D, domain or region. Chapter 2. Analytic Functions. Sec. 9. (1) w. function of a complex variable. Note: Domain of f may not be a domain.

Similar documents
Part D. Complex Analysis

MTH3101 Spring 2017 HW Assignment 4: Sec. 26: #6,7; Sec. 33: #5,7; Sec. 38: #8; Sec. 40: #2 The due date for this assignment is 2/23/17.

(x 1, y 1 ) = (x 2, y 2 ) if and only if x 1 = x 2 and y 1 = y 2.

CONFORMAL MAPPING. Some examples where this method can be used is: the electrostatic potential; heat conduction; flow of fluids.

Some commonly encountered sets and their notations

Lecture 4. Properties of Logarithmic Function (Contd ) y Log z tan constant x. It follows that

Chapter 9: Complex Numbers

MA3111S COMPLEX ANALYSIS I

x y x 2 2 x y x x y x U x y x y

Math Homework 1. The homework consists mostly of a selection of problems from the suggested books. 1 ± i ) 2 = 1, 2.

4.5 The Open and Inverse Mapping Theorem

MULTIPLE CHOICE QUESTIONS SUBJECT : MATHEMATICS Duration : Two Hours Maximum Marks : 100. [ Q. 1 to 60 carry one mark each ] A. 0 B. 1 C. 2 D.

Mathematics Specialist Units 3 & 4 Program 2018

1 z n = 1. 9.(Problem) Evaluate each of the following, that is, express each in standard Cartesian form x + iy. (2 i) 3. ( 1 + i. 2 i.

Math 4263 Homework Set 1

Theorem [Mean Value Theorem for Harmonic Functions] Let u be harmonic on D(z 0, R). Then for any r (0, R), u(z 0 ) = 1 z z 0 r

Chapter 9. Analytic Continuation. 9.1 Analytic Continuation. For every complex problem, there is a solution that is simple, neat, and wrong.

Q.2 A, B and C are points in the xy plane such that A(1, 2) ; B (5, 6) and AC = 3BC. Then. (C) 1 1 or

f (n) (z 0 ) Theorem [Morera s Theorem] Suppose f is continuous on a domain U, and satisfies that for any closed curve γ in U, γ

B.Tech. Theory Examination (Semester IV) Engineering Mathematics III

Complex Analysis Homework 4

Complex Function. Chapter Complex Number. Contents

MATHEMATICS. r Statement I Statement II p q ~p ~q ~p q q p ~(p ~q) F F T T F F T F T T F T T F T F F T T T F T T F F F T T

Calculus Problem Sheet Prof Paul Sutcliffe. 2. State the domain and range of each of the following functions

(7) Suppose α, β, γ are nonzero complex numbers such that α = β = γ.

EE2012 ~ Page 9 / Part 2. ben m chen, nus ece

Lecture 5: Rules of Differentiation. First Order Derivatives

1 Sum, Product, Modulus, Conjugate,

MTH4101 CALCULUS II REVISION NOTES. 1. COMPLEX NUMBERS (Thomas Appendix 7 + lecture notes) ax 2 + bx + c = 0. x = b ± b 2 4ac 2a. i = 1.

ENGI Partial Differentiation Page y f x

III.2. Analytic Functions

2. Complex Analytic Functions

Let X be a topological space. We want it to look locally like C. So we make the following definition.

UNCORRECTED. To recognise the rules of a number of common algebraic relations: y = x 1 y 2 = x

02. If (x, y) is equidistant from (a + b, b a) and (a b, a + b), then (A) x + y = 0 (B) bx ay = 0 (C) ax by = 0 (D) bx + ay = 0 (E) ax + by =

The details of the derivation of the equations of conics are com-

Math Subject GRE Questions

Math Homework 2

63487 [Q. Booklet Number]

COMPLEX NUMBERS

KEAM (ENGINEERING) ANSWER KEY 2017

MORE CONSEQUENCES OF CAUCHY S THEOREM

Math 19, Homework-1 Solutions

PREPARED BY: ER. VINEET LOOMBA (B.TECH. IIT ROORKEE) 60 Best JEE Main and Advanced Level Problems (IIT-JEE). Prepared by IITians.

