STRESS. Bar. ! Stress. ! Average Normal Stress in an Axially Loaded. ! Average Shear Stress. ! Allowable Stress. ! Design of Simple Connections

Similar documents
Determine the resultant internal loadings acting on the cross section at C of the beam shown in Fig. 1 4a.

[5] Stress and Strain

MECE 3321 MECHANICS OF SOLIDS CHAPTER 1

MECHANICS OF MATERIALS. Prepared by Engr. John Paul Timola

Chapter 1 Introduction- Concept of Stress

and F NAME: ME rd Sample Final Exam PROBLEM 1 (25 points) Prob. 1 questions are all or nothing. PROBLEM 1A. (5 points)

Samantha Ramirez, MSE. Stress. The intensity of the internal force acting on a specific plane (area) passing through a point. F 2

Statics Chapter II Fall 2018 Exercises Corresponding to Sections 2.1, 2.2, and 2.3

Equilibrium of a Particle

Problem " Â F y = 0. ) R A + 2R B + R C = 200 kn ) 2R A + 2R B = 200 kn [using symmetry R A = R C ] ) R A + R B = 100 kn

Sample 5. Determine the tension in the cable and the horizontal and vertical components of reaction at the pin A. Neglect the size of the pulley.

Module 2 Stresses in machine elements. Version 2 ME, IIT Kharagpur

Mechanical Properties of Materials

MECHANICS OF MATERIALS

MAAE 2202 A. Come to the PASS workshop with your mock exam complete. During the workshop you can work with other students to review your work.

Aluminum shell. Brass core. 40 in

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each.

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown.

Downloaded from Downloaded from / 1

2. Rigid bar ABC supports a weight of W = 50 kn. Bar ABC is pinned at A and supported at B by rod (1). What is the axial force in rod (1)?

MECH 401 Mechanical Design Applications

ARC 341 Structural Analysis II. Lecture 10: MM1.3 MM1.13

[8] Bending and Shear Loading of Beams

The University of Melbourne Engineering Mechanics

TUTORIAL SHEET 1. magnitude of P and the values of ø and θ. Ans: ø =74 0 and θ= 53 0

Stress Analysis Lecture 4 ME 276 Spring Dr./ Ahmed Mohamed Nagib Elmekawy

Purpose of this Guide: To thoroughly prepare students for the exact types of problems that will be on Exam 3.

Review Lecture. AE1108-II: Aerospace Mechanics of Materials. Dr. Calvin Rans Dr. Sofia Teixeira De Freitas

SOLUTION 8 7. To hold lever: a+ M O = 0; F B (0.15) - 5 = 0; F B = N. Require = N N B = N 0.3. Lever,

NAME: Given Formulae: Law of Cosines: Law of Sines:

PROBLEMS. m s TAC. m = 60 kg/m, determine the tension in the two supporting cables and the reaction at D.

STATICS. Bodies. Vector Mechanics for Engineers: Statics VECTOR MECHANICS FOR ENGINEERS: Design of a support

Stress Analysis Lecture 3 ME 276 Spring Dr./ Ahmed Mohamed Nagib Elmekawy

Mechanics of Materials CIVL 3322 / MECH 3322

DESIGN OF BEAMS AND SHAFTS

Samantha Ramirez, MSE

ME Final Exam. PROBLEM NO. 4 Part A (2 points max.) M (x) y. z (neutral axis) beam cross-sec+on. 20 kip ft. 0.2 ft. 10 ft. 0.1 ft.

Sub. Code:

MECHANICS OF MATERIALS

Chapter Objectives. Copyright 2011 Pearson Education South Asia Pte Ltd

Equilibrium of a Rigid Body. Engineering Mechanics: Statics

Mechanical Engineering Ph.D. Preliminary Qualifying Examination Solid Mechanics February 25, 2002

3.1 CONDITIONS FOR RIGID-BODY EQUILIBRIUM

QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS

Mechanics of Materials

CIVIL DEPARTMENT MECHANICS OF STRUCTURES- ASSIGNMENT NO 1. Brach: CE YEAR:

Three torques act on the shaft. Determine the internal torque at points A, B, C, and D.

