Multicomponent Flows (continued)

Similar documents
Multicomponent Flows

Convection Heat Transfer. Textbook: Convection Heat Transfer. Reference: Convective Heat and Mass Transfer. Convection Heat Transfer

Turbulent Nonpremixed Flames

Non-Ideality Through Fugacity and Activity

Basic concept of reactive flows. Basic concept of reactive flows Combustion Mixing and reaction in high viscous fluid Application of Chaos

df da df = force on one side of da due to pressure

Chemical Reaction Engineering

Chapter 8 Balances on Nonreactive Processes 8.1 Elements of Energy Balances Calculations 8.1a Reference States A Review

ESCI 341 Atmospheric Thermodynamics Lesson 6 Thermodynamic Processes

Lecture 5. Stoichiometry Dimensionless Parameters. Moshe Matalon N X. 00 i. i M i. i=1. i=1

CANKAYA UNIVERSITY FACULTY OF ENGINEERING AND ARCHITECTURE MECHANICAL ENGINEERING DEPARTMENT ME 212 THERMODYNAMICS II CHAPTER 11 EXAMPLES SOLUTION

Lecture 3 Examples and Problems

Scientific Research of the Institute of Mathematics and Computer Science 1(11) 2012, 23-30

Mechanics Physics 151

Analytical calculation of adiabatic processes in real gases

ECE 422 Power System Operations & Planning 2 Synchronous Machine Modeling

ECE 522 Power Systems Analysis II 2 Power System Modeling

A Study on Responces of Premixed Flames of Hydrogen, Methane and Propane having the same Adiabatic Flame Temperature to Flame Stretch

PHYS-3301 Lecture 4. Chapter 2. Announcement. Sep. 7, Special Relativity. Course webpage Textbook

Evaluating Thermodynamic Properties in LAMMPS

Internal Energy in terms of Properties

Physics 207 Lecture 27

AE301 Aerodynamics I UNIT A: Fundamental Concepts

Integrals and Invariants of

Open Systems: Chemical Potential and Partial Molar Quantities Chemical Potential

Isothermal vs. adiabatic compression

Development of the Schrodinger equation for attosecond laser pulse interaction with Planck gas

Nonequilibrium Thermodynamics of open driven systems

Formulation of Circuit Equations

PHYS 705: Classical Mechanics. Newtonian Mechanics

Numerical modeling of a non-linear viscous flow in order to determine how parameters in constitutive relations influence the entropy production

Thermodynamics in combustion

Integrals and Invariants of Euler-Lagrange Equations

ME 440 Aerospace Engineering Fundamentals

a for save as PDF Chemistry 163B Introduction to Multicomponent Systems and Partial Molar Quantities

CHAPTER 16. Basic Concepts. Basic Concepts. The Equilibrium Constant. Reaction Quotient & Equilibrium Constant. Chemical Equilibrium

ME 300 Exam 2 November 18, :30 p.m. to 7:30 p.m.

Axial Turbine Analysis

4. Energy balances Partly based on Chapter 4 of the De Nevers textbook.

Chapter 18, Part 1. Fundamentals of Atmospheric Modeling

For higher resolution, can try to match drive and sense axis another to avoid output drift. Drive Electrode. Tuning. Electrodes. Response Amplitude

SUPPORTING INFORMATION

Diffusion Mass Transfer

Physics 207: Lecture 20. Today s Agenda Homework for Monday

Implementation of α-qss Stiff Integration Methods for Solving the Detailed Combustion Chemistry

COMPENDIUM OF EQUATIONS Unified Engineering Thermodynamics

COMBUSTION. TA : Donggi Lee ROOM: Building N7-2 #3315 TELEPHONE : 3754 Cellphone : PROF.