COMPLEX NUMBERS AND QUADRATIC EQUATIONS

Complex Variables. Chapter 2. Analytic Functions Section Harmonic Functions Proofs of Theorems. March 19, 2017

Aero III/IV Conformal Mapping

SYLLABUS FOR ENTRANCE EXAMINATION NANYANG TECHNOLOGICAL UNIVERSITY FOR INTERNATIONAL STUDENTS A-LEVEL MATHEMATICS

IV. Conformal Maps. 1. Geometric interpretation of differentiability. 2. Automorphisms of the Riemann sphere: Möbius transformations

13 Lecture 13 L Hospital s Rule and Taylor s Theorem

Exercises for Part 1

Solutions to Problem Sheet for Week 6

Complex Practice Exam 1

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

The shortest route between two truths in the real domain passes through the complex domain. J. Hadamard

Department of Mathematical and Statistical Sciences University of Alberta

COMPLEX ANALYSIS AND RIEMANN SURFACES

Physics 307. Mathematical Physics. Luis Anchordoqui. Wednesday, August 31, 16

13. Complex Variables

Math 423/823 Exam 1 Topics Covered

Lecture 1 Complex Numbers. 1 The field of complex numbers. 1.1 Arithmetic operations. 1.2 Field structure of C. MATH-GA Complex Variables

Physics 116A Solutions to Homework Set #2 Winter 2012

Complex Functions (1A) Young Won Lim 2/22/14

MATH 2 - PROBLEM SETS

3.5 Continuity of a Function One Sided Continuity Intermediate Value Theorem... 23

Chapter 13: Complex Numbers

CLEP Calculus. Time 60 Minutes 45 Questions. For each question below, choose the best answer from the choices given. 2. If f(x) = 3x, then f (x) =

POINT. Preface. The concept of Point is very important for the study of coordinate

ENGI 4430 Multiple Integration Cartesian Double Integrals Page 3-01

Complex Homework Summer 2014

Economics 205 Exercises

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 4 UNIT (ADDITIONAL) Time allowed Three hours (Plus 5 minutes reading time)

MAT389 Fall 2016, Problem Set 4

JEE(Advanced) 2015 TEST PAPER WITH ANSWER. (HELD ON SUNDAY 24 th MAY, 2015) PART - III : MATHEMATICS

and ( x, y) in a domain D R a unique real number denoted x y and b) = x y = {(, ) + 36} that is all points inside and on

EEE 203 COMPLEX CALCULUS JANUARY 02, α 1. a t b

Prelim Examination 2010 / 2011 (Assessing Units 1 & 2) MATHEMATICS. Advanced Higher Grade. Time allowed - 2 hours

Part IB. Complex Analysis. Year

Senior Secondary Australian Curriculum

The Distance Formula. The Midpoint Formula

CLASS XII MATHEMATICS. Weightage (Marks) (i) Relations and Functions 10. Type of Questions Weightage of Number of Total Marks each question questions

PRACTICE PROBLEMS FOR MIDTERM I

Math 185 Homework Exercises II

Leplace s Equations. Analyzing the Analyticity of Analytic Analysis DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING. Engineering Math EECE

INDEX. Bolzano-Weierstrass theorem, for sequences, boundary points, bounded functions, 142 bounded sets, 42 43

Math 2414 Activity 1 (Due by end of class July 23) Precalculus Problems: 3,0 and are tangent to the parabola axis. Find the other line.

INTEGRATION WORKSHOP 2003 COMPLEX ANALYSIS EXERCISES

Formulas to remember

Solutions to Problem Sheet for Week 11

Math 185 Fall 2015, Sample Final Exam Solutions

Complex Variables Notes for Math 703. Updated Fall Anton R. Schep

Ordinary Differential Equations

UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION CORE COURSE. B.Sc. MATHEMATICS V SEMESTER. (2011 Admission onwards) BASIC MATHEMATICAL ANALYSIS

Complex Analysis Math 185A, Winter 2010 Final: Solutions

18.02 Multivariable Calculus Fall 2007

POWER SERIES AND ANALYTIC CONTINUATION

Synopsis of Complex Analysis. Ryan D. Reece

Functions of a Complex Variable and Integral Transforms

Complex Variables. Cathal Ormond

C) 2 D) 4 E) 6. ? A) 0 B) 1 C) 1 D) The limit does not exist.

