Atmospheric and thermal anomalies observed around the time of strong earthquakes in México

Similar documents
A pilot project on the comphrensive diagnosis of earthquake precursors on Sakhalin Island: Experiment results from 2007

An early warning system for coastal earthquakes

Surface Anomalies Prior to Earthquakes

Preliminary analysis of thermal anomalies before the 2010 Baja California M7.2 earthquake

Possible Abnormal Phenomenon of the Atmospheric Water Vapor before Hengchun Earthquake

Two-step method to extract seismic microwave radiation anomaly: Case study of M S 8.0 Wenchuan earthquake

Space-borne observations of atmospheric pre-earthquake signals in seismically active areas.

Interdisciplinary Framework to Reveal Earthquake Precursory Phenomena in Seismically Active Areas

Early Warning of Earthquakes Using Earth, Ocean and Atmospheric Parameters Observed From Satellite Data

Multi-parameter observations of atmospheric pre-earthquake signals and their validation: Potential for Future

EPOS- a multiparameter measuring system to earthquake research

Sensor Web Approach for Earthquake studies. D. Ouzounov

Statistical Study of the Ionospheric Density Variation Related to the 2010 Chile Earthquake and Measured by the DEMETER Satellite

Satellite Based Precursor Observation Technique (SPOT) A Study on Earthquakes Occurred During Jan March, 2016 with Magnitude Greater Than 7.

On the Diurnal Dependence of

Revealing pre-earthquake signatures in atmosphere and ionosphere associated with 2015 M7.8 and M7.3 events in Nepal. Preliminary results

Possible New Phenomenon in the Atmospheric Electric Field Intensity Variations that is Caused by the Strong Earthquake Occurrences

Study of outgoing longwave radiation anomalies associated with Haiti earthquake

Effects of an assumed cosmic ray-modulated low global cloud cover on the Earth s temperature

Surface latent heat flux as an earthquake precursor

What happened before the last five strong earthquakes in Greece: Facts and open questions

Warm-Up Topic: Air Masses & Weather Fronts

Time variation of total electron content over Tucumán, Argentina

Geofísica Internacional ISSN: Universidad Nacional Autónoma de México México

The heat spells of Mexico City

EARTHQUAKE PRECURSOR FROM SATELLITE IMAGERY: SIGNALS OR JUST NOISE?

Pre-earthquake activity in North-Iceland Ragnar Stefánsson 1, Gunnar B. Guðmundsson 2, and Þórunn Skaftadóttir 2

Generic precursors to coastal earthquakes: Inferences from Denali fault earthquake

Earthquakes. Earthquake Magnitudes 10/1/2013. Environmental Geology Chapter 8 Earthquakes and Related Phenomena

Geofísica Internacional (2011) 50-3: Said H. Jaramillo * and Gerardo Suárez. Resumen. Abstract

2005 Annual Report of Inter-Association (IAGA/IASPEI/IAVCEI) Working Group of Electromagnetic Studies on Earthquakes and Volcanoes (EMSEV)

The precipitation series in La Plata, Argentina and its possible relationship with geomagnetic activity

The geomagnetic field variations and earthquake activity

Magnitude 7.1 NEAR THE EAST COAST OF HONSHU, JAPAN

Magnitude 7.2 OAXACA, MEXICO

Dynamical. regions during sudden stratospheric warming event (Case study of 2009 and 2013 event)

Earthquakes Chapter 19

Surface Anomalies Prior to Earthquakes

Irpinia earthquake 23 November 1980 Lesson from Nature reviled by joint data analysis

Z Transformation by Pascal Matrix and its Applications in the Design of IIR Filters

Forecasting Earthquakes and Space Weather

THERMAL REMOTE SENSING TECHNIQUES FOR STUDYING EARTHQUAKE ANOMALIES IN 2013 BALOCHISTAN EARTHQUAKES. G. Kaplan 1 and U. Avdan 2

Radon groundwater anomalies related to the Umbria-Marche, September 26, 1997, earthquakes

Atmospheric and ionospheric coupling phenomena related to large earthquakes

Key to Understanding Pre-Earthquake Phenomena

Radon, water chemistry and pollution check by volatile organic compounds in springs around Popocatepetl volcano, Mexico

ENVI.2030L - Plate Tectonics - Geomagnetism, Earthquakes, and Gravity

Variations of phase velocity and gradient values of ULF geomagnetic disturbances connected with the Izu strong earthquakes

Earthquakes Earth, 9th edition, Chapter 11 Key Concepts What is an earthquake? Earthquake focus and epicenter What is an earthquake?

