METHODS OF DIFFERENTIATION

Similar documents
EXERCISE - 01 CHECK YOUR GRASP

LIMIT. f(a h). f(a + h). Lim x a. h 0. x 1. x 0. x 0. x 1. x 1. x 2. Lim f(x) 0 and. x 0

(B) a + (D) (A) A.P. (B) G.P. (C) H.P. (D) none of these. (A) A.P. (B) G.P. (C) H.P. (D) none of these

Fundamental Concepts: Surfaces and Curves

Objective Mathematics

MATHEMATICS. 61. The differential equation representing the family of curves where c is a positive parameter, is of

An application of a subset S of C onto another S' defines a function [f(z)] of the complex variable z.

Objective Mathematics

NATIONAL JUNIOR COLLEGE SENIOR HIGH 1 PROMOTIONAL EXAMINATIONS Higher 2

f t dt. Write the third-degree Taylor polynomial for G

EDEXCEL STUDENT CONFERENCE 2006 A2 MATHEMATICS STUDENT NOTES

Most text will write ordinary derivatives using either Leibniz notation 2 3. y + 5y= e and y y. xx tt t

PRACTICE FINAL/STUDY GUIDE SOLUTIONS

MATHEMATICS 9740 (HIGHER 2)

EXERCISE - 01 CHECK YOUR GRASP

JEE(Advanced) 2018 TEST PAPER WITH SOLUTION (HELD ON SUNDAY 20 th MAY, 2018)

10.1 Sequences. n term. We will deal a. a n or a n n. ( 1) n ( 1) n 1 2 ( 1) a =, 0 0,,,,, ln n. n an 2. n term.

SEQUENCE AND SERIES NCERT

6.3 Testing Series With Positive Terms

Math 113 Exam 3 Practice

Mathematics Extension 1

Zeros of Polynomials

Implicit function theorem

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle! 1. (a) (b) (c) (d) (e) 3. (a) (b) (c) (d) (e) 5. (a) (b) (c) (d) (e) 7. (a) (b) (c) (d) (e)

TECHNIQUES OF INTEGRATION

MATH CALCULUS II Objectives and Notes for Test 4

2 f(x) dx = 1, 0. 2f(x 1) dx d) 1 4t t6 t. t 2 dt i)

CALCULUS AB SECTION I, Part A Time 60 minutes Number of questions 30 A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAM.

Appendix: The Laplace Transform

[ 11 ] z of degree 2 as both degree 2 each. The degree of a polynomial in n variables is the maximum of the degrees of its terms.

MA1200 Exercise for Chapter 7 Techniques of Differentiation Solutions. First Principle 1. a) To simplify the calculation, note. Then. lim h.

Subject: Differential Equations & Mathematical Modeling-III


AP CALCULUS AB 2003 SCORING GUIDELINES (Form B)

LIMITS AND DERIVATIVES

Chapter 10: Power Series

MAT1026 Calculus II Basic Convergence Tests for Series

Infinite Sequences and Series

MATHEMATICS Code No. 13 INSTRUCTIONS


LIMITS AND DERIVATIVES NCERT

Math 113 Exam 3 Practice

JEE ADVANCED 2013 PAPER 1 MATHEMATICS

Sequences and Series of Functions

AP Calculus BC Review Applications of Derivatives (Chapter 4) and f,

Honors Calculus Homework 13 Solutions, due 12/8/5

x x x Using a second Taylor polynomial with remainder, find the best constant C so that for x 0,

PhysicsAndMathsTutor.com

Topic 5 [434 marks] (i) Find the range of values of n for which. (ii) Write down the value of x dx in terms of n, when it does exist.

y = f x x 1. If f x = e 2x tan -1 x, then f 1 = e 2 2 e 2 p C e 2 D e 2 p+1 4

Chapter 6 Infinite Series

CHAPTER 10 INFINITE SEQUENCES AND SERIES

CALCULUS BASIC SUMMER REVIEW

Continuous Functions

Maximum and Minimum Values

Lesson 10: Limits and Continuity

Topic 1 2: Sequences and Series. A sequence is an ordered list of numbers, e.g. 1, 2, 4, 8, 16, or

Math 113 Exam 4 Practice

Calculus. Ramanasri. Previous year Questions from 2016 to

It is always the case that unions, intersections, complements, and set differences are preserved by the inverse image of a function.

CHAPTER 1 SEQUENCES AND INFINITE SERIES

MTH Assignment 1 : Real Numbers, Sequences

MAS111 Convergence and Continuity

TR/46 OCTOBER THE ZEROS OF PARTIAL SUMS OF A MACLAURIN EXPANSION A. TALBOT


INTEGRATION BY PARTS (TABLE METHOD)

Seunghee Ye Ma 8: Week 5 Oct 28

Chapter 2 The Solution of Numerical Algebraic and Transcendental Equations

Chapter 4. Fourier Series

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 +

Consortium of Medical Engineering and Dental Colleges of Karnataka (COMEDK) Undergraduate Entrance Test(UGET) Maths-2012

3.2 Properties of Division 3.3 Zeros of Polynomials 3.4 Complex and Rational Zeros of Polynomials

COMPLEX NUMBER. Every Complex Number Can Be Regarded As. Purely imaginary if a = 0. (A) 0 (B) 2i (C) 2i (D) 2

1988 AP Calculus BC: Section I

INEQUALITIES BJORN POONEN

The type of limit that is used to find TANGENTS and VELOCITIES gives rise to the central idea in DIFFERENTIAL CALCULUS, the DERIVATIVE.

LIMITS MULTIPLE CHOICE QUESTIONS. (a) 1 (b) 0 (c) 1 (d) does not exist. (a) 0 (b) 1/4 (c) 1/2 (d) 1/8. (a) 1 (b) e (c) 0 (d) none of these

Quiz. Use either the RATIO or ROOT TEST to determine whether the series is convergent or not.

MAT136H1F - Calculus I (B) Long Quiz 1. T0101 (M3) Time: 20 minutes. The quiz consists of four questions. Each question is worth 2 points. Good Luck!