PES Institute of Technology

The case where there is no net effect of the forces acting on a rigid body

Question 1. Ignore bottom surface. Solution: Design variables: X = (R, H) Objective function: maximize volume, πr 2 H OR Minimize, f(x) = πr 2 H

5.2 Rigid Bodies and Two-Dimensional Force Systems

Levers. 558 A Textbook of Machine Design

2014 MECHANICS OF MATERIALS

8.1 Internal Forces in Structural Members

Chapter 5 CENTRIC TENSION OR COMPRESSION ( AXIAL LOADING )

Engineering Mechanics: Statics

PDDC 1 st Semester Civil Engineering Department Assignments of Mechanics of Solids [ ] Introduction, Fundamentals of Statics

CHAPTER 4 Stress Transformation

(48) CHAPTER 3: TORSION

Eng Sample Test 4

Announcements. Equilibrium of a Rigid Body

Code No: R Set No. 1

MECE 3321: Mechanics of Solids Chapter 6

Engineering Science OUTCOME 1 - TUTORIAL 4 COLUMNS

Stress Transformation Equations: u = +135 (Fig. a) s x = 80 MPa s y = 0 t xy = 45 MPa. we obtain, cos u + t xy sin 2u. s x = s x + s y.

BEAM A horizontal or inclined structural member that is designed to resist forces acting to its axis is called a beam

Announcements. Trusses Method of Joints

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 3 Torsion

Mechanics of Solids I. Transverse Loading

IDE 110 Mechanics of Materials Spring 2006 Final Examination FOR GRADING ONLY

Unit III Theory of columns. Dr.P.Venkateswara Rao, Associate Professor, Dept. of Civil Engg., SVCE, Sriperumbudir

7 TRANSVERSE SHEAR transverse shear stress longitudinal shear stresses

5. Plane Kinetics of Rigid Bodies

Questions from all units

ME 202 STRENGTH OF MATERIALS SPRING 2014 HOMEWORK 4 SOLUTIONS

Symmetric Bending of Beams

Announcements. Equilibrium of a Particle in 2-D

MECHANICS OF MATERIALS

7.5 Elastic Buckling Columns and Buckling

If the solution does not follow a logical thought process, it will be assumed in error.

National Exams May 2015

Solution: T, A1, A2, A3, L1, L2, L3, E1, E2, E3, P are known Five equations in five unknowns, F1, F2, F3, ua and va

11.1 Virtual Work Procedures and Strategies, page 1 of 2

D e s i g n o f R i v e t e d J o i n t s, C o t t e r & K n u c k l e J o i n t s

ENGR-1100 Introduction to Engineering Analysis. Lecture 13

Module 11 Design of Joints for Special Loading. Version 2 ME, IIT Kharagpur

The centroid of an area is defined as the point at which (12-2) The distance from the centroid of a given area to a specified axis may be found by

UNIVERSITY OF SASKATCHEWAN ME MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich

COLUMNS: BUCKLING (DIFFERENT ENDS)

BPSC Main Exam 2019 ASSISTANT ENGINEER. Test 11. CIVIL ENGINEERING Subjective Paper-I. Detailed Solutions. Detailed Solutions

A concrete cylinder having a a diameter of of in. mm and elasticity. Stress and Strain: Stress and Strain: 0.

Torsion of Shafts Learning objectives

Strength of Material. Shear Strain. Dr. Attaullah Shah

I B.TECH EXAMINATIONS, JUNE ENGINEERING MECHANICS (COMMON TO CE, ME, CHEM, MCT, MMT, AE, AME, MIE, MIM)

Name (Print) ME Mechanics of Materials Exam # 1 Date: October 5, 2016 Time: 8:00 10:00 PM

Q. 1 Q. 5 carry one mark each.

4.0 m s 2. 2 A submarine descends vertically at constant velocity. The three forces acting on the submarine are viscous drag, upthrust and weight.

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 3 LOADED COMPONENTS

1-1 Locate the centroid of the plane area shown. 1-2 Determine the location of centroid of the composite area shown.