Objective: You will learn to interpret a seismogram and, using differences in seismic waves, locate the epicenter of an earthquake.

Possible Cosmic Influences on the 1966 Tashkent Earthquake and its Largest Aftershocks

arxiv:physics/ v1 6 Aug 2006

Variations of atmospheric electric field and meteorological parameters in Kamchatka in

LETTER Earth Planets Space, 56, , 2004

M. Parrot (1), V. Tramutoli (2), Tiger J.Y. Liu (3), S. Pulinets (4), D. Ouzounov (5), N. Genzano (2), M. Lisi (2), K. Hattori (6), A.

Earthquakes and Earthquake Hazards Earth - Chapter 11 Stan Hatfield Southwestern Illinois College

Physical Model of Solar Activity Influence on Climate Characteristics of Troposphere

3. Carbon Dioxide (CO 2 )

CORRELATION BETWEEN TEMPERATURE CHANGE AND EARTHQUAKE IN BANGLADESH

STATION If relative humidity is 60% and saturation vapor pressure is 35 mb, what is the actual vapor pressure?

MAR110 Lecture #5 Plate Tectonics-Earthquakes

A study of ionospheric precursors associated with the major earthquakes occurred in Pakistan region

Ten years analysis of Tropospheric refractivity variations

RELOCATION OF THE MACHAZE AND LACERDA EARTHQUAKES IN MOZAMBIQUE AND THE RUPTURE PROCESS OF THE 2006 Mw7.0 MACHAZE EARTHQUAKE

Journal of Sciences and Engineering. Contribution of a High School GLOBE - Peru to the report and verification of climate change

Earthquakes. Building Earth s Surface, Part 2. Science 330 Summer What is an earthquake?

ARUBA CLIMATOLOGICAL SUMMARY 2017 PRECIPITATION

Seismic Quiescence before the 1999 Chi-Chi, Taiwan, M w 7.6 Earthquake

Space Time Clustering of Large Thrust Earthquakes along the Mexican Subduction Zone: An Evidence of Source Stress Interaction

ARUBA CLIMATOLOGICAL SUMMARY 2014 PRECIPITATION

Plate Tectonics and Earth s Structure

Some results of geochemical research in the Western Caucasus during the regional earthquakes

THE GEOMAGNETIC METHOD ON PRECURSORY PHENOMENA ASSOCIATED WITH 2004 SIGNIFICANT INTERMEDIATE-DEPTH VRANCEA SEISMIC ACTIVITY

ANNUAL CLIMATE REPORT 2016 SRI LANKA

UVB solar radiation climatology for Mexico

SUPPLEMENTARY INFORMATION

Magnitude 6.9 GULF OF CALIFORNIA

2. Athens Water Supply & Sewerage Company (EYDAP), - URL:

Southern California Earthquake Center Collaboratory for the Study of Earthquake Predictability (CSEP) Thomas H. Jordan

Impact of the 2008 tropical cyclone season on the Baja California Peninsula

MPACT OF EL-NINO ON SUMMER MONSOON RAINFALL OF PAKISTAN

Approaching the Critical Point in

Characteristics of Global Precipitable Water Revealed by COSMIC Measurements

STCE Newsletter. 7 Dec Dec 2015

Anomalous increase of chlorophyll concentrations associated with earthquakes

S e i s m i c W a v e s

SPATIOTEMPORAL DISTRIBUTION OF SEISMIC EVENTS IN THE PACIFIC REGION AND SOUTH AMERICA Elena Sasorova 1, Boris Levin 2

ENSO and April SAT in MSA. This link is critical for our regression analysis where ENSO and

Application and verification of ECMWF products 2011

Determining the Earthquake Epicenter: Japan

Earthquake early warning: Adding societal value to regional networks and station clusters

Main periodicities of the minimum extreme temperature of three stations near the Mexican Pacific coast

Earthquake prediction. Earthquake prediction: animals?