Spring Force and Power

MASS TRANSFER Lesson 1 BY DR. ARI SEPPÄLÄ AALTO UNIVERSITY

Solutions to Exercises in Astrophysical Gas Dynamics

p(z) = 1 a e z/a 1(z 0) yi a i x (1/a) exp y i a i x a i=1 n i=1 (y i a i x) inf 1 (y Ax) inf Ax y (1 ν) y if A (1 ν) = 0 otherwise

Lecture 2 Constitutive Relations

Example

Physics 181. Particle Systems

Thermodynamics I Chapter 6 Entropy

Chemical Equilibrium. Chemical Equilibrium

= 0, no work has been added

Chapter 4 Practice Problems

y i x P vap 10 A T SOLUTION TO HOMEWORK #7 #Problem

Chapter 14. The Concept of Equilibrium and the Equilibrium Constant. We have for the most part depicted reactions as going one way.

On Blow-Out of Jet Spray Diffusion Flames

Physics 4C. Chapter 19: Conceptual Questions: 6, 8, 10 Problems: 3, 13, 24, 31, 35, 48, 53, 63, 65, 78, 87

Dr. James C.Y. Guo, P.E., Professor and Director Civil Engineering, U. of Colorado Denver Pitot-Static Tube

The Dirac Equation for a One-electron atom. In this section we will derive the Dirac equation for a one-electron atom.

in state i at t i, Initial State E = E i

3. High Temperature Gases FPK1 2009/MZ 1/23

Fluid Dynamics and Balance Equations for Reacting Flows

Setting up the Mathematical Model Review of Heat & Material Balances

Appendix II Summary of Important Equations

Modeling of CO 2 Cut in CBM Production

Thermodynamica 1. college 5 boek hoofdstuk 3. Bendiks Jan Boersma Wiebren de Jong Thijs J.H. Vlugt Theo Woudstra. Process and Energy Department

3. MODELING OF PARALLEL THREE-PHASE CURRENT-UNIDIRECTIONAL CONVERTERS 3. MODELING OF PARALLEL THREE-PHASE CURRENT-

Voltammetry. Bulk electrolysis: relatively large electrodes (on the order of cm 2 ) Voltammetry:

Chemical Engineering Department University of Washington

Electric Fields Electric charges exert forces on each other when they are a distance apart. The word Electric field is used to explain this action at

Detonation Structure

Subject: Modeling of Thermal Rocket Engines; Nozzle flow; Control of mass flow. p c. Thrust Chamber mixing and combustion

Linear system of the Schrödinger equation Notes on Quantum Mechanics

Chapter 7: Conservation of Energy

Chapter-6: Entropy. 1 Clausius Inequality. 2 Entropy - A Property

LOWELL JOURNAL. MUST APOLOGIZE. such communication with the shore as Is m i Boimhle, noewwary and proper for the comfort

PHYS 1441 Section 002 Lecture #15

Approaches to Modeling Clinical PK of ADCs

Lecture 16. Chapter 11. Energy Dissipation Linear Momentum. Physics I. Department of Physics and Applied Physics

Chemical Equilibrium. Chemical Equilibrium. Chemical Equilibrium. Chemical Equilibrium. Equilibrium Constant. Equilibrium Constant

CHAPTER 1 Basic Considerations

Calculating the Quasi-static Pressures of Confined Explosions Considering Chemical Reactions under the Constant Entropy Assumption

A Theorem of Mass Being Derived From Electrical Standing Waves (As Applied to Jean Louis Naudin's Test)

Analysis of Feedback Control Systems

Chapter 2 Transformations and Expectations. , and define f

A Modulated Hydrothermal (MHT) Approach for the Facile. Synthesis of UiO-66-Type MOFs

PHYS 1443 Section 002

Lecture. Polymer Thermodynamics 0331 L Chemical Potential

Announcements. Lecture 5 Chapter. 2 Special Relativity. The Doppler Effect

LECTURE 5 PER-PHASE CIRCUITS AND MAGNETICS (1)

Efficiencies. Damian Vogt Course MJ2429. Nomenclature. Symbol Denotation Unit c Flow speed m/s c p. pressure c v. Specific heat at constant J/kgK

