Frequency Response & Digital Filters

Similar documents
Lectures 9 IIR Systems: First Order System

ELEC9721: Digital Signal Processing Theory and Applications

Problem Value Score Earned No/Wrong Rec -3 Total

15/03/1439. Lectures on Signals & systems Engineering

A Review of Complex Arithmetic

ELCE5180 Digital Signal Processing

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia

DFT: Discrete Fourier Transform

Digital Signal Processing, Fall 2006

Ordinary Differential Equations

Systems in Transform Domain Frequency Response Transfer Function Introduction to Filters

Discrete Fourier Transform. Nuno Vasconcelos UCSD

Digital Signal Processing

EC1305 SIGNALS & SYSTEMS

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1

VI. FIR digital filters

Iterative Methods of Order Four for Solving Nonlinear Equations

Module 5: IIR and FIR Filter Design Prof. Eliathamby Ambikairajah Dr. Tharmarajah Thiruvaran School of Electrical Engineering & Telecommunications

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

CDS 101: Lecture 5.1 Reachability and State Space Feedback

Chapter Taylor Theorem Revisited

Discrete Fourier Transform (DFT)

ENGG 1203 Tutorial. Difference Equations. Find the Pole(s) Finding Equations and Poles

Digital Signal Processing, Fall 2006

SIGNALS AND LINEAR SYSTEMS UNIT-1 SIGNALS

1985 AP Calculus BC: Section I

PURE MATHEMATICS A-LEVEL PAPER 1

Folding of Hyperbolic Manifolds

Chapter 6: DFT/FFT Transforms and Applications 6.1 DFT and its Inverse

CDS 101: Lecture 5.1 Reachability and State Space Feedback

Causes of deadlocks. Four necessary conditions for deadlock to occur are: The first three properties are generally desirable

Physics 302 Exam Find the curve that passes through endpoints (0,0) and (1,1) and minimizes 1

Partition Functions and Ideal Gases

Chapter 3 Fourier Series Representation of Periodic Signals

Frequency Measurement in Noise

Analog and Digital Signals. Introduction to Digital Signal Processing. Discrete-time Sinusoids. Analog and Digital Signals

Chapter 11.00C Physical Problem for Fast Fourier Transform Civil Engineering

(looks like a time sequence) i function of ˆ ω (looks like a transform) 2. Interpretations of X ( e ) DFT View OLA implementation

DEPARTMENT OF MATHEMATICS BIT, MESRA, RANCHI MA2201 Advanced Engg. Mathematics Session: SP/ 2017

Edge-Triggered D Flip-flop. Formal Analysis. Fundamental-Mode Sequential Circuits. D latch: How do flip-flops work?

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

A Simple Proof that e is Irrational

Problem Set #2 Due: Friday April 20, 2018 at 5 PM.

Exponential Moving Average Pieter P

DIGITAL SIGNAL PROCESSING LECTURE 3

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n

ECEN620: Network Theory Broadband Circuit Design Fall 2014

Lecture 2: Discrete-Time Signals & Systems. Reza Mohammadkhani, Digital Signal Processing, 2015 University of Kurdistan eng.uok.ac.

Linear-Phase FIR Transfer Functions. Functions. Functions. Functions. Functions. Functions. Let

EE Midterm Test 1 - Solutions

Topic 5:Discrete-Time Fourier Transform (DTFT)

Discrete-Time Systems, LTI Systems, and Discrete-Time Convolution

[ ] Review. For a discrete-time periodic signal xn with period N, the Fourier series representation is

The z-transform. 7.1 Introduction. 7.2 The z-transform Derivation of the z-transform: x[n] = z n LTI system, h[n] z = re j

Fractional Sampling using the Asynchronous Shah with application to LINEAR PHASE FIR FILTER DESIGN

Chapter 7 z-transform

Linear time invariant systems

Chapter 2 Systems and Signals

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1

DTFT Properties Using the differentiation property of the DTFT given in Table 3.2, we observe that the DTFT of nx[n] is given by

Mathematical Preliminaries for Transforms, Subbands, and Wavelets

From Fourier Series towards Fourier Transform

Introduction to Quantum Information Processing. Overview. A classical randomised algorithm. q 3,3 00 0,0. p 0,0. Lecture 10.