Transcription:

Chapter. Analytic Functions Sec. 9. D, domain or region f : D w (1) w f function of a comple variable. Note: Domain of f may not be a domain. (set theory ) (topology ) Let w = u + iv and = + iy u + iv = f iy u, y Re f, y, i.e., v, y Im f, y i.e., uv, Re fy,,im f y, E. f iy y iy u y v y () Real-valued func. of a comple variable, i.e., v E. f : D f y : u y, v (3) Polar coordinates: CH_1

i re i uiv f re i, Re f re i, Im f re u r v r E. f u r v r cos sin CH_

Sec. 1. Mappings ( cf. Chapter 8 ) D domain or region f : D Question: Geometric behavior of f? E.1. (a) Use Cartesian coordinates: w Let = + iy u y i.e. v y Fi u y & v y Eliminate y from above v 4 y 4 ( u) 4 ( u ) parabola with verte, 1, 1, (1) Assume > : y > v y CH_3

upper half line upper branch () : u y, v = range of f (3) Assume < : y > v < upper half line lower branch Appendi. Fig. 3, p. 371 y v C C, u (b) Use polar coordinates: Let i re w i r e w = & E.. 1 f w w Note: symm. under 1 : 1 f f, domain of f \ CH_4

(1) () i e, i i we e cos +isin + cos - +isin - =cos - u & v Note: same image i (3) re,, r > 1 i 1 i 1 1 wre e rcos irsin cos i sin r r r 1 1 sin = r cos i r r r u v CH_5

u v 1 1 r r r r 1 ellipse 1 1 arg arg arg 1 r > r 1 by symm: f f 1 r > r Appendi, Fig. 17, p. 374 Fig. 18 E. 1. 1 1 i w r e ( r, < ) CH_6

Sec. 11. Limits D domain or region f : D, w, D Def. lim f w if >, > < < & D f w < or >, > f N D N w E. Show lim iy 4i i Pf: Let > Find > < i < iy 4 i < 4 4 4 <7 < iy i y y y i < i y 4 y 4 < i 4 4 i y i y < need: < 1 Let < 7 Conclusion: < min 1, 7 CH_7

Properties: (1) lim & lim f w f w w w 1 1 CH_8

Sec. 1. lim f w lim f Re w & lim Im f Im w () Pf: : Re f Re w Re f w f w Im f Im w Im f w f w : Im f w Re f w i f w Re f Re w Im f Im w (3) lim & lim f w g w,, 1 ablim (4) lim af bg aw bw f g w w 1 1 f w (5) lim if w1 g w 1 lim f w & w (6) f( ) < - <, i.e., f(ns ( )) (7) lim f w lim f w Pf: f w f w (8) lim f w lim f w Pf: f w f w CH_9

Sec. 13. Limits involving ( in, is one no.; in, ) n bd of : w: w R N R Def. lim f if R >, > f R R f N N or Def. lim f w if >, R > R f w R or f N N w Def. lim f if R >, r > r f R or f Nr NR CH_1

Sec. 14. (1) etended comple plane. Note: different from : () Riemann sphere =,, : 1 3 1 3 1 3 (3) stereographic projection: p: Riemann sphere & p: Riemann sphere\ 1,, 3 iy,,1 (4),,,,,,,,1 y on a straight line in 1 3 3, y,,,1 t 1,, 3,,1 t1, t,1t 3 1 t 1 y t 1t 1 3 1, 1, t y 1 1 1 3 3 3 1 i stereographic projection:1,, 3 1 3 or,,,,1 for 3 1 1 3 CH_11

(5) Conversely: 1 1 1 3 3 13 13 1 3 1 3 1 1 1 ( 1 1 ) 1 1 1 1 ( 1 13y 1 ) i1 1 i 1 1 3 Properties: (1) 3 < < 1 3 > > 1 3 = = 1 () circle not passing,,1 circle CH_1

circle passing,,1 straight line (3) nbd of,,1, disc centerted at,,1 : R S Def. accumulation pt. of S if R>, N S R Note: accumulation pt. of S S unbdd. E. S n: n,1,, S :Re > S :Im Then accumulation pt. Homework: Sec. 4: 14, 15, 16 Sec. 6: 6, 11, 1, 13, 14 Sec. 8: 4, 7, 1 Etra: (1) Prove that a b < 1 if a < 1 and b < 1. 1 ab CH_13