Experimental Setup. Flow Direction Leading Edge. Field of View (25 25 mm) Trailing Edge. Cavity Wall. H=30.0 mm. L=38.1 mm

Not-for-Publication Appendix to Optimal Asymptotic Least Aquares Estimation in a Singular Set-up

LNG CARGO TRANSFER CALCULATION METHODS AND ROUNDING-OFFS

Physics 3A: Linear Momentum. Physics 3A: Linear Momentum. Physics 3A: Linear Momentum. Physics 3A: Linear Momentum

Transcription:

Mole Fraton Temerature (K) Transort Shool of Aerosae Engneerng Equatons for Multomonent Flows (ontnue) Jerry Setzman 0.2 2500 0.15 2000 0.1 0.05 0 CH4 H2O HCO x 1000 Temerature Methane Flame 0 0.1 0.2 0.3 Dstane (m) 1500 1000 500 0 TransortEqns2-1 Coyrght 2004-2005 by Jerry M. Setzman. All rghts reserve. AE/ME 6766 Combuston Shool of Aerosae Engneerng Summary So far storage routon flux(out) t storage+onv ffusve flux DY Sees Conservaton W YV Momentum Dv Y f P Conservaton D Mass Conservaton 0 v 0 v Energy??? sees ffuson veloty stress tensor (mom. ffuson) TransortEqns2-2 Coyrght 2004-2005 by Jerry M. Setzman. All rghts reserve. AE/ME 6766 Combuston 1

Shool of Aerosae Engneerng Conservaton of Energy Statement of 1 st Law for oen systems s basally balane of storage an transort of energy arre by flu mass nternal energy e knet energy v 2 /2 otental energy, e.g., gravty (oul nstea treat as work term) transort of energy not through mass heat transfer, Q work, W e o Total Energy 1 e v v g r 2 TransortEqns2-3 Coyrght 2004-2005 by Jerry M. Setzman. All rghts reserve. AE/ME 6766 Combuston Shool of Aerosae Engneerng Mehanal Energy Conservaton General statement of total energy onservaton De o Q W work ue to t t normal/shear stresses De Dv Q v g v v P t Last term v P v P P : v Dv from g momentum Cons. of mehanal energy Dv 2 v v P v g v v 2 e.g., v t t TransortEqns2-4 Coyrght 2004-2005 by Jerry M. Setzman. All rghts reserve. AE/ME 6766 Combuston 2

Shool of Aerosae Engneerng Thermal Energy Conservaton Can show by searatng flow work terms v from stress tensor an ombnng art wth nternal energy to form enthaly Dh D q : v qr Pressure term usually neglgble for low see flows t Term n ( ) usually alle vsous ssaton onverson of bulk KE to thermal energy (ranom KE) usually neglgble for low see flows TransortEqns2-5 Coyrght 2004-2005 by Jerry M. Setzman. All rghts reserve. ffusve energy flux work ue to vsous stresses D net nut of raatve energy v AE/ME 6766 Combuston Shool of Aerosae Engneerng KE an Vsous Dssaton Examle magntues v (m/s) T=v 2 /2 (K) v/x (s -1 ) (N/m 2 ) T=v/v 0 0 0 0 0 10 0.05 10000 0.2 0.0002 30 0.45 30000 0.6 0.0006 50 1.25 50000 1.0 0.001 100 5.00 100000 2.0 0.002 200 20.0 200000 4.0 0.004 =1 kj/kgk e.g., x=1 mm =210-5 Ns/m 2 =1 kg/m 3 So tyally neglgble for subson ombuston TransortEqns2-6 Coyrght 2004-2005 by Jerry M. Setzman. All rghts reserve. AE/ME 6766 Combuston 3