The March 11, 2011, Tohoku-oki earthquake (Japan): surface displacement and source modelling

A precursory ULF signature for the Chi-Chi earthquake in Taiwan

PoS(CRA School)053. Atmospheric Electric Field Effect on the Count Rate of Charged Particles Detected at Chacaltaya Mountain

1. I can describe evidence for continental drift theory (e.g., fossil evidence, mountain belts, paleoglaciation)

On the Ultra-Low-Frequency Magnetic Field Depression for Three Huge Oceanic Earthquakes in Japan and in the Kurile Islands

Solar activity and climate in Central America

PRMS WHITE PAPER 2014 NORTH ATLANTIC HURRICANE SEASON OUTLOOK. June RMS Event Response

Transcription:

Atmósfera 18(4), 235-247 (2005) Atmospheric and thermal anomalies observed around the time of strong earthquakes in México M. A. DUNAJECKA Instituto de Geografía, Universidad Nacional Autónoma de México, Circuito exterior, Ciudad Universitaria, México D. F., 04510, México S. A. PULINETS Instituto de Geofísica, Universidad Nacional Autónoma de México, Circuito exterior, Ciudad Universitaria, México D. F., 04510, México Corresponding author s e-mail: pulse@geofisica.unam.mx Received August 23, 2005; accepted September 27, 2005 RESUMEN La teoría del acoplamiento litosfera-atmósfera-ionosfera enfoca su atención a los procesos que ocurren en la capa de la atmósfera más cercana al suelo. La ionización del aire producida por las emanaciones del radón desde la corteza terrestre inicia una cadena de procesos físico químicos que modifican de manera significativa la composición de las moléculas del aire así como la temperatura y la humedad atmosféricas. Estos cambios, como se ha detectado antes, ocurren en el área de preparación de los temblores fuertes una o dos semanas antes de que estos sucedan. Este trabajo es un intento para rastrear esos cambios utilizando datos meteorológicos obtenidos de estaciones cercanas a los epicentros de temblores fuertes en México (a menos de 200 km). Las anomalías atmosféricas fueron detectadas en intervalos de tiempo largos (varias decenas de años) y entre una y dos semanas antes de la ocurrencia de los temblores. Las variaciones de largo plazo revelan las anomalías para el año del temblor, mientras que las de corto plazo demuestran la dinámica cambiante de la temperatura y la humedad del aire antes de los temblores. ABSTRACT Recently developed theory of Lithosphere-Atmosphere-Ionosphere (LAI) coupling pays attention to the processes taking place within the near ground layer of atmosphere. Air ionization produced by radon emanating from the earth s crust launches the chain of physico-chemical processes which change significantly the composition of air molecules, as well as air temperature and humidity. All these changes, as it was detected