MTH 142 Exam 3 Spr 2011 Practice Problem Solutions 1

3. Z Transform. Recall that the Fourier transform (FT) of a DT signal xn [ ] is ( ) [ ] = In order for the FT to exist in the finite magnitude sense,

3sin A 1 2sin B. 3π x is a solution. 1. If A and B are acute positive angles satisfying the equation 3sin A 2sin B 1 and 3sin 2A 2sin 2B 0, then A 2B

HKDSE Exam Questions Distribution

Find a formula for the exponential function whose graph is given , 1 2,16 1, 6

B U Department of Mathematics Math 101 Calculus I

CHAPTER 5. Theory and Solution Using Matrix Techniques

ENGI Series Page 6-01

f(x) dx as we do. 2x dx x also diverges. Solution: We compute 2x dx lim

Sequences. A Sequence is a list of numbers written in order.

Section 1 of Unit 03 (Pure Mathematics 3) Algebra

Z ß cos x + si x R du We start with the substitutio u = si(x), so du = cos(x). The itegral becomes but +u we should chage the limits to go with the ew

AIEEE 2004 (MATHEMATICS)

Polynomial Functions. New Section 1 Page 1. A Polynomial function of degree n is written is the form:

GULF MATHEMATICS OLYMPIAD 2014 CLASS : XII

Solutions to quizzes Math Spring 2007

MIDTERM 3 CALCULUS 2. Monday, December 3, :15 PM to 6:45 PM. Name PRACTICE EXAM SOLUTIONS

CONTENTS. Course Goals. Course Materials Lecture Notes:

MATH 10550, EXAM 3 SOLUTIONS

1. (25 points) Use the limit definition of the definite integral and the sum formulas 1 to compute

Math 120 Answers for Homework 23

Transcription:

J-Mathematics MTHODS OF DIFFRNTIATION The process of calculatig derivative is called differetiatio.. DRIVATIV OF f() FROM TH FIRST PRINCIPL : f( ) f() Obtaiig the derivative usig the defiitio Lim Lim f '() 0 0 d derivative usig first priciple or ab iitio or delta method. is called calculatig Illustratio : Differetiate each of followig fuctios b first priciple : (i) f() ta (ii) f() e si Solutio : (i) f'() ta( h) ta lim h0 h h0 ta( h ) ta ta( h) lim h tah lim. ( + ta ) sec. A s. h0 h (ii) f'() si( h) si e e lim h0 h si(h) si si e si( h) si lim e h0 si( h) si h si si( h) si e lim h0 h e si cos A s. Do ourself - : ( i ) Differetiate each of followig fuctios b first priciple: (a) f() (b) f(). DRIVATIV OF STANDARD FUNCTIONS : Node-6\:\Data\04\Kota\J-Advaced\SMP\Maths\Uit#04\g\04.MOD\MOD.p65 f() f'() f() f'() (i) (ii) e e (iii) a a a, a > 0 (iv) / (v) log a (/) log a e, a > 0, a (vi) si cos (vii) cos si (viii) ta sec (i) sec sec ta () cosec cosec. cot (i) cot cosec (ii) costat 0 (iii) si, (v) ta, R (vii) cosec, (iv) cos, (vi) sec, (viii) cot, R 77

J-Mathematics. FUNDA MNTAL THORMS : If f ad g are derivable fuctios of, the, (a) (c) d df dg (f g) (b) d d d d (cf) d d dg df (fg) f g kow as PRODUCT RUL d d d df c, where c is a costat d (d) df dg g f d f d d d g g where g 0 kow as QUOTINT RUL (e) If f(u) & u g () the Note : I geeral if f(u) the du. kow as CHAIN RUL d du d du f '(u).. d d Illustratio : If e ta + log e, fid d. Solutio : e.ta + log e O differetiatig we get, d e ta + e sec + log + Hece, d e (ta + sec ) + (log + ) A s. Illustratio : Solutio : If log O differetiatig we get, + e si + log 5, fid d. d log d d + d d (e si ) (log5 ) d d log. + e si + e. cos + loge 5 Illustratio 4 : Solutio : Hece, If ep log d ta [ + ta (log ) + sec ] + e (si + cos) +, the d equals - 78 loge 5 [ + ta (log )] + sec [ + ta (log )] + sec + [ + ta(log)] Takig log o both sides, we get log ta + ta (log ) O differetiatig, we get ta (log ) ( ) / d + ta (log ) + sec (log ) [ + ta (log )] + sec (log ) A s. + [ + ta(log)] As. Node-6\:\Data\04\Kota\J-Advaced\SMP\Maths\Uit#04\g\04.MOD\MOD.p65

J-Mathematics Illustratio 5 : If log e (ta ) Solutio : log e (ta ) O differetiatig we get,, fid d.... ta ( ) Do ourself - : ta ta A s. (i) Fid d if - (a) ( + ) ( + ) ( + ) (b) e 5 ta( + ) 4. LOGARITHMIC DIFFRNTIATION : To fid the derivative of a fuctio : (a) which is the product or quotiet of a umber of fuctios or (b) of the form [f()] g () where f & g are both derivable. It is coveiet to take the logarithm of the fuctio first & the differetiate. Illustratio 6 : If (si ), fid d Solutio :. (si ) O differetiatig we get, d (si) +. cos si d (si ) (si) cot A s. Node-6\:\Data\04\Kota\J-Advaced\SMP\Maths\Uit#04\g\04.MOD\MOD.p65 Illustratio 7 : If / / ( ) / 4 4 / 5 ( ) ( 4) fid d Solutio : + ( ) 4 ( ) 4 ( 4) 5 O differetiatig we get, Do ourself - : (i) d 4 9 ( ) 4( ) 6 5( 4) d 4 9 6 ( ) 4( ) 5( 4 ) Fid if (ii) d Fid d if 4 e.e.e.e A s. 79