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA SCIENCE FOR TECHNICIANS OUTCOME 1 - STATIC AND DYNAMIC FORCES TUTORIAL 3 STRESS AND STRAIN

Transcription:

STRESS! Stress Evisdom! verage Normal Stress in an xially Loaded ar! verage Shear Stress! llowable Stress! Design of Simple onnections 1

Equilibrium of a Deformable ody ody Force w F R x w(s). D s y Support Reaction D y

Table 1 Supports for oplanar Structures Type of onnection Idealized Symbol Reaction Number of Unknowns (1) θ Light cable θ θ One unknown. The reaction is a force that acts in the direction of the cable or link. () Rollers and rockers F One unknown. The reaction is a force that acts perpendicular to the surface at the point of contact. (3) Smooth surface F One unknown. The reaction is a force that acts perpendicular to the surface at the point of contact. 3

Type of onnection Idealized Symbol Reaction Number of Unknowns (4) Smooth pin or hinge F y F x Two unknowns. The reactions are two force components. (5) F x F y Two unknowns. The reactions are a force and moment. Internal pin (6) Fixed support F x M F y Three unknowns. The reactions are the moment and the two force components. 4

Equation of Equilibrium Σ F 0 Σ M O 0 Σ F x 0 Σ F y 0 Σ F z 0 Σ M x 0 Σ M y 0 Σ M z 0 5

Internal Resultant Loadings F section F 3 F 1 F 4 y F N M O x M O N V F 3 F 1 V F 4 6

Example 1 Determine the resultant internal loadings acting on the cross section at of the beam shown. 70 N/m 3 m 6 m 7

Support Reactions 70 N/m (1/)(9)(70) 115 N M 3645 N m 3 m 6 m 540 N Internal Loading y 115 N 180 N/m 540 N V 135 N 70 N/m 90 N/m M 3645 N m 3 m y 115 N -540() -1080 N m M 540 N 0 180 N/m 0 540 N 1080 N m N m 4 m 8

Shear and bending moment diagram (1/)(9)(70) 115 N 70 N/m 3645 N m 115 N V (N) 3 m 6 m 115 540 + M (N m) - 3645 1080 b Side View 540 N 1080 N m flanges t w web 540 N Front View h 9

Example Determine the resultant internal loadings acting on the cross section at of the machine shaft shown. The shaft is supported by bearings at and, which exert only vertical forces on the shaft. 00 mm 5 N 800 N/m D 100 mm 100 mm 50 mm 50 mm 10

Support Reactions (800 N/m)(0.15 m) 10 N/m 5 N x D 0.75 m 0.15 0.1 m y y + Σ M 0: -(10)(0.75) + y (0.4) - (5)(0.5) 0, y 363.75 N + Σ F x 0: x 0 x 0, + Σ F y 0: y - 10 +363.75-5 0 y -18.75 N, Internal Loading 800(0.05) 40 N + ΣF x 0: N 0 0. m 18.75 N 0.05 m M V N + ΣF y 0: + ΣM 0: -18.75-40 - V 0, V -58.75 N 18.75(0.5) + 40(0.05) + M 0 M -5.69 N m 11

Internal Loading 800(0.05) 40 N 0. m M -5.69 N m N 0 V -58.75 N 18.75 N 0.05 m 800(0.05) 40 N 0. m 5.69 N m 58.75 N 0 18.75 N 0.05 m 1

Example 3 The hoist consists of the beam and attached pulleys, the cable, and the motor. Determine the resultant internal loadings acting on the cross section at if the motor is lifting the kn load W with constant velocity. Neglect the weight of the pulleys and beam. 0.15 m 1 m m 0.5 m 0.15 m D W 13

0.15 m 1 m m 0.5 m 0.15 m D W W kn 0.15 m 1 m T kn N M V + + Σ F x 0: Σ F y 0: + N 0 N - kn - - V 0, V - kn W kn + Σ M 0: M - (0.15) + (1.15) 0 M - kn m 14

Example 4 Determine the resultant internal loadings acting on the cross section at G of the wooden beam shown. ssume the joints at,,, D, and E are pin-connected. 6.5 kn G D E 1 m 4 kn/m 0.6 m 0.6 m m 15

Support Reactions F Two - force 6.5 kn G D E E y E x 1 m 4 kn/m (1/)()(4) 4 kn 0.6 m 0.6 m /3 m (/3)() 4/3 m + Σ M E 0: 4(4/3) + 6.5(3.) - F (1) 0, F 6.1 kn + Σ F x 0: 6.13 + E x 0 E x -6.1 kn, + Σ F y 0: -6.5-4 + E y 0 E y 10.5 kn 16