236 M. A. Dunajecka and S.A. Pulinets earlier, take place one-two weeks before strong earthquakes occur within the area of earthquake preparation. The present paper is an attempt to track these changes using meteorological data collected at meteorological stations close to the epicenters (less than 200 km) of strong earthquakes in México. The atmospheric anomalies were detected both on long term intervals (several tens of years) and within one-two weeks before the earthquakes occur. The long term variations reveal the anomaly for the year of earthquake, while the shortterm anomalies demonstrate the changing dynamics of air temperature and humidity before the earthquake. Keywords: Ground surface air temperature, relative humidity, latent heat, precursors. 1. Introduction The present paper was stimulated by complex studies of effects around the time of Colima M7.8 earthquake on January 22, 2003 (Pulinets et al., 2005), as well as by the world s scientific community growing interest in the anomalous variations of the ground surface Thermal Infrared Radiation (TIR) registered by remote sensing satellites before strong earthquakes (Tronin, 1999; Tramutoli et al., 2001; Dey and Singh, 2003; Ouzounov and Freund, 2004). Increased infrared emission from the ground surface is measured by remote sensing satellites and is observed within the area of earthquake preparation a few days before the seismic shock. This effect usually was interpreted as the thermal flux deposited from the earth s crust in seismically active areas (Ouzounov et al., 2003). But anomalous variations of the surface latent heat flux (SLHF) recently discovered (Dey and Singh, 2003), drastically changed the situation because they involve variations of air humidity which the heat deposit from the crust cannot provide. The problem was resolved by detailed multiparameter analysis around the time of Colima earthquake (Pulinets et al., 2005) where the anomalous variations of air temperature and humidity within the period two weeks before the seismic shock were clearly demonstrated. Analysis of meteorological data for several recent earthquakes in California (Pulinets et al., 2006) confirmed the results obtained for the Colima earthquake: the sharp variations of air temperature and relative humidity are observed within two weeks-10 days before the seismic shock with increased range of temperature changes (difference between the daily maximum and minimum temperature). These anomalies leave their trace in historical long term data. Usually the month of earthquake stands out against the background of data for the same month but for other years within the interval of several tens of years. This effect was first marked by Mil kis (1989) and checked by us in the present investigation. 2. Colima earthquake of January 22, 2003 We analyzed the air temperature and relative humidity using the data of meteorological observatories at Colima (19.22 N, 103.7 W) and Manzanillo (19.05 N, 104.32 W). The temperature variations are shown in Figure 1. Colima air temperature data were reduced to the sea level (the linear model was supposed with the gradient of one degree Celsius drop per 600 m of altitude). The increase of daytime air temperature in the epicentral area as well as the difference between the maximum and minimum temperatures one week prior to the earthquake event is found.

Atmospheric and thermal anomalies before earthquakes 237 The relative humidity has been computed from due point data using the following equations (Sedunov et al., 1997): (7.5 Tdc / (237.7+Tdc)) E = 6.11 10 (1) (7.5 Tc / (237.7 + Tc)) Es = 6.11 10 (2) RH (%) = 100(E/Es) (3) where Tc and Tdc are the current temperature and current due point temperature, respectively. The relative humidity is calculated as the relation of vapor pressure and saturated vapor pressure. 32 Colima station Temperature (C) 28 24 20 16 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Manzanillo station Temperature (C) 30 28 26 24 22 20 01 02 03 04 05 06 07 08 10 11 12 13 14 15 16 17 18 19 20 21 22 23 25 26 27 28 29 30 31 Fig. 1. Top panel: Ground air temperature at Colima station for. Bottom panel: The same at Manzanillo station. indicates the earthquake moment, stars indicate the parameters peculiarities, interpreted as precursor phenomena.

238 M. A. Dunajecka and S.A. Pulinets Figure 2 shows the variations of relative humidity for both stations. A sharp humidity drop is found at both stations on January 14 and 15, before it shows a background value on the day of earthquake of January 21, 2003. The relative humidity drop, lower than 50% for the station near the coast (Manzanillo), is very unusual. The observed increase of temperature and relative humidity drop is found to be local since relative humidity at Cuernavaca (18.92 N, 99.25 W), which is at the same latitude but 5 degrees to the East (Fig. 3), does not show any significant variations prior to the earthquake, except an increase in temperature immediately after earthquake that may be the thermal 32 Colima station Temperature (C) 28 24 (C 20 16 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 100 Manzanillo station RH (%) 90 80 70 60 50 Fig. 2. Top panel: Relative humidity at Colima station for. Bottom panel: The same at Manzanillo station. indicates the earthquake moment, stars indicate the parameters peculiarities, interpreted as precursor phenomena. 40 01 02 03 04 05 06 07 08 10 11 12 13 14 15 16 17 18 19 20 21 22 23 25 26 27 28 29 30 31