() Prove that a b 1 ab = 1 if a = 1 or b = 1 but not ab 1 (3) Prove that the points a1, a, a 3 are vertices of an equilateral triangle iff a a a a a a a a a 1 3 1 3 3 1 (4) Show that and correspond to diametrically opposite poits on the Riemann sphere iff 1 Solu. (3) : a a wa a 3 1 a a w a a 1 3 1 a a a aa a a a a 1 3 1 3 3 1 1 = a a a a a a 1 3 1 3 = a 4 a1 w a a1 w a a 1 a a1 w w 1 1 1 : a a a a a a 3 1 3 1 Let a1a a3 a1 a a3 CH_14

( from a a a aa a a a a ) 1 3 1 3 3 1 3 1 1, w or w If 1, then a1 a a3 w or w (4) : In either case, Say,,, &,, 1 3 1 3 i 1 1 1, 3 i 1 3 1 : Check: d, 1 1 If 1, then d, diametrically opposite CH_15

E. i 3 lim 1 1 Pf: For R >, find > < 1 < i 3 1 > R i 3 3 3 1 1 > R 1 1 1 < <1 Let < < 1 R 1 lim f w lim f w Note: 1 lim f lim f 1 lim f lim 1 f CH_16

Sec. 14. Continuity Def. f conti. at if (1) f defined, () lim f eists, (3) lim f f. >, > f f < < >, > f N N f Def. f conti. on region R if f conti. at each pt. of R Properties: (1) f, g conti. at &, a b af bg conti. at () f, g conti. at & a, b f g conti. at (3) f, g conti. at &, a b & g (4) f poly. f conti. on f conti. at g Pf: By (1), need only check: lim n n n May assume n CH_17

< n n n1 n n n1 1 n 1 n < n n 1 < < < also, < Let < < min 1, n 1 1 n (5) f conti. at & g conti. at f g f conti. at (6) f conti. at & f > f on N 1 f > Pf: Let > < < f f 1 f f f < 1 f (7) f conti. at Re f,im f, f & f conti. at (8) f conti. on region R, R closed & bdd R f ma f : R CH_18

Pf: f : R is conti. & R compact (7) f assumes its ma. by advanced calculus (9) f conti. on region R, R closed & bdd f unif. conti. on R i.e., >, > 1 <, 1, R f f < 1 Homework: Sec.14: E. 1 (f), (g), 4, 9. Use definition directly to prove (a), (b), (c) E. 1. horiontal translation by a: f a, where a real E.. rotation through angle arg a w.r.t. : f a, where a 1 E. 3. reflection (through -ais): f CH_19

Sec. 15. Def. f differ. at if derivative f df f f lim d eits. i.e., w >, > < f < f w < Note: difference for real-variable * N E.1. f at f f = = (1) Assume (real) i.e., Then () Assume iy i.e., iy Then 1 CH_

not eist. f at =, f f as Note: cf. real-variable case: f : differ at any Note 1. f differ. at = (in previous eample), but not at any other pt. of nbd of f y. Re f y Im f Re f & Im f have conti. partial derivatives of all orders at f differ at. 3. f differ. at f conti. at. 4. A real-valued func. of a comple variable either has derivative = or the derivative not eist. Pf: D, f : D Assume f real-valued & f eists for some D CH_1

Then f f f f lim is real. ( real ) f iy f lim is purely imaginary. iy ( y real ) iy f E. f Re (cf. Sec.16, E. 8 (b), (c)) f Im E.. ( Sec.16, E. 9 ) if f if Determine whether f eists. Solu. f f (*) (1) Let along -ais i.e., (*) = 1 CH_

() Let along y-ais i.e., iy (*) = iy iy 1 (3) Let along = y i.e., i i 1i i 1 i 1i (*) = i f not eist. Note: f involving f not differ. Homework: Sec. 16, E. 8 CH_3

Sec. 16. Differentiation formulas d (1) d n n n1, ( n integer ) Assume f, g differ. at, then ()af bg af bg (3) f g fg fg f gf fg (4) g g if g (5) ( chain rule ) f differ. at, g differ. at g f g f f f g f differ. at & Homework: Sec.16, E. 3, 4 (L Hospital rule) CH_4

Sec. 17. Cauchy-Riemann equ. ( a bridge between comple analysis & calculus ) f u, u, v, v y y Thm. Assume w f,, y, w u iv w, y u, y iv, y & f eists. u u v v eist at, y Then (1),,, y y () f u, y iv, y = v, y iu, y y y (3) u vy, uy v at, y ( Cauchy-Riemann equ.) Pf: (1) & (): f lim f f (i) Consider u, v : Let, y,, y,,,, u y u y v y v y f lim i CH_5

