Affordable, entropy-consistent, Euler flux functions

Similar documents
CapSel Roe Roe solver.

Physical Diffusion Cures the Carbuncle Phenomenon

A Multi-Dimensional Limiter for Hybrid Grid

Research Article A New Flux Splitting Scheme Based on Toro-Vazquez and HLL Schemes for the Euler Equations

Improvement of convergence to steady state solutions of Euler equations with. the WENO schemes. Abstract

arxiv: v1 [math.na] 30 Jan 2018

Projection Dynamics in Godunov-Type Schemes

Solving the Euler Equations!

Very Simple, Carbuncle-Free, Boundary-Layer-Resolving, Rotated-Hybrid Riemann Solvers

A New Fourth-Order Non-Oscillatory Central Scheme For Hyperbolic Conservation Laws

A recovery-assisted DG code for the compressible Navier-Stokes equations

A note on the carbuncle in shallow water simulations

A Central Rankine Hugoniot Solver for Hyperbolic Conservation Laws

Eigenmode Analysis of Boundary Conditions for the One-dimensional Preconditioned Euler Equations

arxiv: v1 [cs.na] 22 Sep 2012

CapSel Euler The Euler equations. conservation laws for 1D dynamics of compressible gas. = 0 m t + (m v + p) x

An Accurate Deterministic Projection Method for Hyperbolic Systems with Stiff Source Term

Riemann Solvers and Numerical Methods for Fluid Dynamics

Computation of entropic measure-valued solutions for Euler equations

The one-dimensional equations for the fluid dynamics of a gas can be written in conservation form as follows:

A Bound-Preserving Fourth Order Compact Finite Difference Scheme for Scalar Convection Diffusion Equations

A Finite Volume Code for 1D Gas Dynamics

Art Checklist. Journal Code: Article No: 6959

Godunov methods in GANDALF

Two-Dimensional Riemann Solver for Euler Equations of Gas Dynamics

Implicit Solution of Viscous Aerodynamic Flows using the Discontinuous Galerkin Method

Entropy stable schemes for compressible flows on unstructured meshes

Self-similar solutions for the diffraction of weak shocks

On the entropy stability of Roe-type finite volume methods

A Matrix Stability Analysis of the Carbuncle Phenomenon

A Novel Averaging Technique for Discrete Entropy-Stable Dissipation Operators for Ideal MHD

Finite Volume Method

Heuristical and numerical considerations for the carbuncle phenomenon

The RAMSES code and related techniques 2- MHD solvers

The Center for Astrophysical Thermonuclear Flashes. FLASH Hydrodynamics

Construction of very high order Residual Distribution Schemes for steady problems

Numerical Solutions to Blunt Body Re-entry Problem

Well-Balanced Schemes for the Euler Equations with Gravity

CORBIS: Code Raréfié Bidimensionnel Implicite Stationnaire

The RAMSES code and related techniques I. Hydro solvers

Advection / Hyperbolic PDEs. PHY 604: Computational Methods in Physics and Astrophysics II

A Central Compact-Reconstruction WENO Method for Hyperbolic Conservation Laws

Sub-Cell Shock Capturing for Discontinuous Galerkin Methods

An Introduction to the Discontinuous Galerkin Method

Efficient solution of stationary Euler flows with critical points and shocks

Gas Evolution Dynamics in Godunov-type Schemes and Analysis of Numerical Shock Instability

Non-linear Scalar Equations

Math 660-Lecture 23: Gudonov s method and some theories for FVM schemes

The Discontinuous Galerkin (dg) method is a popular numerical method that has received much attention

What is a flux? The Things We Does Know

Comparison of Approximate Riemann Solvers

Active Flux for Advection Diffusion

Evaluation of Euler Fluxes for Hypersonic Flow Computations

Journal of Computational Physics

Numerical Methods for Modern Traffic Flow Models. Alexander Kurganov

Numerical Solutions for Hyperbolic Systems of Conservation Laws: from Godunov Method to Adaptive Mesh Refinement