Atmospheric and thermal anomalies before earthquakes 239 40 35 Cuernavaca station Temperature (C) 30 25 20 15 10 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031 RH (%) 100 80 60 40 Cuernavaca station Fig. 3. Top panel: Ground air temperature at Cuernvaca station for. Bottom panel: Relative humidity at Cuernvaca station for. indicates the earthquake moment. 20 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031 wave propagating from the epicenter area. The local anomaly of the thermal effect is also clearly seen in Figure 4, where the maximum daily temperature distribution over México on January 14, 2003, is shown using data from all country automatic meteorological observatories. Taking into account the altitude relief of México, the temperature measurements were reduced to the sea level. The maximum temperature anomaly is found over the epicenter of the impending earthquake, which is found to be elongated along the active tectonic fault. To demonstrate that the obtained temperature distribution is really anomalous, we built another map for the same local time 1400LT but for February 1, 2003 (Fig. 5). It demonstrates a completely different distribution with a normal gradient of temperature from North to South without structures aligned along the tectonic trench.

240 M. A. Dunajecka and S.A. Pulinets Fig. 4. Map of surface air temperature in México on January 14, 2003, at 1410 LT, reduced to the sea surface level. Stars indicate positions of INEGI GPS receivers; symbol epicenter positions determined by NSGS and SSN; circles show positions of meteorological stations at Manzanillo, Colima and Cuernavaca. From Manzanillo data (bottom panel of Fig. 2) one can see the sharp increase of relative humidity reaching its maximum on January 18, 3 days before the seismic shock. These variations should be accompanied by changes of the surface latent heat flux, which were calculated by Dey and Singh (2003) for the case of Colima earthquake. Our data are in perfect agreement with the data of Dey and Singh (2003) who demonstrated the maximum of SLHF anomaly just on January 18 (Fig. 6). 3. Colima earthquake of January 30, 1973 It is interesting to compare the results of Colima earthquake of 2003 with another one, which happened very close 18.412 N, 103.019 W, had the same magnitude M7.6 and took place also in January, but in 1973. Unfortunately, from the historical data we were able to find only the daily maximum and minimum temperatures and relative humidity. The data are presented in Figure 7. The daily maximum and minimum temperatures are plotted in Figure 7a. One can see the sharp drop of the minimum temperature on January 21 (9 days before the seismic shock) similar to the temperature drop observed at Colima station in 2003 (Fig. 1) on January 14 (7 days before the shock). The process is accompanied by the continuous growth of the daily temperature range (Fig. 7b) which reaches its monthly maximum one day before the seismic shock simultaneously with the

Atmospheric and thermal anomalies before earthquakes 241 Fig. 5. Surface air temperature distribution over México. Top panel: at 1400 LT on January 14, 2003. Bottom panel: at 1400 LT on February, 1 2003. Both maps were prepared at the same temperature scale, shown at right. monthly minimum of relative humidity (Fig. 7c). The similarity of the processes in 2003 and 1973 is noticeable, with the only difference that the humidity minimum in 2003 was reached much earlier before the seismic shock (7 days) in comparison with 1973 (one day). 4. Manzanillo earthquake of October 9, 1995 The period around the time of occurrence of the Manzanillo 1995 earthquake was very complex because in September-October 1994 the Pacific coast of México was very active. The Manzanillo earthquake was the strongest one from the series of earthquakes along the Pacific coast of México:

0 242 M. A. Dunajecka and S.A. Pulinets anomaly Anomalies SLHF (W/m 2 ) Fig. 6. Anomalous latent heat flux over Colima earthquake epicenter derived from the satellite remote sensing data for. The numbers over the curve indicate the magnitude of main shock, foreshocks and aftershocks of the Colima earthquake. a c b Fig. 7. a) Maximum and minimum daily temperatures at Manzanillo for January 1973, b) temperature range at Manzanillo for January 1973, c) relative humidity at Manzanillo for January 1973. indicates the earthquake moment, stars indicate the parameters peculiarities, interpreted as precursor phenomena.