J-Mathematics 5. DIFFRNTIATION OF IMPLICIT FUNCTIONS : (, ) 0 (a) (b) To fid /d of implicit fuctios, we differetiate each term w.r.t. regardig as a fuctio of & the collect terms with /d together o oe side. I the case of implicit fuctios, geerall, both & are preset i aswers of /d. Illustratio 8 : If +, the fid d. Solutio : Let u ad v du dv u + v d d Now u ad v u ad v 0 du u d + d ad dv v d + d du d d ad dv d d d + d 0 d.. A s. Illustratio 9 : If si cos si cos..., prove that cos si. d cos si Solutio : Give fuctio is si cos ( ) si cos or + + cos ( + ) si Differetiate both sides with respect to, cos si d d d ( + ) cos + si d ( + + cos si) ( + ) cos + si d or Do ourself -4 : (i) cos si A s. d cos si Fid, if + si( ) d (ii) If + e + 0, fid ', also fid the value of ' at poit (0,0). 80 Node-6\:\Data\04\Kota\J-Advaced\SMP\Maths\Uit#04\g\04.MOD\MOD.p65

J-Mathematics 6. PAR A MTRIC DIFFRNTIATION : If f( ) & g( ) where is a parameter, the d / d d / d. Illustratio 0 : If a cos t ad a(t sit) fid the value of d at t Solutio : a si t d a( cos t) d t t Illustratio : Prove that the fuctio represeted parametricall b the equatios. ; t t t satisfies the relatioship : ( ) + (where d ) t Solutio : Here t t t Differetiatig w.r. to t d 4 dt t t t t Differetiatig w.r. to t dt t t A s. d / dt t ' d / dt Sice t ' or (') + ' As. t ( ') Do ourself -5 : (i) (ii) Fid d at t if cos 4 t & si 4 t. 4 Fid the slope of the taget at a poit P(t) o the curve at, at. Node-6\:\Data\04\Kota\J-Advaced\SMP\Maths\Uit#04\g\04.MOD\MOD.p65 7. DRIVATIV OF A FUNCTION W.R.T. ANOTHR FUNCTION : Let f () ; z g () the / d f '() dz dz / d g '() 8. DRIVATIV OF A FUNCTION AND ITS IN VRS FUNCTION : If g is iverse of f, the (a) g{f()} (b) f{g()} g'{f()}f'() f '{g()}g'() Illustratio : Differetiate log e (ta ) with respect to si (e ). Solutio : d (log d(loge ta ) e ta ) d d(si (e )) d si (e ) d cot.sec e. / e e e si cos A s. 8

J-Mathematics Illustratio : If g is iverse of f ad f'(), the g'() equals :- + + [f()] + [g()] oe of these Solutio : Sice g is the iverse of f. Therefore f(g()) for all d f(g()) d for all f'(g()) g'() g'() f '(g()) + (g()) As. Do ourself -6 : ( i ) Differetiate with respect to. ( i i ) If g is iverse of ƒ ad ƒ () + si; the g () equals: + si + cos g() cos(g()) 9. HIGHR ORDR DRIVATIVS : Let a fuctio ƒ () be defied o a iterval (a, b). If ƒ () is differetiable fuctio, the its derivative ƒ '() [or (/d) or '] is called the first derivative of w.r.t.. If ƒ '() is agai differetiable fuctio o (a, b), the its derivative ƒ "() [or d /d or "] is called secod derivative of w.r.t.. Similarl, the rd order derivative of d d d w.r.to, if it eists, is defied b d d d ad deoted b ƒ '''() or ''' ad so o. Note : If f() ad g() where '' is a parameter the d / d d / d & d d d d d d d I geeral d d d d d d d d Illustratio 4 : If f() + f'() + f''() + f'''() for all R. The fid f() idepedet of f'(), f''() ad f'''(). Solutio : Here, f() + f'() + f''() + f'''() put f'() a, f''() b, f'''() c...(i) f() + a + b + c f'() + a + b or f'() + a + b...(ii) f''() 6 + a or f''() + a...(iii) f'''() 6 or f'''() 6...(iv) from (i) ad (iv), c 6 from (i), (ii) ad (iii) we have, a 5, b f() 5 + + 6 A s. 8 Node-6\:\Data\04\Kota\J-Advaced\SMP\Maths\Uit#04\g\04.MOD\MOD.p65

Illustratio 5 : If a (t + si t) ad a( cos t), fid Solutio : Here a (t + si t) ad a ( cos t) Differetiatig both sides w.r.t. t, we get : d dt a( + cos t) ad dt a (si t) d d. t t d a si t si.cos t ta a cos t t cos Agai differetiatig both sides, we get, d d Hece, t dt sec d sec t / a cos t d d t 4 sec 4a t sec a t cos J-Mathematics Illustratio 6 : f() ad g() are iverse fuctios of each other the epress g'() ad g''() i terms of derivative of f(). A s. Solutio : f '() d ad d g '() Node-6\:\Data\04\Kota\J-Advaced\SMP\Maths\Uit#04\g\04.MOD\MOD.p65 Do ourself : 7 g '() f '()...(i) Agai differetiatig w.r.t. to d g ''() f '() f ''() g ''() (f '()) d d. d f '()...(ii) Which ca also be remembered as F '() l () m() () + l '() m '() '() + u() v() w() u() v() w() 8 f ''(). (f '()) f '() d d d d d d (i) If e the fid ''. (ii) Fid " at /4, if ta. (iii) Prove that the fuctio e si satisfies the relatioship '' ' + 0. 0. DIFFRNTIATION OF DTRMINANTS : If f() g() h() F() l () m() (), where f, g, h. l, m,, u, v, w are differetiable fuctios of the u() v() w() ' ' ' f () g () h () f() g() h() f() g() h() l() m() () u '() v '() w '() A s.