First, Second, and Third Order Finite-Volume Schemes for Diffusion

3. FORMS OF GOVERNING EQUATIONS IN CFD

Is My CFD Mesh Adequate? A Quantitative Answer

MULTIGRID CALCULATIONS FOB. CASCADES. Antony Jameson and Feng Liu Princeton University, Princeton, NJ 08544

A numerical study of SSP time integration methods for hyperbolic conservation laws

arxiv: v1 [math.na] 11 Jun 2018

A WIMF Scheme for the Drift-Flux Two-Phase Flow Model

A Fourth-Order Central Runge-Kutta Scheme for Hyperbolic Conservation Laws

Shock Capturing for Discontinuous Galerkin Methods using Finite Volume Sub-cells

Slip flow boundary conditions in discontinuous Galerkin discretizations of the Euler equations of gas dynamics

Partial differential equations

FUNDAMENTALS OF LAX-WENDROFF TYPE APPROACH TO HYPERBOLIC PROBLEMS WITH DISCONTINUITIES

ENO and WENO schemes. Further topics and time Integration

AMath 574 February 11, 2011

Antony Jameson. AIAA 18 th Computational Fluid Dynamics Conference

AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS

Physical Diffusion Cures the Carbuncle Phenomenon

x a(x) H(U), , H(U) =

Three-Dimensional Carbuncles and Euler Fluxes

Hierarchical Reconstruction with up to Second Degree Remainder for Solving Nonlinear Conservation Laws

Finite Volume Schemes: an introduction

A minimum entropy principle of high order schemes for gas dynamics. equations 1. Abstract

Physical Diffusion Cures the Carbuncle Problem

On a class of numerical schemes. for compressible flows

NUMERICAL SOLUTION OF HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS

Solution of Two-Dimensional Riemann Problems for Gas Dynamics without Riemann Problem Solvers

The Penultimate Scheme for Systems of Conservation Laws: Finite Difference ENO with Marquina s Flux Splitting 1

A Comparison of Artificial Viscosity Sensors for the Discontinuous Galerkin Method. Joshua Favors

Weighted Essentially Non-Oscillatory limiters for Runge-Kutta Discontinuous Galerkin Methods

Assessment of Implicit Implementation of the AUSM + Method and the SST Model for Viscous High Speed Flow

AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS

Numerische Mathematik

Chapter 1. Introduction

Multi-Domain Hybrid Spectral-WENO Methods for Hyperbolic Conservation Laws

Notes: Outline. Shock formation. Notes: Notes: Shocks in traffic flow

Simple waves and a characteristic decomposition of the two dimensional compressible Euler equations

Comparison of cell-centered and node-centered formulations of a high-resolution well-balanced finite volume scheme: application to shallow water flows

Chp 4: Non-linear Conservation Laws; the Scalar Case. By Prof. Dinshaw S. Balsara

Computational Analysis of an Imploding Gas:

CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION

A Linearised Riemann Solver for Godunov-Type Methods. E.F.Toro

The hybridized DG methods for WS1, WS2, and CS2 test cases

ICES REPORT A Multilevel-WENO Technique for Solving Nonlinear Conservation Laws

Hierarchical Reconstruction with up to Second Degree Remainder for Solving Nonlinear Conservation Laws

Transcription:

Affordable, entropy-consistent, Euler flux functions (with application to the carbuncle phenomenon) Phil Roe Aerospace Engineering University 0f Michigan Ann Arbor Presented at HYP 2006 1