Re & Im limits eist, i.e., u, v eist = u, y iv, y (ii) Consider u, v : y y Let y,, y, Then f,,,, u y u y iv y v y lim y y iy ( y) = y y,,,, v y v y u y u y lim i y y y y Re & Im limits eist, i.e.,, u v eist & f v, y iu, y y y y y (3): (i) & (ii) Cauchy-Riemann equ. E. 1. f iy y iy u y v y u vy uy y v E.. f y u y u, uy y v v, vy Cauchy-Riemann iff y,, CH_6

f eists iff = u f u iv u v uvy uyv v Note 1. y u v y ( Jacobian determinant of u, v w.r.t., y ) Note. f eists C-R equ. Countereample: Sec.19, E. 6 E. f if if Then f not eist, but u v & u v at y y, ( Sec.19, E. 6 ) CH_7

Sec. 18. Thm. f uy, ivy, u u v v eist in a nbd of, y & conti. at, y,,, y y Cauchy-Riemann equ. satisfied at y, f eists. Note 1. proof by MVT for 1-variable func. & Taylor s thm for variables. u u v v eist & conti. in a nbd of, y Note.,,, y y gradient of u, v, i.e., u, v eist at, y difference between comple analysis & calculus: C -R equ. Ref. T. Apostal, Mathematical Analysis, nd ed., p. 357 Pf: :,,,, u y u y u y u y y y (1) y 1,,,, v y v y v y v y y y () y 1 where and as CH_8

Reason: u yu yu y u y u u y y,,,, y 1 = u, yy y u, y u, y u, y y y y y = u, yu, y y y u, y u, y y y 1 u y u y u y u y,,,, y y as y y y y f f u iv u iv y y i (1) + () i y y 1 = u iv i y y 1i f f i u iv u iv 1 as f u iv eists. E. 1. f e e cos y isin y u e cos y u vy v e sin y uy v, y & conti. f eists & f f = u iv e cosy ie siny CH_9

E.. f u y, v u, u y, v, v & conti. y y Cauchy-Riemann equ. satisfied only at f eists only at. CH_3

Sec. 19. Cauchy-Riemann equ. in polar form Assume, rcos irsin f ur, ivr,, i.e.,r, u, v What s the relation between u, u, v, v r eists? if r f r, (1) Find relations between u, uy, v, v y& ur, u, vr, v. u, y, rcos, y rsin u u cos u sin r y u ursin uyrcos Similarly for v: v v cos v sin r y v vrsin vyrcos () Cauchy-Riemann equ. in polar form: u vy uy v 1 ur vycos vsin v r u v rsin v rcos rv y r (3) Derivative of f : ( E.19, 8 & 9 (a)) f re u iv v iu i Moreover, y y CH_31

1 e i = ur ivr e cos u ivsinuy ivy i r, 1 re = i r, i v iu = v iu = u iv = i r, u iv e i = cos i sin f ( E. 8 on p. 55 ) Homework: Sec.19, E. 1 (b), (d) E. 3 (b),(d) E. 4 (b),(d) E. 6, E. 9 (4) Thm f ur, ivr,, i re i at re, ur, u, vr, v eist in a nbd of & conti. at Cauchy-Riemann equa. satisfied at f eists (3) f on domain D f = constant on D Pf: f uy, ivy, CH_3

f u iv vy iuy = on D u v u v on D y y MVT for -variables 1, D, with 1 D 1 u u u 1 1 = (eistence need u, u, v, v conti.) y y u const. on each line segment in D, D, line segments connecting 1& u = const. on D. 1 Similarly for v. conclusion (6) domain D & f : D analytic f = constant on D ( Sec. 1, E. 7 (a)) on D Pf: ( Proved before ) f f = const. on D CH_33

Sec. 1. Reflection principle Thm. f analy on domain D D contain part of -ais & symm. w.r.t. -ais. Then f f D f real for D f f Pf: : Let D, real Then f f f f real : Define F f for D (1) Check: F analytic on D Let f u, y iv, y CH_34