Internal loadings acting on the cross section at G F 6.13 kn 34.0 kn 6.5 kn G 0.6 m Member G F V F 39.81 o 50.19 o 34.0 kn M N F D -1.78 kn + ΣM G 0: M G -34.0 sin39.81 o (0.6) + 6.5(0.6) 0 M G 9.17 kn m + + Joint ΣF x 0: ΣF y 0: -F sin50.19 o + 6.13 0 F 34.0 kn, (T) -F cos50.19 o -F D 0 F D -1.8 kn, () + ΣF x 0: 34.0 cos39.81 o + N G 0 N G -6.1 kn + ΣF y 0: -6.5 + 34.0 sin39.81 o - V G 0 V G 15.3 kn 17

Example 5 Determine the resultant internal loadings acting on the cross section at of the pipe shown. The pipe has a mass of kg/m and is subjected to both a vertical force of 50 N and a couple moment of 70 N m at its end. It is fixed to the wall at. z x 50 N 70 N m 0.75 m 0.5 m D y 1.5 m 18

Free-ody Diagram z (M ) z (M ) y (M ) x x 50 N 70 N m (F ) x (F ) y 0.65 m (F ) z W D 9.81 N 0.5 m W D D 0.65 m y W D ( kg/m)(0.5 m)(9.81 N/kg) 9.81 N W D ( kg/m)(1.5 m)(9.81 N/kg) 4.5 N Equilibrium of Equilibrium Σ F x 0: (F ) x 0 Σ F y 0: (F ) y 0 Σ F z 0: (F ) z - 9.81-4.55-50 0, (F ) z 84.3 N Σ (M ) x 0: (M ) x + 70-50(0.5) - 4.55(0.5) - 9.81(0.5) 0, (M ) x -30.3 N m Σ (M ) y 0: (M ) y + 4.55(0.65) + 50(1.5) 0, (M ) y -77.8 N m Σ (M ) x 0: (M ) z 0 19

Free-ody Diagram (F ) x 0 (F ) y 0 (F ) z 84.3 N (M ) x -30.3 N m (M ) y -77.8 N m (M ) z 0 z 77.8 N m 84.3 N 9.81 N 0.5 m 30.3 N m 4.5 N D x 50 N 0.65 m y 70 N m 0.65 m 0

Stress z +z Face +y Face y x +x Face 1

z σ z y compatibility, τ zx τ zy σ' x -x Face σ x σ' x σ y σ' y τ' xy τ yz σ z σ z -y Face x σ' y τ' yz τ' yx τ xz σ x τ' zy -z Face τ' xz τ xy τ' zx σ' z σ' y x z τ yx τ' yx x z σ y y τ' xy y z Top View τ xy τ' xy τ yx τ' yx τ zx τ xz σ' x y z τ yx x z y σ y x z x σ x y z τ xy y z

σ' y x z τ' O yx x z τ' xy y z O σ' x y z τ yx x z y σ y x z x σ x y z τ xy y z + ΣF y 0: - σ' y x z + σ y x z 0 σ' y σ y + ΣF x 0: σ x y z - σ' x y z 0 σ x σ' x + ΣM O 0: (τ xy y z)( x) - (τ yx x z)( y) 0 τ xy τ yx 3

z σ τ x y z τ zy x y zx x y z σ z x y z τ xz y z τ xy y z σ x y z τ yz x z σ y x z τ yx x z y x σ' y x z σ x y z σ' x y z σ y x z y x y x σ' z x y τ' yz x z z τ zy x y τ yz x z y τ' yx x z z τ' xy y z τ yx x z y τ xz y z z τ zx x y τ' xz y z y x τ' zy x y x τ xy y z x τ' zx x y 4

verage Normal Stress in an xially Loaded ar ssumptions The material must be - Homogeneous material - Isotropic material Internal force ross-sectional area External force 5

σ z F σ σ x y σ σ x y + F Rz ΣF ; z df σd σ σ 6

Example 6 The bar shown has a constant width of 35 mm and a thickness of 10 mm. Determine the maximum average normal stress in the bar when it is subjected to the loading shown. 1 kn 9 kn 4 kn D kn 35 mm 9 kn 4 kn 7

1 kn 9 kn 4 kn D 9 kn 4 kn 35 mm (kn) kn 1 30 x 10 mm 30 kn 35 mm σ σ σ 30 kn (0.035 m)(0.01 max m) 85.7 Ma 8

1 kn 9 kn 4 kn D 9 kn 4 kn 35 mm σ (Ma) kn 34.3 85.7 6.9 x 10 mm 30 kn 35 mm σ σ σ 30 kn (0.035 m)(0.01 max m) 85.7 Ma 9