Entropy pairs (U, F ) The one-dimensional Euler equations are t u + t f = 0 u = (ρ, m, E) T, f = (m, p+m 2 /ρ, m(e+p)/ρ) T For an ideal gas p = (γ 1)(E 1 2 m2 /ρ). This is the only case for which we show results, but the non-ideal case is not much harder. The physical entropy is then S = ln p γ ln ρ with the entropy density U = ρs/(γ 1) and entropy flux F = ms/(γ 1) satisfying t U + x F 0 Many important physical systems share this structure, by possessing one or more entropy pairs, such as (u, F ) 2

The entropy variables The vector v = u U is given by v = ( γ S γ 1 ρu2 2p, m ) T p, ρ p and maps 1 1 onto u, providing an alternative description of the flow. These entropy variables satisfy many useful identities, including the inner product v u = U + ρ and the Jacobian matrix v u = RR T where R is a suitably normalized set of right eigenvectors (Barth 99) Generalization to 3D is trivial, including numerics of FV schemes. 3

Finite volume schemes The entropy production at the interface between two finite volumes is (Tadmor 87) [v] f [m] where f is the numerical flux between the cells and [ ] denotes the difference between the two cells. For the central difference flux f = f, it can be shown that [v] f = O(δ 3 ) which is small in smooth regions, but large (and essentially correct) across shocks, and wrong (it should vanish) across rarefactions. 4

How much entropy? Take a discrete IVP in 1D, with initial data and boundary values corresponding to a stationary shock. We will have m L = m R but S L S R and so F L F R. To attain a steady state, entropy must be produced within the domain. The entropy inside the domain is (γ 1) j U j = (γ 1) j ρ j j v j u j For perturbations that preserve the shock position, the first term is constant; the second can be written, introducing mean values v, ū j v j u j = j (v j v + v) (u j ū + ū) = j (v j v) (u j ū) j vū Moving values closer to the mean smears the shock and increases the entropy. Therefore we want to create enough entropy but not too much. 5

Conserving entropy For a flux to create no entropy, we need [v] f = [ρu] which defines a plane in f-space, but to find even one point in this plane is not easy. Tadmor ( 87) found the solution by quadrature f = 1 0 f(v(ξ)) dξ with v(ξ) = ξv R + (1 ξ)v L and in ( 03) found the explicit solution f = k [ρu] k+ 1 2 [v] δu k+ 1 2 δu k+ 1 2 The sums are over subpaths of an approximate Riemann solution in u-space. 6

Another entropy-conservative flux Define the parameter vector z = ρ (1, u, p) p in terms of which ( γ v = γ 1 + γ + 1 γ 1 ln z 1 + ln z 3 1 2 z2 2, z 1z 2, z1 2 This allows the explicit solution f 1 = z 1z ln 3 f2 = z 3 + z 2 f1 z 1 f3 = 1 ( γ + 1 f ) 1 2 z 1 γ 1 z1 ln + z 2 f2 where ( ) denotes an arithmetic mean and ( ) ln a logarithmic mean. This flux exactly preserves contact discontinuities. 7 ) T

The logarithmic mean Given two real numbers x 1 and x 2, we define their logarithmic mean as L(x 1, x 2 ) = x 1 x 2 ln x 1 ln x 2 (1) If x 1, x 2 both approach x, this reduces to x. Otherwise it defines a symmetric average of the two numbers. This average enables us to replace [ln p], for example, with [p]/p ln where p ln = L(p L, p R ). In most of the cases that arise in a computation, x 1 and x 2 will be fairly similar. Then, an accurate approximation is L(x 1, x 2 ) = x 1 + 1 12 ( ) 2 [x] + 1 x 80 ( ) 4 [x] + (2) Only seldom will it be necessary to employ (1). x 8 1

Entropy due to upwinding A typical first-order upwind flux is written f = f 1 2 A [u] where A = R Λ L is the absolute value of the interface Jacobian, evaluated for example at the Roe-averaged state. The entropy produced by this term is 1 2 [v]r Λ L[u] and may not be of the required sign for very strong shocks (Barth 99) This can be fixed using the reformulation 1 2 [v]r Λ L[u] 1 2 [v]r Λ L( vu)[v] 1 2 [v]r Λ L(RRT )[v] = 1 2 [v]r Λ RT [v] which is a positive definite quadratic form. 9

