Frequency Response DR. GYURCSEK ISTVÁN

Similar documents
Circuit Theorems DR. GYURCSEK ISTVÁN

Resonance Circuits DR. GYURCSEK ISTVÁN

EE221 Circuits II. Chapter 14 Frequency Response

EE221 Circuits II. Chapter 14 Frequency Response

CHAPTER 7 : BODE PLOTS AND GAIN ADJUSTMENTS COMPENSATION

Course roadmap. Step response for 2nd-order system. Step response for 2nd-order system

8.1.6 Quadratic pole response: resonance

Radar Dish. Armature controlled dc motor. Inside. θ r input. Outside. θ D output. θ m. Gearbox. Control Transmitter. Control. θ D.

Filters and Tuned Amplifiers

Frequency Response. Re ve jφ e jωt ( ) where v is the amplitude and φ is the phase of the sinusoidal signal v(t). ve jφ

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

Homework 7 - Solutions

Outline. Classical Control. Lecture 1

Cast of Characters. Some Symbols, Functions, and Variables Used in the Book

Solution: K m = R 1 = 10. From the original circuit, Z L1 = jωl 1 = j10 Ω. For the scaled circuit, L 1 = jk m ωl 1 = j10 10 = j100 Ω, Z L

Transient Response of a Second-Order System

EE482: Digital Signal Processing Applications

Second-order filters. EE 230 second-order filters 1

Frequency Response Analysis

Lecture 6 Classical Control Overview IV. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore

Dynamic circuits: Frequency domain analysis

Lab 3: Poles, Zeros, and Time/Frequency Domain Response

The Approximation Problem

MAS107 Control Theory Exam Solutions 2008

Introduction to Electrical Engineering

The Approximation Problem

First and Second Order Circuits. Claudio Talarico, Gonzaga University Spring 2015

Overview of Bode Plots Transfer function review Piece-wise linear approximations First-order terms Second-order terms (complex poles & zeros)

1 (20 pts) Nyquist Exercise

Chapter 8: Converter Transfer Functions

Sinusoidal Forcing of a First-Order Process. / τ

EE C128 / ME C134 Fall 2014 HW 8 - Solutions. HW 8 - Solutions

( ) Frequency Response Analysis. Sinusoidal Forcing of a First-Order Process. Chapter 13. ( ) sin ω () (

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering Dynamics and Control II Fall 2007

Plan of the Lecture. Goal: wrap up lead and lag control; start looking at frequency response as an alternative methodology for control systems design.

Poles and Zeros and Transfer Functions

Control Systems I Lecture 10: System Specifications

Filter Analysis and Design

EKT 119 ELECTRIC CIRCUIT II. Chapter 3: Frequency Response of AC Circuit Sem2 2015/2016 Dr. Mohd Rashidi Che Beson

(amperes) = (coulombs) (3.1) (seconds) Time varying current. (volts) =

ROOT LOCUS. Consider the system. Root locus presents the poles of the closed-loop system when the gain K changes from 0 to. H(s) H ( s) = ( s)

Electronic Circuits EE359A

Chapter 9: Controller design

d n 1 f dt n 1 + K+ a 0f = C cos(ωt + φ)

Closed Loop Identification Of A First Order Plus Dead Time Process Model Under PI Control

Compensator Design to Improve Transient Performance Using Root Locus

The Approximation Problem

Problem Weight Score Total 100

Frequency Response part 2 (I&N Chap 12)

Process Control & Instrumentation (CH 3040)

DIGITAL SIGNAL PROCESSING. Chapter 6 IIR Filter Design

Automatic Control 2. Loop shaping. Prof. Alberto Bemporad. University of Trento. Academic year

Frequency response. Pavel Máša - XE31EO2. XE31EO2 Lecture11. Pavel Máša - XE31EO2 - Frequency response

INTRODUCTION TO DIGITAL CONTROL

Step Response for the Transfer Function of a Sensor

Active Filter Design by Carsten Kristiansen Napier University. November 2004

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur

Digital Signal Processing

1 Controller Optimization according to the Modulus Optimum

The Frequency-Response

CYBER EXPLORATION LABORATORY EXPERIMENTS

Lecture 9 Infinite Impulse Response Filters

EE C128 / ME C134 Fall 2014 HW 6.2 Solutions. HW 6.2 Solutions

Refinements to Incremental Transistor Model

Sophomore Physics Laboratory (PH005/105)