Chapter 4 - The Fourier Series

Periodic Structures. Filter Design by the Image Parameter Method

Note 6 Frequency Response

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx

10. Joint Moments and Joint Characteristic Functions

IIT JEE MATHS MATRICES AND DETERMINANTS

Responses of Digital Filters Chapter Intended Learning Outcomes:

Exercises for lectures 23 Discrete systems

Consider serial transmission. In Proakis notation, we receive

Discrete Fourier Series and Transforms

Chapter 4: Angle Modulation

Statistics 3858 : Likelihood Ratio for Exponential Distribution

ADVANCED DIGITAL SIGNAL PROCESSING

Washington State University

M2.The Z-Transform and its Properties

Further Results on Pair Sum Graphs

Dual P-Channel 12 V (D-S) MOSFET

2D DSP Basics: Systems Stability, 2D Sampling

ELEG3503 Introduction to Digital Signal Processing

KISS: A Bit Too Simple. Greg Rose

Exam. Notes: A single A4 sheet of paper (double sided; hand-written or computer typed)

Frequency Response of FIR Filters

Signal Processing in Mechatronics. Lecture 3, Convolution, Fourier Series and Fourier Transform

EEO 401 Digital Signal Processing Prof. Mark Fowler

Case Study 1 PHA 5127 Fall 2006 Revised 9/19/06

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges.

ELG3150 Assignment 3

APPENDIX: STATISTICAL TOOLS

The z-transform. Dept. of Electronics Eng. -1- DH26029 Signals and Systems

Signal Processing. Lecture 02: Discrete Time Signals and Systems. Ahmet Taha Koru, Ph. D. Yildiz Technical University.

x[0] x[1] x[2] Figure 2.1 Graphical representation of a discrete-time signal.

Types of Transfer Functions. Types of Transfer Functions. Types of Transfer Functions. Ideal Filters. Ideal Filters

ECE-S352 Introduction to Digital Signal Processing Lecture 3A Direct Solution of Difference Equations

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science. BACKGROUND EXAM September 30, 2004.

Transcription:

Frquy Rspos & Digital Filtrs S Wogsa Dpt. of Cotrol Systms ad Istrumtatio Egirig, KUTT Today s goals Frquy rspos aalysis of digital filtrs LTI Digital Filtrs Digital filtr rprstatios ad struturs Idal filtrs IIR & FIR filtrs

Frquy Rspos of Disrt-Tim Systms Rlatiosip tw ZT & DTFT I goig from t DTFT to t ZT w rpla y. Rplaig wit, ZT will om DTFT. Tis valuatio is quivalt to valuatig t -trasform o t uit irl i t omplx pla. 3 Frquy Rspos of Disrt-Tim Systms Frquy Rspos Aalysis Cosidr a DT trasfr futio, t disrt frquy rspos futio FRFis wr is t disrt frquy i rad/sampl. is tmagitud orgai of t FRF. is t pas of t FRF. 4

Frquy Rspos of Disrt-Tim Systms A x si si A y A x os os A y 5 W, t systm rspos is x x y os os Proof: Frquy Rspos of Disrt-Tim Systms Sttig i tis rlatiosip yilds ± 6 Addig ad yilds { } R os Wit, w gt os os

Frquy Rspos of Disrt-Tim Systms Systm Rspos to Sampld Siusoids If a DT systm is stal wit trasfr futio, t i stady-stat x A y A x Aos x Asi y A os y A si 7 Frquy Rspos of Disrt-Tim Systms EXAPLE.5.5 os si os.5 si 8

Frquy Rspos of Disrt-Tim Systms EXAPLE If a siusoidal iput π y.547si 3 3 os si os.5 si π x si 3 π / 3.547, o is applid π / 3 3 o tf, -.5,-; mag,pasod,pi/3 mag.547 pas -3. 9 Frquy Rspos of Disrt-Tim Systms Bod Plot A Bod plot i t disrt tim is a grap of ad plottd as a futio of, wr is usually ragig from to π..5 os si os.5 si um ; % umrator d -.5; % domiator frqum,d; % DT frquy rspos agitud db 5-5...3.4.5.6.7.8.9 ormalid Frquy π rad/sampl Pas dgrs - - -3...3.4.5.6.7.8.9 ormalid Frquy π rad/sampl

Frquy Rspos from Pol-Zro Loatio Trasfr futio: d a Frquy rspos: d d T magitud: d d to dista from to dista from ad pas: d Liar pas trm Sum of t agls from t ros/pols to uit irl Frquy Rspos of LTI A Grapial Viw Trasfr futio: d W ar goig aroud t irl wit d Frquy rspos: Adoptd from Ela Pusaya, Basis of Digital Filtrs.