J-Mathematics Illustratio 7 : If f() 0 6, fid f'(). Solutio : Here, f() 0 6 O differetiatig, we get, f'() d d d () ( ) d d d 0 6 d d d + d d d 0 6 + d d d 0 6 d d d or f'() 0 6 0 6 0 6 0 0 6 As we kow if a two rows or colums are equal, the value of determiat is zero. 0 + 0 + 0 0 6 f'() 6 ( ) Therefore, f'() 6 A s. Do ourself : 8 (i) If e ƒ(), the fid ƒ '(). (ii) If si ƒ() 5 the fid ƒ ' ().. L ' HOˆ PITAL ' S RUL : (a) This rule is applicable for the idetermiate forms of the tpe 0 0,. If the fuctio f() ad g() are differetiable i certai eighbourhood of the poit 'a', ecept, ma be, at the poit 'a' itself ad g'() 0, ad if lim f() lim g() 0 or a a the f() f '() lim lim a g() a g '() provided the limit (+ or ). lim f() lim g(), a a f '() lim eists (L' Hôpital's rule). The poit 'a' ma be either fiite or improper a g '() (b) Idetermiate forms of the tpe 0. or are reduced to forms of the tpe 0 0 or (c) trasformatios. 84 b algebraic Idetermiate forms of the tpe, 0 or 0 0 are reduced to forms of the tpe 0 b takig logarithms or b the trasformatio [f()] () e ().f(). Node-6\:\Data\04\Kota\J-Advaced\SMP\Maths\Uit#04\g\04.MOD\MOD.p65

J-Mathematics Illustratio 8 : valuate Solutio : lim 0 si lim 0 / lim e 0 cos ec cot si lim e 0 si log e log e lim 0 cos ec e (applig L'Hôpital's rule) Illustratio 9 : Solve Solutio : si lim e 0 cos Here 0 si lim 0 cos e lim 0 log si si. lim 0 log si si log si lim log si cos lim si cos si 0 0 0 e e A s. form {applig L'Hôpital's rule} Node-6\:\Data\04\Kota\J-Advaced\SMP\Maths\Uit#04\g\04.MOD\MOD.p65 Illustratio 0 : valuate cos si lim 0 cos si e lim /. / cos lim cos 0 e Solutio : Here, A lim e log A lim log log e 0 lim Do ourself : 9 loga A e or e lim ( 0 form) log e log lim form {applig L'Hôpital's rule} ta (i) Usig L' Hopital ˆ ' s rule fid (a) lim 0 si ta (ii) Usig L' Hopital ˆ ' s rule verif that : (a) lim 0 INTRSTING FACT : / A s. e A s. (b) lim 0 e (b) ( lim ) 0 I 694 Joh Beroulli agreed to accept a retaier of 00 pouds per ear from his former studet L'Hôpital to solve problems for him ad keep him up to date o calculus. Oe of the problems was the so-called 0/0 problem, which Beroulli solved as agreed. Whe L'Hôpital published his otes o calculus i book form i 696, the 0/0 rule appeared as a theorem. L'Hôpital ackowledged his debt to Beroulli ad, to avoid claimig authorship of the book's etire cotets, had the book published aomousl. Beroulli evertheless accused L'Hôpital of plagiarism, a accusatio iadvertetl supported after L'Hôpital's death i 704 b the publisher's promotio of the book as L'Hôpital's. B 7, Beroulli, a ma so jealous he oce threw his so Daiel out of the house for acceptig a mathematics prize from the Frech Academ of Scieces, claimed to have bee the author of the etire work. As puzzlig ad fickle as ever, histor accepted Beroulli's claim (util recetl), but still amed the rule after L'Hôpital. 85

J-Mathematics. ANALYSIS AND GR APHS OF SOM IN VRS TRIGONOMTRIC FUNCTIONS : ( a ) ta f() si ta ( ta ) Importat poits : / (i) Domai is R & rage is, (ii) f is cotiuous for all but ot differetiable at, (iii) for o eistet for d for D / D (iv) Icreasig i (, ) & Decreasig i (, ) (, ) ta if 0 ( b ) Cosider f() cos ta if 0 Importat poits : (i) Domai is R & rage is [0, ) (ii) (iii) Cotiuous for all but ot differetiable at 0 d for 0 o eistet for 0 for 0 / f() 0 (iv) Icreasig i (0, ) & Decreasig i (, 0) ( c ) ta f( ) ta ta ( ta ) Importat poits : (i) Domai is R {, } & rage is, (ii) (iii) It is either cotiuous or differetiable at, d o eistet (iv) Icreasig i its domai (v) It is bouded for all 86 f() / - 0 / Node-6\:\Data\04\Kota\J-Advaced\SMP\Maths\Uit#04\g\04.MOD\MOD.p65

J-Mathematics ( d ) ( si ) if f() si ( 4 ) si if si if Importat poits : (i) Domai is [, ] & rage is, (ii) Cotiuous everwhere i its domai (iii) Not derivable at (iv) (v), if (, ) d if (, ) (,) Icreasig i, ad Decreasig i,, D 0 I I D (e) cos if f() cos (4 ) cos if cos if Importat poits : (i) Domai is [, ] & rage is [0, ] (ii) Cotiuous everwhere i its domai Node-6\:\Data\04\Kota\J-Advaced\SMP\Maths\Uit#04\g\04.MOD\MOD.p65 (iii) Not derivable at (iv) (v), if, d if,, Icreasig i Decreasig i GNRAL NOT :, &,, Cocavit is decided b the sig of d derivative as : d d 0 Cocave upwards ; D d 0 Cocave dowwards d / I O I D 87

J-Mathematics Illustratio : d si co t d 0 Solutio : Let si cot. Put cos 0, si cot cos cos si cot (cot ) si cos. As d Illustratio : If f() si the fid (i) f'() (ii) f' (iii) f'() Solutio : ta, where si (si) ( ) f() ta ta ( ta ) f'() (i) f'() 5 Do ourself : 0 (i) If cos (4 ) The fid (a) ƒ ' (ii) f' 8 5, (b) ƒ ' (0), (c) ƒ ' (iii) f'( + ) ad f'( ) + f'() does ot eist A s. 88. Node-6\:\Data\04\Kota\J-Advaced\SMP\Maths\Uit#04\g\04.MOD\MOD.p65