Atmospheric and thermal anomalies before earthquakes 243 Fig. 8. Daily maximum and minimum temperatures at Manzanillo for September-October 1995. Triangles indicate the main seismic shocks. Guerrero earthquake M7.3 of September 14; Manzanillo earthquake M8 of October 9; Manzanillo aftershock M6 of October 12; Chiapas earthquake M7.1 of October 21, and Baja California earthquake M6.5 of October 23. So it is very difficult to consider the Manzanillo earthquake of 1995 as an isolated event. Looking at Figure 8, where the maximum and minimum temperatures at Manzanillo are shown, one can clearly see the interrelation of events between the Guerrero earthquake and the Manzanillo earthquakes. Incredible (probably historical) extremes were reached during September-October at Manzanillo: 44 C maximum temperature on September 14 and 8 C minimum daily temperature on October 12. 5. Michoacán earthquake of September 19, 1985 In modern history of México the Michoacán earthquake is probably the most tragic event from the point of view of its consequences. For this event we were able to find the data of Zamora station (19.97 N, 102.27 W) which is nearly 150 km from epicenter of Michoacán earthquake. The data presented in Figure 9 are very similar to the Colima 2003 event, with almost the same temporal characteristics. The sharp temperature changes started one week before the seismic shock with a maximum range of 6 days before the shock, and minimum humidity at the same time. Then humidity sharply grew to the date of earthquake manifesting the changes in surface latent heat flux. 6. Oaxaca earthquake September 30, 1999 The data of Oaxaca earthquake M7.5 on 30 of September 1999 completely support the previous

244 M. A. Dunajecka and S.A. Pulinets c a b Fig. 9. a) Maximum and minimum daily temperatures at Zamora for September 1985, b) temperature range at Zamora for September 1985, c) relative humidity at Zamora for September 1985. indicates the earthquake moment, stars indicate the parameters peculiarities, interpreted as precursor phenomena. results (see Fig. 10). One can see again the start of the temperature anomaly 10 days before the seismic shock, reaching the range maximum 6 days before the shock, and humidity minimum one week before the shock. And again, the humidity growth up to the date of earthquake. The similarity of atmospheric parameters variations before strong earthquakes is explained by the fact that they have the common physical mechanism described in Pulinets and Boyarchuk, (2004), and Pulinets et al. (2006). The main reason of the observed variations is the air ionization produced by radon decay. It was marked yet in 1973 in the classical paper of Scholz et al. (1973) that radon emanation from the Earth s crust increases before earthquakes. Figure 11 demonstrates one of the most recent records of the radon flux variation before earthquakes in Turkey. One can see that the duration of the anomalous variations is in the order of 2-3 weeks. The radon flux reaches its peak, and at the falling edge of the observed peak the earthquake occurs.

Atmospheric and thermal anomalies before earthquakes 245 c a b Fig. 10. a) Maximum and minimum daily temperatures at Oaxaca for September 1999, b) temperature range at Oaxaca for September 1999, c) relative humidity at Oaxaca for September 1999. indicates the earthquake moment, stars indicate the parameters peculiarities, interpreted as precursor phenomena. The ions produced by radon ionization become the centers of water vapor condensation. As a result of condensation the air humidity drops and the temperature grows due to the latent heat of condensation release. This is what we observe in the meteorological data drop of humidity and temperature rise. When the time of seismic shock approaches, the radon flux diminishes, and the atmospheric conditions come to the normal state, what is accompanied by the rise of humidity and temperature drop just before the earthquake. Pulinets et al. (2006) modeled the relative humidity variations around the time of Colima earthquake and obtained the quantitative correspondence with the experimental measurements. We also should mention that every earthquake has its individual properties, so the observed variations should not be completely identical. Sometimes the anomalous radon release continues few days after earthquake (Zafrir et al., 2005), and we may expect the atmospheric anomalies not only before the seismic shock, but also after it, as it is seen in Figure 8.