Example 7 The 80 kg lamp is supported b two rods and as shown. If has a diameter of 10 mm and has a diameter of 8 mm, determine which rod is subjected to the greater average normal stress. 60 o 5 4 3 30

Internal Loading y F 60 o 5 4 3 F x verage Normal Stress d 10 mm 5 3 4 60 o d 8 mm ΣF + + ΣF y x 80(9.81) 784.8 N 4 0 ; F ( ) cos 60 o F 0 5 3 o 0 ; F ( ) + F sin 60 784.8 0 5 F 395. N, F 63.4 N σ σ F 395. N π (0.004 m) F 63.4 π (0.005 N m) 7.86 8.05 Ma Ma The average normal stress distribution acting over a cross section of rod. 8.05 Ma 8.05 Ma 8.05 Ma 63.4 N 31

Example 8 Member shown is subjected to a vertical force of 3 kn. Determine the position x of this force so that the average compressive stress at is equal to the average tensile stress in the tie rod. The rod has a cross-sectional area of 400 mm and the contact area at is 650 mm. x 3 kn 00 mm 3

F x 3 kn 00 mm Internal Loading + ΣFy 0; F + F 3 0 (1) F + Σ M 0: -3(x) + F (00) 0 ------() verage Normal Stress σ F F 400 650 F 1.65F (3) Substituting (3) into (1), solving for F, the solving for F, we obtain F 1.143 kn F 1.857 kn The position of the applied load is determined from (); x 14 mm 33

onnections Simple Shear D τ avg V V V V τ avg 34

Single Shear Top View Side View Top View Side View V V 35

Double Shear / / / / Top View Top View Side View Side View V / V / V / V / 36

Normal Stress: ompression and Tension Load Tension Load a b a b d t b b bt t σ @ a a bt (b-d)t d σ @ b b ( b d) t Section a-a b t Section b-b 37

earing Stress b t d b b / / t d earing Stress bearing dt σ bearing dt 38

σ normal ( b d) t t θ dθ d b σ bearing 90 + ΣF x 0: d σ b( ) t cosθdθ 0 90 dt d 90 ( ) tσ b sinθdθ 90 σ bearing σ bearing td sin 90 td o * 39

xial Force Diagram for ompression Load on late b d t Tension - - ompression Normal Stress: σ, ( bd) t earing Stress σ bearing dt compression 40

xial Force Diagram for Tension Load on late a b d t Tension ompression Normal Stress: max + σ, ( b d) t earing Stress σ bearing dt Shearing Stress τ at tension t a τ / τ / 41

Shearing Stress on pin Single Shear τ 4

Double Shear / / / / / / / / / / / / / / τ τ / / 43

ure Shear z Section plane τ zy z τ yz y x y τ yzτzy x ure shear τ zy τ yz 44

Example 9 The bar shown a square cross section for which the depth and thickness are 40 mm. If an axial force of 800 N is applied along the centroidal axis of the bar s cross-sectional area, determine the average normal stress and average shear stress acting on the material along (a) section plane a-a and (b) section plane b-b. 800 N a a b b 0 mm 30 o 0 mm 45

40 mm a b 0 mm 800 N a b 30 o 0 mm (a) section plane a-a a 800 N N 800 N a σ N (0.04 800 N m)(0.04 m) 500 ka τ avg 0 500 ka 46

40 mm a b 0 mm 800 N (b) section plane b-b a b 30 o 0 mm 800 N x 30 o V 800 cos30 o 69.8 N b b 30 o 30 o 800 N N 800sin30 o 400 N 40 mm o 40 sin 30 ; x x 80 mm σ State of Stress @ b-b b τ avg σ b 16.51 ka 15 ka τ avg N 400 N 15 ka (0.04 m)(0.08 m) V 69.8 N 16.51 ka (0.04 m)(0.08 m) 47

Example 10 The wooden strut shown is suspended form a 10 mm diameter steel rod, which is fastened to the wall. If the strut supports a vertical load of 5 kn, compute the average shear stress in the rod at the wall and along the two shaded planes of the strut, one of which is indicated as abcd. b a c d 0 mm 40 mm 5 kn 48

b a c d 0 mm 40 mm verage shear stress in the rod at the wall 5 kn V 5 kn d 10 mm τ avg V 5 kn π (0.005 m) 5 kn 63.7 Ma 5 kn 63.7 Ma verage shear stress along the two shaded plane V.5 kn b a 5 kn V.5 kn c d τ avg V.5 kn (0.04 m)(0.0 m) 3.1 Ma 5 kn 3.1 Ma 49