J-Mathematics Miscellaeous Illustratios : Illustratio : If a( ), the prove that Solutio : Put si si () si si () d - cos + cos a(si si) cos cos a cos si cot a cot (a) si si cot (a) differetiatig w.r.t. to. d 0 d hece proved A s. Illustratio 4 : Fid secod order derivative of si with respect to z e. Solutio : / d cos dz dz / d e Node-6\:\Data\04\Kota\J-Advaced\SMP\Maths\Uit#04\g\04.MOD\MOD.p65 d d cos d dz d dz. d e dz e si cos e e. e si cos A s. e d Illustratio 5 : If (ta ) the prove that ( + ) d Solutio : (ta ) Differetiatig w.r.t. ta d d ta () Agai differetiatig w.r.t. d d d + ( + ) d d ( ) d d A s. 89

J-Mathematics Illustratio 6 : Obtai differetial coefficiet of ta with respect to cos Solutio : Assume u ta, v cos The fuctio eeds simplificatio before differetiatio Let ta sec u ta ta cos ta si ta ta sec v cos sec cos cos cos cos u v du dv. A s. ANSWRS FOR DO YOURSLF : (i) ( a ) ( b ) : (i) ( a ) + + ( b ) 5e 5 ta ( + ) + e 5 sec ( + ) : (i) ( + ) (ii) ( + + + 4 ) 4 : (i) cos( ) cos( ) (ii) 5. (i) (ii) 6 : (i) ( )() (ii) D 7 : (i) '' 4 + ' (ii) + 4 8 : (i) e( si + cos ) (ii) 9 9. (i) ( a ) (b) e ' t e 90, 0 : (i) ( a ) 6 ( b ) ( c ) 6 Node-6\:\Data\04\Kota\J-Advaced\SMP\Maths\Uit#04\g\04.MOD\MOD.p65

J-Mathematics XRCIS - 0 CHCK YOUR GRASP SLCT TH CORRCT ALTRNATIV (ONLY ON CORRCT ANSWR). If sec ta sec ta the d equals - sec (sec ta ) sec (sec ta ) sec (sec + ta ) sec (sec + ta ) 4. If ad a + b, the values of a & b are - d a, b a, b a, b a, b d. Which of the followig could be the sketch graph of? d ' 0 ' ' 0 ' ' 0 /e 4. Let f() + l( ) & g() + 5 l( - ), the the set of satisfig the iequalit f'() < g'() is - 7, 5. Differetial coefficiet of 7,, (, ) m m m m m m.. ' w.r.t. is - ' 7, 0 lm 0 e ' Node-6\:\Data\04\Kota\J-Advaced\SMP\Maths\Uit#04\g\04.MOD\MOD.p65 6. If m p m m p m p p mp e 7. If cos 00 8. If f() 0 5050 9. If f() F I HG 4 K J F I HG 4 K J m / p e log a the d ; the / / si F HG F HG F, the f' HG 4 4 log log 4 I K J I KJ I KJ f 0 f ' 0 5050 is - the d at p / m e 000 F I HG 4 K J F I HG 4 K J / / F HG F HG p m e is equal to - oe of these 4 log log 4 I KJ I KJ 000 9

J-Mathematics 0. If... the a b a b a b d a b ab a ab b - a ab b b ab a. If the d.. If m. ( + ) m+, the d is -. If ( ) ( ) 0, the ( ) ( ). ( ) d d equals - 4. If e + e + 0, the d equals - e ( ) (e ) 5. If e e...to, > 0 the d is - 6. If e ( ) (e ) ad +, the d ( ). ( ) ( ) e ( ) (e ). (e ) oe of these oe of these 7. The derivative of si w.r.t. cos 8. Let g is the iverse fuctio of f & f '() 5 0 a a 0 0 9, ( > 0) is -. If g () a the g'() is equal to - a 0 a 9. Let f() si ; g() d F & h()log e & F() h[g(f())] the d is equal to - cosec cot ( ) 4 cosec ( ) cot cosec 0. If ƒ (), g() 0 ad h(), the ƒ '(h'(g'()) 5 a a 0 Node-6\:\Data\04\Kota\J-Advaced\SMP\Maths\Uit#04\g\04.MOD\MOD.p65

J-Mathematics. If ƒ & g are the fuctios whose graphs are as show, let u() ƒ (g()); w() g(g()), the the value of u'() + w'() is - 5 4 does ot eist 5 4 0 ƒ (,4) g (6,) 4 5 6. f'() g() ad g'() - f() for all real ad f(5) f'(5) the f (0) + g (0) is - 4 8 oe of these. If f(), the the value of...( times ) f '() f ''() f '''() ( ) f ''''''''' () f()... -!!!! 0 4. A fuctio f() has secod order derivative f"() 6( ). If its graph passes through the poit (, ) ad at that poit the taget to the graph is 5, the the fuctio is - ( + ) ( + ) ( ) ( ) 5. If ƒ () +..., the ƒ (0) + ƒ '(0) + ƒ ''(0) +... + ƒ''''... times (0) is equal to -!! ( )! ( ) ( ) ( ) ( )( ) 6 cos 6. Let f () si ta. The f '() Limit 0 7. If f is differetiable i (0, 6) & f'(4) 5 the f(4) f( ) Lim 5 5/4 0 0 Node-6\:\Data\04\Kota\J-Advaced\SMP\Maths\Uit#04\g\04.MOD\MOD.p65 8. If f(4) g(4) ; f (4) 9 ; g (4) 6 the Limit 4 f( ) g 0 is equal to - oe of these SLCT TH CORRCT ALTRNATIVS (ON OR MOR THAN ON CORRCT ANSWRS) 9. The slope(s) of commo taget(s) to the curves e & e si ca be - / e e 0. If + ( + ) 0, which of the followig is true? e ' + ' ( ) ' + e 0 ' e 9

J-Mathematics. If, the ' equals - (log ). 6.. If t & t the d d equals- t Noe of these. If g is iverse of ƒ ad ƒ () + ( > 0) the g'() equals- g() 5 ƒ '() (ƒ()) CHCK YOUR GRASP ANSWR KY X R CI S - Que. 4 5 6 7 8 9 0 4 5 A s. B C C D B D C B A D D C B A C Que. 6 7 8 9 0 4 5 6 7 8 9 0 A s. A C B D C B C B D A B D A A, B A,B,C Que. A s. B, D C A,C 94 Node-6\:\Data\04\Kota\J-Advaced\SMP\Maths\Uit#04\g\04.MOD\MOD.p65