246 M. A. Dunajecka and S.A. Pulinets Fig. 11. Record of the radom flux close to the active tectonic fault in the Marmara region of Turkey around the time of several seismic shocks (after Inan, 2005). 7. Conclusions The analysis of meteorological data (air temperature and relative humidity) for several strong earthquakes in México revealed the common features of atmosphere anomalies observed before earthquakes. These anomalies are expressed in the form of sharp changes of ground air temperature and relative humidity approximately one week before the seismic shock. These changes are accompanied by the increasing of temperature range (difference between daily maximum and minimum temperatures), and variations of relative humidity in the form of a humidity drop several days before earthquake, and then a growth up to the date of earthquake. The more detailed analysis for Colima earthquake demonstrated the observed anomalies have local character. This conclusion confirms the earlier results obtained for several earthquakes all over the world by analysis of the topside sounding data (Pulinets and Legen ka, 2004) and by remote sensing technique (Ouzounov and Pulinets, 2005). Mapping procedure using the groundbased and remote sensing satellite measurements demonstrated the position of atmospheric anomaly close to the epicenter of impending earthquake. The relative humidity growth observed by ground observatories can be measured by remote sensing satellites as the anomalous Surface Latent Heat Flux (SLHF). The observed anomalies are explained within the frame of the model proposed by Pulinets and Boyarchuk (2004), and Pulinets et al. (2006). Acknowledgements This work was supported by the grants of PAPIIT IN 126002, CONACyT 40858-F. The authors

Atmospheric and thermal anomalies before earthquakes 247 want to thank the personal of Tacubaya observatory (México City) for valuable help and for the meteorological data. References Dey S., and R. P. Singh, 2003. Surface latent heat flux as an earthquake precursor, Nat. Haz. Earth Syst. Sci. 3, 749-755, Inan S. 2005. Researches for possible earthquake precursor(s) in the Marmara region (NW Turkey), International Workshop Early Warning Systems for Earthquake Monitoring by Using Space Technology, Istanbul, Turkey, 1-2 February, 2005. Mil kis M. R. 1986. Meteorological precursors of earthquakes, Izvestiya, Earth Physics 22, 195-204. Ouzounov D., and F. Freund, 2004. Mid-infrared emission prior to strong earthquakes analyzed by remote sensing data, Adv. Space Res. 33, 268-273, Ouzounov D., and S. Pulinets, 2005. Methodology and techniques for monitoring the short term ionospheric and near infrared precursory activities prior to main earthquake (part II), International Workshop Early Warning Systems for Earthquake Monitoring by Using Space Technology, Istanbul, Turkey, 1-2 February, 2005. Pulinets S. A., and A. D. Legen ka, 2003. Spatial-temporal characteristics of large scale distributions of electron density observed in the ionospheric F-region before strong earthquakes, Cosmic Research 41, 221-229 Pulinets S. A., D. Ouzounov, L. Ciraolo, R. Singh, G.. Cervone, A. Leyva, M. Dunajecka, A. V. Karelin, and K. A. Boyarchuk, 2003. Thermal, atmospheric and ionospheric anomalies around the time of Colima M7.8 earthquake of January 21. Submitted to Annales Geophysicae, 2005. Pulinets S. A., A. V. Karelin, K. A.Boyarchuk, L.A. Pokhmelnykh, 2006. The physical nature of thermal anomalies observed before strong earthquakes, Physics and Chemistry of the Earth, 31, accepted. Scholz C. H., L. R. Sykes, and Y. P. Aggarwal, 1973. Earthquake prediction: A physical basis, Science 181, 803-809. Tramutoli V, G.. Di Bello, N. Pergola, and S. Piscitelli, 2001. Robust satellite techniques for remote sensing of seismically active areas, Annali de Geofisica 44, 295-312. Tronin A. A. 1999. Satellite thermal survey application for earthquake prediction, In: Atmospheric and ionospheric phenomena associated with earthquakes, TERRAPUB, Tokyo, pp. 717-746. Zafrir H., S. Gideon, B. Ginzburg, B. Shirman, and I. Hrvoic, 2005. Current achievements in the combined research of Rn emanation, earth magnetic field and the seismo-activity variations, along the Dead Sea Rift, Israel, as ground truth for space observations, DEMETER Guest Investigators Workshop, Paris, 2-4 May.