { x x x f f f g g g y y y Š Š Š { { { d d d e e e g g g Š Š Š r r r s s s " " " # # # " " " # # #!!! r r r s s s D D D B B B E E E Ç Ç Ç È È È Œ Œ Œ!!! @ @ @ A A AD D D B B B E E E Œ Œ Œ @ @ @ A A A C C C } } } Ç Ç Ç È È È C C C } } } b b b c c c Ž Ž Ž ~ ~ ~ b b b c c c Ž Ž Ž q q q & & & ' ' ' p p p q q q n n n o o o ~ ~ ~ ª ª ª «««& & & ' ' ' ª ª ª «««p p p n n n o o o ψ,υ À À À Á Á Á À À À Á Á Á Ù Ù Ù ð ð ð ñ ñ ñ Ø Ø Ø Ù Ù Ù Æ Æ Æ Æ Ç Ç Ç Ö Ö Ö ð ð ð ñ ñ ñ Ø Ø Ø ä ä ä ä å å å Æ Æ Æ Æ Ç Ç Ç Ö Ö Ö ä ä ä ä å å å î î î ï ï ï î î î ï ï ï ± ± ± ¼ ¼ ¼ ò ò ò ½ ½ ½ ó ó ó ¾ ¾ ¾ Ü Ü Ü ¾ ¾ ¾ æ æ æ æ ç ç ç ± ± ± ¼ ¼ ¼ ½ ½ ½ Ú Ú Ú Û Û Û ò ò ò ó ó ó Ü Ü Ü æ æ æ æ ç ç ç È È È È É É É ² ² ² ³ ³ ³ È È È È É É É Ô Ô Ô Ô Õ Õ Õ Ú Ú Ú Û Û Û Ý Ý Ý ô ô ô ô õ õ õ Ý Ý Ý ô ô ô ô õ õ õ Ì Ì Ì Ì Ô Ô Ô Ô Õ Õ ÕÄ Ä Ä Å Å Å ² ² ² ³ ³ ³ Ê Ê Ê Ë Ë Ë Ì Ì Ì Ì þ þ þ ÿ ÿ ÿ Í Í Í Ä Ä Ä Å Å Å ø ø ø ø ù ù ù è è è è é é é Ê Ê Ê Ë Ë Ë þ þ þ ÿ ÿ ÿ º º º º»»» ø ø ø ø ù ù ù Þ Þ Þ ß ß ß è è è è é é é Í Í Í í í í º º º º»»» Þ Þ Þ ß ß ß í í í ö ö ö ö ì ì ì ì ¹ ¹ ¹ ê ê ê µ µ µ ¹ ¹ ¹ µ µ µ Î Î Î Ï Ï Ï Ð Ð Ð Ð Ð Ð Ð Ð ö ö ö ö à à à à ë ë ë ì ì ì ì á á á ê ê ê à à à à ë ë ë á á á Ñ Ñ Ñ Î Î Î Ï Ï Ï ú ú ú û û û Ñ Ñ Ñ â â â â ã ã ã Ò Ò Ò Ò Ó Ó Ó ú ú ú û û û â â â â ã ã ã Â Â Â Ã Ã Ã Ò Ò Ò Ò Ó Ó Ó ü ü ü ü ý ý ý    à à Ãü ü ü ü ý ý ý D,B V V V V W W W V V V V W W W XX YY D, B / / / / 0 0 0 J J J K K K / / / / 0 0 0 E E E F F F [ [ [ \ \ \ E E E F F F J J J K K K [ [ [ \ \ \ 5 5 5 6 6 6 C C C C D D D!!!! " " " Q Q Q R R R 5 5 5 6 6 6 C C C C D D D Y Y Y Y Z Z Z!!!! " " " Q Q Q R R R Y Y Y Y Z Z Z m m m m n n n ª ª ª ¹ ¹ ¹ ¹ º º º q q q r r r + + + + + + + +,,,,,, - - - - - - - - m m m m n n n ¹ ¹ ¹ ¹ º º º»»» ¼ ¼ ¼ á á á á â â â... S S S S T T T Ÿ Ÿ Ÿ Ÿ ª ª ª q q q r r r o o o o p p p G G G G H H H»»» ¼ ¼ ¼ á á á á â â â... 7 7 7 7 8 8 8 A A A A G G G G B B B H H H I I I I J J J ] ] ] ^ ^ ^ S S S S T T T i i i i Ÿ Ÿ Ÿ Ÿ j j j o o o o p p p «««± ± ± ± ² ² ² I I I I J J J ] ] ] ^ ^ ^ # # # $ $ $ 7 7 7 7 g g g g 8 8 8 h h h i i i i j j j A A A A B B B 3 3 3 4 4 4«««e e e f f f k k k µ µ µ µ µ µ µ µ ½ ½ ½ ¾ ¾ ¾ ³ ³ ³ ³ ½ ½ ½ ¾ ¾ ¾ l l l Õ Õ Õ Õ Ö Ö Ö ± ± ± ± ² ² ² U U U U V V V # # # $ $ $ Û Û Û Ü Ü Ü Ø Ø Ø ³ ³ ³ ³ 9 9 9 : : : Á Á Á    g g g g h h h e e e f f f k k k l l l 3 3 3 4 4 4 K K K K L L L U U U U V V V 9 9 9 : : : K K K K L L L _ _ _ _ ` ` ` ƒ ƒ ƒ ƒ ) ) ) * * * _ _ _ _ ` ` ` M M M N N N W W W X X X ƒ ƒ ƒ ƒ Ž Ž Ž š š š Õ Õ Õ Õ Ö Ö Ö Û Û Û Ü Ü Ü Á Á Á Â Â Â Ã Ã Ã Ã Ä Ä Ä