Example 11 The inclined member show is subjected to a compressive force of 3 kn. Determine the average compressive stress along the areas of contact defined by and, and the average shear stress along the horizontal plane defined by ED. 5 3 3 kn 4 5 mm 40 mm 80 mm 50 mm 50

The average compressive stress along the areas of contact defined by and : 3 kn 5 4 3 5 mm 5 3 3 kn 4 40 mm 80 mm V 1.8 kn 50 mm F 3(3/5) 1.8 kn F 3(4/5).4 kn 5 3 3 kn 4 σ F 1.8 kn (0.05 m)(0.040 m) 1800 ka 1.8 Ma 1.8 Ma σ F.4 kn (0.050 m)(0.040 m) 100 ka 1. Ma 1. Ma 51

The average shear stress along the horizontal plane defined by ED : 3 kn 5 4 3 5 3 3 kn 4 5 mm 40 mm 80 mm 50 mm F 3(3/5) 1.8 kn V 1.8 kn F 3(4/5).4 kn τ avg V 1.8 kn (0.04 m)(0.08 0.56 Ma m) 56.5 ka 1.8 kn 0.56 Ma 5

llowable Stress F. S fail allow F. S σ σ fail allow F. S τ τ fail allow 6. Design of Simple onnections σ allow V τ allow ross-sectional rea of a Tension Member a τ allow a σ allow 53

ross-sectional rea of a onnector Subjected to Shear V τ allow σ allow Required rea to Resist earing (σ b ) allow (σ ) b allow 54

Required rea to Resist Shear by xial Load Uniform shear stress (τ allow ) d l τ allow πd 55

Example 1a The control arm is subjected to the loading shown. (a) Determine the shear stress for the steel at all pin (b) Determine normal stress in rod, plate D and E. The thickness of plate D and E is 10 mm. φ 10 mm φ 5 mm D E φ 5 mm 00 mm D E 50 mm 50 mm 13 kn 5 kn pin φ 0 mm 13 kn 75 mm 50 mm 3 4 5 5 kn 56

F 00 mm 00 mm 13 kn 75 mm 50 mm 3 4 5 5 kn x y 13 kn 75 mm 50 mm 36.87 o 5 kn y Reaction + ΣM 0: F ( 0.) + 13(0.075) 5sin 36.87(0.15) 0 F 4.5 kn, + ΣF x 0: -4.5 - x + 5cos36.87 o 0 x 15.5 kn, x ΣF y 0: + y + 13-5sin36.87 o 0 (15.5) + () 15.63 y kn, kn 57

φ 35 mm (a) Shear stress 4.5 kn 00 mm 00 mm φ 5 mm φ 5 mm D E 5 3 pin φ 0 mm 13 kn 4 5 kn 75 mm 50 mm 15.63 kn 13 kn 75 mm 50 mm 5 kn in (Double shear) in D and E (Single shear) 15.63 kn 7.815 kn τ D VD 13 kn 6.48 Ma ( π / 4)(0.05 ) D τ 7.815 kn V 7.815 kn 4.88 Ma ( π / 4)(0.0) τ E VE 5 kn 50.93 Ma ( π / 4)(0.05 ) E 58

φ rod 10 mm (b) Normal stress 4.5 kn φ 5 mm D E φ 5 mm 00 mm D E 50 mm 50 mm 13 kn 5 kn 15.63 kn 13 kn 75 mm 50 mm 5 kn σ ale σ 4.5 kn 56.7 Ma ( π / 4)(0.010) late D 13 kn 13 kn σ D 13 kn t 0.01 m 0.05 m σ D 13 kn (0.05)( 0.01) 6 Ma 59

φ rod 35 mm 4.5 kn φ 5 mm D E φ 5 mm 00 mm D E 50 mm 50 mm 13 kn 5 kn 15.63 kn 13 kn 75 mm 50 mm 5 kn late E 5 kn 50 mm σ E 50 mm 5 kn 5 kn 0.05 m t 0.01 m 0.05 m σ E 5 kn (0.05 0.05)(0.01) 100 Ma 60