Shool of Aerosae Engneerng Energy (Moleular) Dffuson Three maor terms (normal) thermal ffuson (temerature graent) thermal/hem. energy arre by mass ffuson Dufour effet (thermal flux ue to on. gra.) usually neglgble q T h RT D W D T V V note hange of symbol from revous symbol k (onfuse wth rate onstants ffusve mass flux vetor TransortEqns2-7 Coyrght 2004-2005 by Jerry M. Setzman. All rghts reserve. AE/ME 6766 Combuston TransortEqns2-8 Shool of Aerosae Engneerng Smlfe Energy Equaton Fous on enthaly Neglet KE, PE raaton vsous ssaton an any work but flow work Dufour effet Dh D q : v qr Dh D T h Dh D T h Coyrght 2004-2005 by Jerry M. Setzman. All rghts reserve. AE/ME 6766 Combuston 4

TransortEqns2-9 Shool of Aerosae Engneerng Unty Lews # Aroxmaton Reue further usng exresson for enthaly of mxture (erf. gas) h T hy mx Into (ffusve) heat flux vetor q T h q h h Y Relae wth effetve Le (normal ffuson only) Le D D h Y 1 DMY h Y Le 1 Coyrght 2004-2005 by Jerry M. Setzman. All rghts reserve. q h =0 f all Le =1 all sees have same mass ffusvty, an no net flux ue to hem/ fferenes AE/ME 6766 Combuston DM D Shool of Aerosae Engneerng Unty Le: Energy Conservaton For all Le =1, general equaton for enthaly reues Neglgble: KE, PE, raaton, vs. ss., external work Dh D q Neglgble: Dufour, Soret, Le=1 q h Dh 1 D h Note: no soure term n total h hemal h thermal h (for no external q, no work but flow work) TransortEqns2-10 Coyrght 2004-2005 by Jerry M. Setzman. All rghts reserve. AE/ME 6766 Combuston 5

Shool of Aerosae Engneerng Temerature Equaton (Perf. Gas) Dh Total ervatve of enthaly, by efn. h T hy ffusve mx flux Dh DT 1 D W h q mx q Into energy equaton DT D T T W h mx omressve thermal ffuson of work onuton sens. enthaly by mass neglete vsous ssaton, Dufour, raaton TransortEqns2-11 Coyrght 2004-2005 by Jerry M. Setzman. All rghts reserve. hemal soure T hemal energy onverson ( soure ) AE/ME 6766 Combuston h Shool of Aerosae Engneerng Comarson to Sees Conserv. Can smlfy further f varatons small omare to other terms an ~small ressure hanges DT 1 h T T W TransortEqns2-12 Coyrght 2004-2005 by Jerry M. Setzman. All rghts reserve. small f,.e., nearly same T for all sees; 0 DT T W h Comare to sees eq. wth only normal ffuson DY 1 Le Y W equatons same for Le =1 (f roerly normalze) AE/ME 6766 Combuston 6

Shool of Aerosae Engneerng Lews Number Varatons Arox. values for varous sees n CH 4 -ar flame TransortEqns2-13 Coyrght 2004-2005 by Jerry M. Setzman. All rghts reserve. Le Le CO 2 1.39 HCO 1.27 O 2 1.11 CO 1.10 H 2 O 0.83 OH 0.73 CH 4 0.97 O 0.70 H 2 0.30 H 0.18 ref: Smooke an Govanggl, Leture Notes n Physs 384,. 29, Srnger-Verlag Berln 1992. Le=1 assumton ~okay exet for lght sees (H, H 2 ) an ossbly heavest AE/ME 6766 Combuston Shool of Aerosae Engneerng Shvab-Zelovh Formulaton Orgnal formulaton showng equaton smlarty for Le=1 assumes steay, no boy fores, normal ffuson, negl. raaton an vsous ssaton, one D to esrbe all mass ffuson Energy equaton o vh h h W sens sens Sees equaton vy DY W Smlar for Le=1 (=D), f TransortEqns2-14 Coyrght 2004-2005 by Jerry M. Setzman. All rghts reserve. AE/ME 6766 Combuston 7