J-Mathematics XRCIS - 0 BRAIN TASRS SLCT TH CORRCT ALTRNATIVS (ON OR MOR THAN ON CORRCT ANSWRS). If fofof () ad f (0) 0, f '(0), the fid '(0) - 6 7 8 9. If p() is a polomial of degree, the d d d d is equal to - p'''(). p'() p''(). p'''() p(). p'''() oe of these. If is a fuctio of the d d 0 4. If ta ta ta the d 5. If d 0. If is a fuctio of the the equatio becomes - d d d d 0 is equal to- d d 0 sec ta ta + sec ta ta + sec ta ta (cosec + cosec 4 + cosec 6) sec sec sec sec + sec + sec e e the equals - d d d 0 e e e e 4 4 6. Let... the - d Node-6\:\Data\04\Kota\J-Advaced\SMP\Maths\Uit#04\g\04.MOD\MOD.p65 7. If + + the d 95 has the value equal to - 8. The fuctios u e si ; v e cos satisf the equatio - du dv v u u v d d d u v d 4 d v d u 9. Two fuctios f & g have first & secod derivatives at 0 & satisf the relatios, f(0), f'(0) g'(0) 4g (0), g''(0) 5 f''(0) 6 f(0) the - g(0) f if h () g the h'(0) 5 4 g ' Limit 0 f ' oe of these ( ) ( ) oe of these if k() f(). g() si the k'(0)

J-Mathematics 0. If + b, the d equals - b b b. If c, the is equal to - d c c. Lim 0 is - equal to 0 equal to equal to o eistet. Select the correct statemets - The fuctio f defied b f() for for is either differetiable or cotiuous at. The fuctio f() is twice differetiable at 0 If f is cotiuous at 5 ad f(5) the Lim f(4 ) eists. If Lim (f()+g()) ad Lim (f() g()) the Lim f(). g() ma ot eist. a a a m 4. Let Lim 5. where m, N the - 0 is idepedet of m ad is idepedet of ad depeds o m log Lim 0 si log cos si cos has the value equal to - is idepedet of m ad depeds o m is depedet o both m ad 4 oe of these BRAIN TASRS ANSWR KY X R CI S - Que. 4 5 6 7 8 9 0 A s. C C C A,B,C A, C A,C,D A,B,C,D A,B,C A,B,C B, C Q u e. 4 5 A s. A,B,C C B, C A C 96 Node-6\:\Data\04\Kota\J-Advaced\SMP\Maths\Uit#04\g\04.MOD\MOD.p65

J-Mathematics XRCIS - 0 MISCLLANOUS TYP QUSTIONS TRU / FALS. Let u() ad v() are differetiable fuctios such that u v. If f(), the f'(f()) for > 0 () 7 If u '() v '() p ad u() ' v() q the p q p q. If f(0) a, f'(0) b, g(0) 0 ad (fog)'(0) c, the g'(0) c b 4. The differetial coefficiet of f(log) w.r.t. log where f() log is 5. f'(si) (f(si))' 6. If t + t 8, t t 5, the d at (, ) is 6 7 log MATCH TH COLUMN Followig questios cotais statemets give i two colums, which have to be matched. The statemets i Colum-I are labelled as A, B, C ad D while the statemets i Colum-II are labelled as p, q, r ad s. A give statemet i Colum-I ca have correct matchig with ON statemet i Colum-II.. Colum-I Colum-II Graph of f( ) Graph of f'( ) (p) (q) Node-6\:\Data\04\Kota\J-Advaced\SMP\Maths\Uit#04\g\04.MOD\MOD.p65 (r) (s) 97

J-Mathematics. Colum-I Colum-II If f() + +, the f'( + ) at (p) 0 is If f() log (log ), the f'(e e ) is equal to (q) 0 For the fuctio ta 4 if d sec + p, the p is equal to 98 (r) 8 If f() + si, the (s) 4 4f'(8f(f())) is equal to ASSRTION & R ASON These questios cotai Statemet I (assertio) ad Statemet II (reaso). Statemet-I is true, Statemet-II is true ; Statemet-II is correct eplaatio for Statemet-I. Statemet-I is true, Statemet-II is true ; Statemet-II is NOT a correct eplaatio for statemet-i. Statemet-I is true, Statemet-II is false. Statemet-I is false, Statemet-II is true.. Statemet-I : Let f() is a cotiuous fuctio defied from R to Q ad f(5) the differetial coefficiet of f() w.r.t. will be 0. B e c a u s e Statemet-II : Differetiatio of costat fuctio is alwas zero. A B C D. Statemet-I : Derivative of B e c a u s e Statemet-II : si si cos with respect to cos for. A B C D. Cosider ƒ () & g() ƒ ''(). Statemet-I : Graph of g() is cocave up for >. B e c a u s e Statemet-II : d ( )! (ƒ ()) d ( ) ( ), N A B C D COMPRHNSION BASD QUSTIONS Comprehesio # Let f( ) f() f() at 0 ad follows the fuctioal rule g k Let g'(0) 0 is for 0 < <. +,, R. f() is differetiable ad f'(0). Let g() be a derivable fuctio g() g() k (k R, k 0, ) Node-6\:\Data\04\Kota\J-Advaced\SMP\Maths\Uit#04\g\04.MOD\MOD.p65