Example 1b The control arm is subjected to the loading shown. Determine the required diameter of the steel pin at if the allowable shear stress for the steel is τ allow 55 Ma. Note in the figure that the pin is subjected to double shear. 00 mm 13 kn 75 mm 50 mm 3 4 5 kn 61

F 00 mm 00 mm 13 kn 75 mm 50 mm 3 4 5 kn x y 13 kn 75 mm 50 mm kn y Internal Shear Force + ΣM 0: F ( 0.) 13(0.075) sin 36.87(0.15) 0 F 13.15 kn + ΣF x 0: -13.15 - x + cos36.87 o 0 x 4.47 kn x ΣF y 0: + y - 13 - sin36.87 o 0 (4.47) + (6.) y 6. kn 6.58 kn 6

13.15 kn 00 mm 00 mm 13 kn 75 mm 50 mm 3 4 5 kn 6.58 kn 13 kn 75 mm 50 mm kn Required rea 6.58 kn τ V allow 13.9 10 6 55 10 3 41.6 10 6 m 4 mm 13.9 kn 13.9 kn π d ( ) 4 mm d 17.55 mm Use d 0 mm 63

Example 13a The two members are pinned together at as shown below. Top views of the pin connections at and are also given. If the pins have an allowable shear stress of τ allow 86 Ma, the allowable tensile stress of rod is (σ t ) allow 11 Ma and the allowable bearing stress is (σ b ) allow 150 Ma, determine to the smallest diameter of pins and,the diameter of rod and the thickness of necessary to support the load. Top view 13 kn 5 4 3 1 m 0.6 m 64

Internal Force y 13 kn F x 36.87 o 1 m 0.6 m + Σ M 0: 13 (1) + F sin 36.87(1.6) 0 F 13.54 kn + Σ F y 0: y 13 + 13.54 sin 36.87 0 y 4.88 kn + Σ F x 0: x +13.54 cos 36.87 0 x 10.83 kn 65

Diameter of the ins 11.88 kn y 4.88 kn 13 kn F 13.54 kn 36.87 o x 10.83 kn Top view 1 m 0.6 m in 11.88 kn in F 13.54 kn V 5.94 kn V 5.94 kn V 13.54 kn V τ π 4 allow ( d ) 5.94 kn 86 10 kn/ m 69.07 mm 69.07 mm 3 d 9.38 mm, Use d 10 mm π ( 4 V τ d allow ) 13.54 kn 86 10 kn / m 157.4 mm 157.4 mm 3 d 14.16 mm, Use d 15 mm 66

Diameter of Rod 11.88 kn y 4.88 kn 13 kn 36.87 o F 13.54 kn x 10.83 kn 1 m 0.6 m 13.54 kn 13.54 kn ( σ t ) allow 11 13.54 kn 10 kn/ m 10.9 mm 3 π 4 ( d ) 10.9 mm d 1.4 mm, Use d 15 mm 67

Thickness 11.88 kn y 4.88 kn 13 kn F 13.54 kn 36.87 o x 10.83 kn 1 m 0.6 m φ 10 mm t 0 kn φ 15 mm ( σ ) 150 10 t b allow 6 11.88 10 (0.010 ) t 0.0079 m 3 11.88 kn 13.54 kn t ( σ b ) allow 150 10 6 13.54 10 (0.015) t 3 (σ b ) (σ b ) t 0.0060 m y comparison use t 8 mm 68

Example 13b The two members are pinned together at as shown below. Top views of the pin connections at and are also given. If the pins have an allowable shear stress of τ allow 86 Ma, the allowable tensile stress of rod is (σ t ) allow 11 Ma and the allowable bearing stress is (σ b ) allow 150 Ma, determine to the maximum load that the beam can supported. Top view φ 10 mm t 8 mm φ 15 mm 5 3 4 1 m 0.6 m φ 15 mm t 8 mm 69

Internal Force y F x 36.87 o 1 m 0.6 m + Σ M 0: ( 1) + F sin 36.87(1.6) 0 + ΣF 0 ; + 1.04 sin 36.87 0 y y F 1.04 (T) y 0.375 + ΣF x 0 ; + 1.04 cos 36.87 0 x x 0.834 kn 70

0.914 0.834 Top view in (double shear) 0.914 y 0.375 F 1.04 36.87 o 1 m 0.6 m φ 15 mm φ 10 mm in (single shear) F 1.04 V 0.457 τ allow V 0.457 V 3 0.457 86 10 ka ( π / 4)(0.01) 14.78 kn V 1.04 τ allow V 3 1.04 86 10 ka ( π / 4)(0.015 ) 14.58 kn 71