,, F U y iv y F f u, yiv, y U, yu, y& V, y v, y f analytic u v & u v y y U, y u, y,, 1, U V Vy y vy y vy y y, y, 1,, Uy y u y Uy V V y v y C-R equa. satisfied & 1 st partial conti. ( not proved yet in Chap.4 ) ( p.17, Corollary ) F analy. () F f for D infinitely many pts F = f on D ( Note: for conti. func. false: ) Sec. 58 f f D f f D CH_35

E. 1. f 1 on Then f real f f = 1 = 1 E.. f i Then f i not real for Also, f i f i CH_36

Sec.. Analytic functions Def. D domain, f : D, D f analytic at if f eists for in a nbd of ( holomorphic ) E. f not analytic at any pt. Def. f analytic in a region R if f analytic at every R ( f analytic on an open set containing R ) E. R: 1 f analytic in R f analytic in some domain D containing R Def. f entire func. if f analytic in Note: poly. are entire functions Def. singular pt. of f if f not analytic at but f analytic at some pt. in every nbd of E.1 f 1 Then singular pt. of f E. f has no singular pt. CH_37

Properties: (1) Sum, product, difference, quotient, composite of analytic functions are analytic () f analy. on domain D f conti. on D, f satisfies C-R equation on D CH_38

Sec.. Harmonic functions Def. h: R, R region h, yis harmonic in R if h C R & h h on R yy = h ( Laplace equation ) Prop. If f u, y iv, y analytic in R, then u & v harmonic. Pf: f analytic u, v C R. ( proved in Chap. 4, p.17, Corollary ) u v y & u y v u v y & u yy v y u C R vy vy u uyy u harmonic. Similarly, v harmonic Def. u, v harmonic in R & u vy, uy v Then v is harmonic conjugate of u. Note 1: v harmonic conjugate of u u iv analytic in domain D Note : v harmonic conjugate of u u harmonic conjugate of v i.e. u iv analytic v iu analytic E. f iy y iy u y, v y CH_39

Then u, u y y v y, v y v u & v u y y Note 3: v harmonic conjugate of u -u harmonic conjugate of v u harmonic conjugate of v. Pf: by definition. i.e., u iv analytic v iu, v iu analytic. iu iv iu iv Note 4: v harmonic conjugate of u & u harmonic conjugate of v on domain D u, v constant on D ( Sec., E.11 ) i.e. u iv & v iu analytic u, v constant Pf: uviv u analytic = u v1 i u v analytic & real-valued derivative = u v constant ( by E. 9 (c)) Similarly, u v constant CH_4

u, v constant Note 5: v1, v harmonic conjugate of u v1 v c; or f uiv, f u iv analytic 1 1 f 1 f const. Question: Given u harmonic in R, does v harmonic conjugate of u? does f analytic in R u Re f? Ans: In general, no. Yes, if R simply connected. ( Chap. 9 ) 3 E., 3 u y y y Then u harmonic on ( simply connected ) Find its harmonic conjugate & corresponding analytic func. Solu. u 6y v, y uy 3y 3 v v 6y, y v 3 3y v3y v 3y 3 3y 3 3 c 3 v 3y c ( need: integrations ) CH_41

f y 3 3 y i3y 3 c 3 = i c analytic u Re f Homework: Sec. : E.1 (a), (b), E. (a), (b), 4 (a), (b), 7 (b), (c), 9, 1 (b), (c), 11 (a) Etra: Find conditions on a, b, c & d 3 3 a b y cy dy is harmonic. Find the conjugate harmonic function and corresponding analytic function. Ans. u a b y ay by 3 3 3 3, 3 3 v 3a y3by ay b a uivaib 3 ia Etra: 1. If u is harmonic, so is u. If f is analytic, so is f Polar form of Laplace s equation: ( E.1),, f u r iv r analytic in domain D i re 1 ur v & u r rvr ( Cauchy-Riemann equa.) CH_4

1 1 urr v v r r r u rv r v, vrr, v r, vr are conti. v r vr ru r rurr v rv r u rv r rurr u rur E. Solve e 1 Solu. Let iy e cos yisin y1 1cos isin polar coordinate e 1& y n, n, 1,, 1 i n i n, n, 1,, Inverse function: Let w, w Let w i re, r >, < Assume e w rcos isin, where iy CH_43

e cos y isin y e r& y n, n, 1, ln r ln r i, R I \ : m, or ln w iargw Given w, solutions of e w: ln w iargw n i: n, 1,,... ln r, ln r, w Argw i.e., w e w ln w iarg w CH_44