J-Mathematics O the basis of above iformatio, aswer the followig questios :. Domai of (f()) is- R + R {0} R R. Rage of log /4 (f()) (, ], 4 (, ) R. If the graphs of f() ad g() itersect i coicidet poits the ca take values- 4 Comprehesio # Limits that lead to the idetermiate forms, 0 0, 0 ca sometimes be solved takig logarithm first ad the usig L' Hopital ˆ 's rule Let g( ) is i the form of 0 lim g( ) f ( ) a, it ca be writte as e a Lim(f()) f() where L lim a is form ad ca be solved usig L' Hopital ˆ 's rule. / g() O t he basis of above i format io, a swer t he fol low i g que st ios : e L. Lim /( ) - e e.. / / Lim ( ) N - 0 e / e Lim(si ) 0 si 0 does ot eist Node-6\:\Data\04\Kota\J-Advaced\SMP\Maths\Uit#04\g\04.MOD\MOD.p65 Comprehesio # Left had derivative ad right had derivative of a fuctio f() at a poit a are defied as f' (a lim ) h 0 f'(a + ) lim h 0 f(a) f(a h) h f(a h) f(a) h lim h 0 lim h 0 f(a h) f(a) h f(a) f(a h) h ad lim a f(a) f() a respectivel Let f be a twice differetiable fuctio. We also kow that derivative of a eve fuctio is odd fuctio ad derivative of a odd fuctio is eve fuctio. O t he basis of above i format io, a swer t he fol low i g que st ios :. If f is odd, which of the followig is Left had derivative of f at a lim h 0 f(a h) f(a) h lim h 0 f(h a) f(a) h lim h 0 f(a) f(a h) h. If f is eve, which of the followig is Right had derivative of f' at a lim h 0 lim h 0 f '(a) f '( a h) h f '( a) f '( a h) h lim h 0 lim h 0 f '(a) f '( a h) h f '(a) f '( a h) h lim h 0 f( a) f( a h) h 99

J-Mathematics. The statemet lim h 0 f is odd f( ) f( h) h f is either odd or eve lim h 0 f() f( h) implies that for all R h f is eve othig ca be cocluded Comprehesio # 4 A operator is defied to operate o differetiable fuctios defied as follows. If ƒ () is a differetiable fuctio the ƒ ƒ h ƒ lim h 0 h g() is a differetiable fuctio such that the slope of the taget to the curve g() at a poit (a, g(a)) is equal to e a (a+) also g(0)0. O t he basis of above i format io, a swer t he fol low i g que st ios :. g at is 4 { + } 4e 96 4e 9(4e). ( ( + )) 0 5 9 9 5 4 5 6 4. lim 0 g cos 4 4 Tr ue / False. T. T. T 4. T 5. F 6. T Match the Colum. (q); (s); (p); (r). (s); (q); (q); (s) Assertio & Reaso. A. C. A Comprehesio Based Questios ANSWR KY MISCLLANOUS TYP QUSTION X R CI S - Comprehesi o # :. C. A. A,C Comprehesio # :. B. A. A Comprehesio # :. A. A. B Comprehesio # 4 :. C. D. A 00 Node-6\:\Data\04\Kota\J-Advaced\SMP\Maths\Uit#04\g\04.MOD\MOD.p65

J-Mathematics XRCIS - 04 [A] CONCPTUAL SUBJCTIV XRCIS a. If b 5 / 4 / ad d vaishes at 5 the fid a b.. If 4 4 the fid d. If f'() ad f( ) the fid d at. + t 4. If t ad + t t. Show that d d +. f ( ) 5. If f () e for all N ad f 0 () the show that d f () f ().f ()...f (). d 6. If prove that ' + ', where ' deotes the derivative of w.r.t.. 7. Let f() +... Compute the value of f(00).f'(00). u 8. If ta & sec, u u u 0,, ; prove that 0 d 9. If ta + si ta, the fid d for (, ). 0. If cost cost & sit sit, fid the value of (d / d ) whe t ( / ).. If a b c, Prove that ' a b c ( a)( b)( c) ( b)( c) ( c) a b c [J 98] Node-6\:\Data\04\Kota\J-Advaced\SMP\Maths\Uit#04\g\04.MOD\MOD.p65. If arcsi e. Prove that d ( ), d ( ) > 0.. Let f() 4, ad let g be the iverse of f. Fid the value of g' at f() 9 d 4. If [(a) + a ], prove that ( + ) d + d 5. If sec cos ; sec cos, the show that ( 4) ( 4) 0 d. 6. (a) Differetiate cos (b) If w. r. t. ta -, statig clearl where fuctio is ot differetiable. si ( 4 ) fid /d statig clearl where the fuctio is ot derivable i (,). 0

J-Mathematics 7. Suppose f ad g are two fuctios such that f, g : R R, f() ad g() the fid the value of.e g() ' f + g'() at. (a b cos ) c si 8. Determie the values of a, b ad c so that Lim 0 5 Solve usig L' Hoˆ p it a l 's rule or series epasio. (Q.8 Q.) cos ( ) 9. Lim 0 0. Lim 0 si. If a Lim a a a a fid 'a'.. Lim log (ta ) 0 ta. If 4 ( a) ( a) 4 f() ( b) ( b) 4 ( c) ( c) the 4 ( a) ( a) 4 f '(). ( b) ( b) 4 ( c) ( c) Fid the value of. CONCPTUAL SUBJCTIV XRCIS ANSWR KY X R C IS - 4 ( A ). 5.. 7. 00 9. 0 6. (a) Not differetiable at 0 (b) Not derivable at / 8. a 0; b 60; c 80 9. 0. 0. 7. zero.. a.. 8 Node-6\:\Data\04\Kota\J-Advaced\SMP\Maths\Uit#04\g\04.MOD\MOD.p65