0.914 y 0.375 36.87 o F 1.04 0.834 1 m 0.6 m φ rod 15 mm Rod 1.04 1.04 σ allow 3 1.04 11 10 ka ( π / 4)(0.015 ) 19 kn 7

0.914 y 0.375 F 1.04 36.87 o 0.834 Top view φ 10 mm t 10 mm ( σ b ) allow 0.914 6 0.914 150 10 (0.010 )(0.010 ) 16.41 kn φ 10 mm t 10 mm 1 m 0.6 m 0 kn F 1.04 (σ b ) (σ b ) φ 15 mm t 10 mm ( σ ) 150 10 b allow 6 1.60 1.04 (0.015 )( 0.01) kn t 10 mm φ 15 mm y comparison all 14.58 kn 73

Example 14 The suspender rod is supported at its end by a fixed-connected circular disk as shown. If the rod passes through a 40-mm diameter hole, determine the minimum required diameter of the rod and the minimum thickness of the disk needed to support the 0 kn load. The allowable normal stress for the rod is σ allow 60 Ma, and the allowable shear stress for the disk is τ allow 35 Ma. 40 mm t 40 mm τ allow d 0 kn 0 kn 74

40 mm t 40 mm τ allow d 0 kn 0 kn Diameter of Rod Thickness of Disk σ allow 60 0 10 3 kn kn/ m τ V allow 35 0 10 3 kn kn/ m π 0 d 4 60 10 3 kn kn/ m π (0.0 m) t 35 0 10 3 kn kn/ m d 0.006 m 0.6 mm t 4.55x10-3 m 4.55 mm 75

Example 15 n axial load on the shaft shown is resisted by the collar at, which is attached to the shaft and located on the right side of the bearing at. Determine the largest value of for the two axial forces at E and F so that the stress in the collar does not exceed an allowable bearing stress at of (σ b ) allow 75 Ma and allowable shearing stress of the adhesive at of τ allow 100 Ma, and the average normal stress in the shaft does not exceed an allowable tensile stress of (σ t ) allow 55 Ma. F E 60 mm 0 mm 80 mm 76

F E 60 mm 0 mm 3 80 mm Load 3 osition xial Stress earing Stress 55 10 3 (σ t ) allow kn/ m 3 π (0.03 1 51.8 kn m) 3 3 (σ b ) allow 3 3 75 10 kn/ m [ π (0.04 m) π (0.03 m) ] 55 kn 60 mm 80 mm 77

F E 60 mm 0 mm 3 80 mm Load 100 Shearing Stress 60 mm 3 τ 10 allow 3 kn/ m shear 3 osition 80 mm 0 mm 3 [π (0.04 m)(. 00 )] xial Stress 1 51.8 kn earing Stress 55 kn Shearing Stress 3 55 kn 3 55 kn The largest load that can be applied to the shaft is 51.8 kn. 78

Example 16 The rigid bar shown supported by a steel rod having a diameter of 0 mm and an aluminum block having a cross-sectional area of 1800 mm. The18-mmdiameter pins at and are subjected to single shear. If the failure stress for the steel and aluminum is (σ st ) fail 680 Mpa and (σ al ) fail 70 Ma, respectively, and the failure shear stress for each pin is τ fail 900 Ma, determine the largest load that can be applied to the bar. pply a factor of safety of F.S.0. Steel 0.75 m luminum m 79

Steel 0.75 m F luminum 0.75 m 1.5 m m F + ΣM 0: (1.5 m) - F ( m) 0 ---------> F 0.65 + ΣM 0: (0.75 m) - F ( m) 0 ----------> F 0.375 Rod ( σ st ) allow ( σ st ) F. S fail F 3 680 10 ka 0.65 π(0.01 1 171 kn m) lock 70 ( σ al ) allow ( σ al ) F. S fail 3 10 ka 0.375 1800 10 168 kn 6 F m 80

Steel 0.75 m F 0.65 luminum 0.75 m 1.5 m m F 0.375 in or τ allow τ fail F. S F pin 3 900 10 ka 0.65 π(0.009 m) 3 183 kn Summary Rod 1 171 kn lock 168 kn in or 3 183 kn Largest load 168 kn 81