Ù Ù Ù Ù Ú Ú Ú Ø Ø Ø ß ß ß à à à š š š å å å æ æ æ Ý Ý Ý Ý Þ Þ Þ Ã Ã Ã Ã Ä Ä Ä œ œ œ Ù Ù Ù Ù Ú Ú Ú ß ß ß à à à ã ã ã ã ä ä ä Ê Ê Ê å å å æ æ æ Ò Ò Ò Ý Ý Ý Ý Þ Þ Þ œ œ œ ž ž ž ã ã ã ã ä ä ä Ë Ë Ë Ë Ì Ì Ì Ï Ï Ï Ï É É É Ê Ê ÊÓ Ó Ó Ô Ô Ô Ñ Ñ Ñ Ñ Ò Ò Ò Ž Ž Ž Å Å Å } } } } ~ ~ ~ Æ Æ Æ ž ž ž Í Í Í Í ) ) ) * * * % % % & & & ; ; ; ; % % % & & & ; ; ; ; < < < < < < = = = = = = Î Î ÎÏ Ï Ï Ï Ë Ë Ë Ë Ì Ì Ì É É É Ð Ð ÐÑ Ñ Ñ Ñ Ó Ó Ó Ô Ô Ô Œ Œ Œ M M M N N N W W W X X X Š Š Š Å Å Å Æ Æ Æ > > > s s s s t t t } } } } ~ ~ ~ Í Í Í Í y y y y z z z ˆ ˆ ˆ Î Î Î Ð Ð Ð Œ Œ Œ w w w w x x x Š Š Š a a a a b b b > > > ' ' ' ( ( ( s s s s t t t y y y y À À À u u u v v v w w w w x x xo O O O z z z ˆ ˆ ˆ P P P À À À ' ' ' ( ( ( L L L L M M M??? O O O O @ @ @ a a a a b b b u u u v v v{ { { { P P P L L L L M M M 1 1 1 2 2 2??? @ @ @ { { { { c c c d d d 1 1 1 2 2 2 c c c d d d (a) (b) (c) s (a) Low energy, normal hadronic gas produced (b) Percolating clusters appear, onset of critical behavior, local deconfinement? (c) Percolation complete, thermalization occurs? Extended deconfinement, enough for screening color interaction? (d) Asymptotic energy, the medium is frozen for a while: Color Glass Condensate? Thermalization more likely?

INTERACTION OF Q WITH THE MEDIUM Eventually, the deconfined medium must hadronize (This we know for sure!) During time evolution, what happens to Q? It binds in the medium and it can be dissociated by collisions? It does not bind right away because of screening of the QQ interaction due to thermalization? 100 T c = 170 MeV 10 n o? LHC Note orders of magnitude! n(t) [fm -3 ] 1 n c n o SPS n o RHIC 0.1 n f.o. hadrons QGP gluons 0.01 0 100 200 300 400 500 600 T [MeV] What about Q and Q initially produced? Are they abundant enough to have a significant probability to be close in phase space at some time in the deconfined stage and coalesce? Is the process QQ Q at the hadronization stage similar to what occurs in pp collisions? What is the role of fluctuations at maximal centrality?

SCANNING THE MEDIUM Use more differential information in x F and p T x F dependence of cross section ratio in AA to pp collisions h dn AA dy y 1 R Q AA y The medium is more dense in the central region A dip appears on top of nuclear effects! Study anomalies in p T distributions on top of Cronin effect and look at centrality dependence of p 2 T. Consider spectra of high-p T hadrons together with those of D and B mesons (jet quenching) as a cross-check.