Frquy Rspos of LTI A Grapial Viw d dista from dista from d to to T magitudof t frquy rspos is giv y tims t produt of t distas from t ros to dividd y t produt of t distas from t pols to d T pasrspos is giv y t sum of t agls from t ros to mius t sum of t agls from t pols to plus a liar pas trm Adoptd from Ela Pusaya, Basis of Digital Filtrs. 3 Frquy Rspos of LTI A Grapial Viw w is los to a pol, t magitud of t rspos riss rsoa. w is los to a ro, t magitud of t rspos falls a ull. Adoptd from Ela Pusaya, Basis of Digital Filtrs. 4

Frquy Rspos of LTI Exampl Sour: Aso Amadar, Digital Sigal Prossig: A odr Itrodutio. 5 Exampl Filtrs ad Pol-Zro Plots 6

Today s goals Frquy rspos aalysis of digital filtrs LTI Digital Filtrs Digital filtr rprstatios ad struturs Idal filtrs IIR & FIR filtrs 7 Wat is Digital Filtr? Digital filtr is a systm tat prforms matmatial opratios o a disrt-tim sigal ad trasforms it ito aotr squ tat as som mor dsiral proprtis,.g. x Digital filtr y I tis ours, w limit ourslvs to LTI digital filtrs oly. 8

Exampl Appliatios of Digital Filtrs ois Rmoval Eltroardiogram ECG ttps://youtu./v3-yzmqu8?t45 9 Exampl Appliatios of Digital Filtrs ois Rmoval Eltroardiogram ECG Low-pass filtrd ECG ttps://youtu./v3-yzmqu8?t45

Exampl Appliatios of Digital Filtrs Audio Prossig Digital Filtr Rprstatios......... x y a x - x x y a y a y a y T liar tim-ivariat digital filtr a dsrid y t liar diffr quatio T ordrof t filtr is t largr of or T ordrof t filtr is t largr of or a X Y Trasfr futio of t filtr is

Digital Filtr Struturs: Commo Elmts Addrs: ultiplirs: Dlays: 3 Digital Filtr Struturs EXAPLE: Eo Gratio Eos ar dlayd sigals ad a gratd y t followig diffr quatio: y x αx D, α < wr D is t dlay i sampls. Rfltd soud Dirt soud 4

Idal Filtrs agitud Rspos Idal filtrs lt frquy ompots ovr t passad pass troug udistortd gai,wilompotsattstopadarompltlyutoffgai. 5 Idal Filtrs Pas Rspos Idal filtr: admits a liar pas rspos θ wr θ Liar pas oliar pas Output is mrly a dlayd vrsio of iput. Y X Fourir trasform of x 6

Liar Pas Rspos Liar-pas filtrsdlay all frquis y t sam amout, try maximally prsrvig wavsap. θ 5 5 oliar pas: θ 3 π Adaptd from Ela Pusaya, Basis of Digital Filtrs. 7 Idal Filtrs Liar Pas Rspos Group Dlay: A masur of liarity of t pas is otaid from t group dlay futio, wi is dfid as d θ τ d T group dlay is ostatw t pas is liar. 8

Exampl A simpl idal lowpass filtr d, if, if < π T impuls rspos is giv y d π si o-ausal ad ifiit i duratio. Clarly aot implmtd i ral-tim!. 9 FIR & IIR Filtrs Y X a Fiit Impuls Rspos FIR Filtrs:, o fda. T FIR filtr as o pols, oly ros, i.. y 3 x x x Ifiit Impuls Rspos IIR Filtrs: a y.6y x 3

FIR & IIR Filtrs FIR Filrs : t impuls rspos of a FIR filtr lasts oly a fiit tim.4.3.. / 3,,, lswr y 3 x x x 3 4 5 IIR Filtrs: t impuls rspos futio of a IIR filtr is o-ro ovr a ifiit lgt of tim y.6y x 3 FIR & IIR Filtrs Staility: FIR filtrs ar always stal. IIR filtrs a ustal aus t filtr av pols i tir trasfr futios. if ot dsigd proprly. Ordr: IIR filtrs ar omputatioally mor ffiit ta FIR filtrs as ty rquir fwr offiits du to t fat tat ty us fda or pols. Pas: FIR filtrs a guaratd to av liar pas. IIR filtrs i gral do ot av liar pas. 3

Symmtry oditios for liar pas rspos Cosidr a FIR filtr of ordr. By dfiitio is t -trasform of... Suffiit oditios for t pas liarity of a FIR filtr: If is itr symmtri or atisymmtri aout its tr poit, t filtr pas rspos is a liar futio of Symmtrial impuls rspos: Atisymmtrial impuls rspos:.g. 4.g. 4 33 Symmtry oditios for liar pas rspos Symmtrial impuls rspos: EXAPLE: for 4, T frquy rspos is 3 3 3 3 4 4 4 4 If is symmtriaout its tr poit, t 4 ad 3:, t pas rspos is giv y os os 34

Symmtry oditios for liar pas rspos Atisymmtrial impuls rspos: EXAPLE: for 4, 4 3 4 3 4 3 T frquy rspos is 35 35 4 3 si si If is atisymmtriaout its tr poit, t, -4 ad -3:, t pas rspos is giv y π