We have Old and new fluxes f old = f 1 2 R Λ L[u] and f new = f C 1 2 R Λ RT [v] 1. f new = f old + O(δ2 ) 2. fnew and fold both exactly preserve stationary discontinuities. 3. f old needs to be fixed at sonic points; fnew does not. 4. f old is not entropy stable, but f new is. 5. f new is about 20% more expensive. 10

Instability of strong shocks Consider again the IVP associated with a stationary shock with nonreflecting downstream BCs. For certain high Mach numbers, the shock computed with fold (also f God ) will spontaneously relocate itself (Barth 89, Bultelle et al, 99). If the downstream BC is taken to be fixed mass flow, which retains the shock in its initial location, both fold and f God gives rise to waves that reflect perpetually between the shock and the boundary. Both problems are removed by using f new. 11

Profiles and histories 10 1 10 1 10-1 10-1 10-3 10-3 Residual 10-5 10-7 Residual 10-5 10-7 10-9 10-9 10-11 10-11 10-13 2500 5000 7500 TimeStep 10-13 2500 5000 7500 TimeStep Residual history from f old Residual history from f new. 7 7 6 6 5 5 RHO 4 3 RHO 4 3 2 2 1 1 0-0.25 0 0.25 XCoord 0-0.25 0 0.25 XCoord Density profile from f old after 10,000 timesteps. Density profile from f new after 10,000 timesteps 12

What does entropy stability do? It would be good to have a theorem of the form (Entropy stability) (Something nice) such as convergence to some unique and physically relevant weak solution. This seems to be unlikely at present, since such theorems are lacking in the continuous case. At first sight, entropy stability rules out limit cycles, but this cannot actually be proved for open systems because of boundary issues. Probably we just have that (Entropy stability) (Entropy stability) but it does seem to do something. 13

Why the overshoots? The flux f = f C 1 2 R Λ RT [v] generates no entropy from the first term. The second term provides, in the linear case, the minimal dissipation to remove overshoots, but the entropy generated by it is only O(δ 2 ). However, the entropy generated by a shock is O(δ 3 ). In the old flux, that entropy was generated by the central term. We need another term in the flux, one order higher, that creates the correct entropy in under-resolved shocks. Both it and the upwind term will become negligable for resolved shocks (Tadmor and Zhong 06) and entropy will then be produced entirely by the Navier- Stokes terms. 14

Entropy production The rate of entropy production across a shock is given by the formula in at least two cases U = 1 6 (l [u])2 [λ] 1. Burgers equation with entropy function U = ku 2, 2. Euler equations with physical entropy for weak shocks. Based on this, we have used the flux function f = f C 1 2 R ( Λ + α [Λ] ) R T [v] with α 1/3. This removes the overshoots and also slightly speeds the breakup of underresolved rarefactions. 15

The carbuncle Consider 2D initial data consisting of stacked 1D data u L u R Even slight instability of the layers will create strong vertical gradients close to the shock, leading to two-dimensional behavior. 16

Carbuncles in practice Phenomena resembling carbuncles appear in practical calculations and can lead to very erroneous predictions that are not remedied by bigger computers and finer grids. (Perhaps on a fine enough grid one could just use Lax- Friedrichs!) The code does not converge to the expected solution, but to a second solution that appears to be a genuine weak solution, and can even be realized experimentally under artificial circumstances. 17

Conclusions 1. A new entropy-conservative flux has been presented. 2. It can be made entropy-stable by upwinding. 3. For under-resolved flows a production term needs to be added. 4. In one dimension, the new flux cures the instability of strong shocks. 5. In two dimensions, there have been no observed anomalies on structured grids. 6. On poor quality unstructured grids, the carbuncle returns. 18