J-Mathematics XRCIS - 04 [B] BRAIN STORMING SUBJCTIV XRCIS. If z ad f(), show that : d f 4 z z d dz d dz. Prove that if a si + a si +...+ a si si for R, the a + a + a +...+ a. Show that the substitutio z ta chages the equatio d cot 4 cosec 0 d d to (d /dz ) + 4 0 4. Fid a polomial fuctio f() such that f() f'() f''(). 5. If Y sx ad Z tx, where all the letters deotes the fuctio of ad suffies deotes the differetiatio w.r.t. the prove that X Y Z X Y Z X s t X Y Z 6 6 6. If a.( ), prove that s t d 6 6 7. If be a repeated root of a quadratic equatio f() 0 & A(), B(), C() be the polomials of degree., 4 & 5 respectivel, the show that A() B() C() A( ) B( ) C( ) A '( ) B '( ) C '( ) is divisible b f(), where dash deotes the derivative. 8. If ta ta ta ta +... upto terms. 5 7 7 Fid /d, epressig our aswer i terms. g(), 0 / 9. Let g() be a polomial, of degree oe & f() be defied b f(), 0 Fid the cotiuous fuctio f() satisfig f'() f( ) 0. Let f( ) f() f() a for all real ad. If f() is differetiable ad f'(0) eists for all real permissible values of 'a' ad is equal to 5a a. Prove that f() is positive for all real. Node-6\:\Data\04\Kota\J-Advaced\SMP\Maths\Uit#04\g\04.MOD\MOD.p65. Fid the value f(0) so that the fuctio f(), 0 is cotiuous at 0 & eamie the differetiabilit e. If 4. of f() at 0. a si b c Lim 0. ( ) 4 9 4 8. ( ) eists & is fiite, fid the value of a, b, c & the limit. BRAIN STORMING SUBJCTIV XRCIS ANSWR KY X R C I S - 4 ( B ) if 0 6 9. f() / if 0. f(0), differetiable at 0, f'(0 + ) (/); f'(0 ) (/). a 6, b 6, c 0 ; /40 0

J-Mathematics XRCIS - 05 [A] J-[MAIN] : PRVIOUS YAR QUSTIONS. If f(), f'(), the. f() lim [AI - 00] () () () (4) 4 log [] lim, N, (where [] deotes greatest iteger less tha or equal to )- [] [AI - 00] () Has value - () Has values 0 () Has value (4) Does ot eist. If log, the d [AI-00] () log () log ( ) () ( log ) (4) log 4. If cos cos ad si si, the d [AI-00] () si () cos () ta (4) cot 5. If the ( + ) + [AI-00] () () () (4) Noe of these f '() f "() f '"() ( ) f () 6. If f(), the the values of f()...!!!! is- [AI- 00] () () () (4) 0 7. Let f() be a polomial fuctio of secod degree. If f() f( ) ad a, b, c are i A.P. the f'(a), f'(b) ad f'(c) are i- [AI- 00] () Arithmetic-Geometric Progressio () Arithmetic progressio (A.P.) () Geometric progressio (G.P.) (4) Harmoic progressio (H.P.) 8. If e () e...to, > 0, the d () 9. If m. ( + ) m+, the d () is - [AI -004] 04 () (4) is- [AI -006] () () (4) 0. Let be a implicit fuctio of defied b cot 0. The '() equals :- () log () log () (4) [AI -009]. Let f : (, ) R be a differetiable fuctio with f(0) ad f'(0). Let g() [f(f() + )]. The g'(0) :- [AI-00] () 4 () 4 () 0 (4) Node-6\:\Data\04\Kota\J-Advaced\SMP\Maths\Uit#04\g\04.MOD\MOD.p65

J-Mathematics. d equals :- [AI- 0] () d d d () d d d () d d (4) d d d. If sec(ta ), the d at is equal to : [J-(Mai)-0] () () () (4) Node-6\:\Data\04\Kota\J-Advaced\SMP\Maths\Uit#04\g\04.MOD\MOD.p65 PRVIOUS YARS QUSTIONS ANSWR KY XRCIS-5 [A] Que. 4 5 6 7 8 9 0 A s. 4 4 4 Que. A s. 05

J-Mathematics XRCIS - 05 [B] J-[ADVANCD] : PRVIOUS YAR QUSTIONS. (a) If l( + ), the '(0) [J 004 (Scr.)] 0 c b si, 0 (b) f(), at 0 a / e, 0 If f() is differetiable at 0 ad c < / the fid the value of 'a' ad prove that 64b 4 c. [J 004, 4]. (a) If () ad it follows the relatio cos + cos, the "(0) :- (b) If P() is a polomial of degree less tha or equal to ad S is the set of all such polomials so that P(), P(0) 0 ad P'() > 0 [0, ], the :- S S ( a) + a, 0 < a < ( a) + a, a (0, ) S ( a) + a, 0 < a < (c) If f() is a cotiuous ad differetiable fuctio ad f(/) 0, ad I, the :- (d). For > 0, f() 0, (0, ] f(0) 0, f ' (0) 0 f ' () 0 f"(), (0, ] f(0) 0 ad f ' (0) eed ot to be zero [J 005 (Scr.)] If f( ) f() g() f() g() ad g( ) g() g() + f() f() for all, R. If right had derivative at 0 eists for f(). Fid derivative of g() at 0. [J 004 (Scr.)] Lim((si ) / ( / ) si ) is :- [J 006, ] 0 0 4. d equals :- [J 007, ] d d d d d 06 d d d d d d 5. (a) Let g() f() where f() is a twice differetiable positive fuctio o (0, ) such that f( + ) f(). The for N,, g" N g" 4... 4... 9 5 (N ) 9 5 (N ) 4... 4... 9 5 (N ) 9 5 (N ) Node-6\:\Data\04\Kota\J-Advaced\SMP\Maths\Uit#04\g\04.MOD\MOD.p65

J-Mathematics (b) Let f ad g be real valued fuctios defied o iterval (, ) such that g"() is cotiuous, g(0) 0, g'(0) 0, g"(0) 0, ad f() g() si. Statemet- : Lim 0 [g() cot g(0)cosec] f "(0) a d Statemet- : f ' (0) g(0) Statemet- is true, statemet- is true ad statemet- is correct eplaatio of statemet-. Statemet- is true, statemet- is true ad statemet- is NOT the correct eplaatio for statemet- Statemet- is true, statemet- is false. Statemet- is false, statemet- is true. [J 008, +] 6. If the fuctio f() e ad g() f (), the the value of g'() is [J 009, 4] 7. Let si ƒ( ) si ta, cos where d. The the value of (ƒ( )) 4 4 d(ta ) is [J 0, 4] Node-6\:\Data\04\Kota\J-Advaced\SMP\Maths\Uit#04\g\04.MOD\MOD.p65 PRVIOUS YARS QUSTIONS ANSWR KY. ( a ) A ; ( b ) a. (a) C ; (b) B ; (c) B, (d) g' (0) 0. C 4. D 5. ( a ) A ; ( b ) A 6. 7. XRCIS-5 [B] 07