Systems Analysis and Control

Today. 1/25/11 Physics 262 Lecture 2 Filters. Active Components and Filters. Homework. Lab 2 this week

(b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications:

r + - FINAL June 12, 2012 MAE 143B Linear Control Prof. M. Krstic

Digital Control & Digital Filters. Lectures 21 & 22

Systems Analysis and Control

Sinusoidal Steady-State Analysis

Electronic Circuits EE359A

100 (s + 10) (s + 100) e 0.5s. s 100 (s + 10) (s + 100). G(s) =

ECE382/ME482 Spring 2005 Homework 6 Solution April 17, (s/2 + 1) s(2s + 1)[(s/8) 2 + (s/20) + 1]

Controls Problems for Qualifying Exam - Spring 2014

Dr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review

Steady State Frequency Response Using Bode Plots

Frequency domain analysis

Lab # 4 Time Response Analysis

Solutions to Skill-Assessment Exercises

LABORATORY INSTRUCTION MANUAL CONTROL SYSTEM I LAB EE 593

R-L-C Circuits and Resonant Circuits

Speaker: Arthur Williams Chief Scientist Telebyte Inc. Thursday November 20 th 2008 INTRODUCTION TO ACTIVE AND PASSIVE ANALOG

DIGITAL SIGNAL PROCESSING UNIT III INFINITE IMPULSE RESPONSE DIGITAL FILTERS. 3.6 Design of Digital Filter using Digital to Digital

APPLICATIONS FOR ROBOTICS

Lecture 16 FREQUENCY RESPONSE OF SIMPLE CIRCUITS

Design of IIR filters

LABORATORY INSTRUCTION MANUAL CONTROL SYSTEM II LAB EE 693

Exercises for lectures 13 Design using frequency methods

ENGN3227 Analogue Electronics. Problem Sets V1.0. Dr. Salman Durrani

AMME3500: System Dynamics & Control

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

PS403 - Digital Signal processing

Lecture 5: Frequency domain analysis: Nyquist, Bode Diagrams, second order systems, system types

Frequency Response Techniques

PM diagram of the Transfer Function and its use in the Design of Controllers

Response to a pure sinusoid

'XNH8QLYHUVLW\ (GPXQG73UDWW-U6FKRRORI(QJLQHHULQJ. EGR 224 Spring Test II. Michael R. Gustafson II

2.161 Signal Processing: Continuous and Discrete Fall 2008

Transcription:

DR. GYURCSEK ISTVÁN Frequency Response Sources and additional materials (recommended) Dr. Gyurcsek Dr. Elmer: Theories in Electric Circuits, GlobeEdit, 2016, ISBN:978-3-330-71341-3 Ch. Alexander, M. Sadiku: Fundamentals of Electric Circuits, 6th Ed., McGraw Hill NY 2016, ISBN: 978-0078028229 Dr. Selmeczi K. Schnöller A.: Villamosságtan 1. MK Budapest 2002, TK szám: 49203/I Dr. Selmeczi K. Schnöller A.: Villamosságtan 2. TK Budapest 2002, ISBN:9631026043 1 gyurcsek.istvan@mik.pte.hu 2018.03.23.

Progress in Content The Decibel Scale (gain, level, db, neper) Transfer Function (freq. response, represent.) Bode Plots (magnitude, phase. building blocks) Use Cases (base circuits, Nyquist/Bode plots) Outlook (practical examples) 2 gyurcsek.istvan@mik.pte.hu 2018.03.23.

The Decibel Scale Before we start Gain in communication measured in bel. G db = 10 log 1 = 0 db log P 1 P 2 = log P 1 + log P 2 log P 1 P 2 = log P 1 log P 2 log P n = n log P log 1 = log P P log 1 = 0 G = log P 2 P 1 G db = 10 log P 2 P 1 2 G db = 10 log P V 2 2 = 10 log P 2 1 V 1 R 2 R 1 = 20 log G db = 10 log 2 3 db R 2 = R 1 G db = 20 log V 2 V 1 = 20 log I 2 I 1 G db = 10 log 0.5 3 db V 2 V 1 10 log R 2 R 1 3 gyurcsek.istvan@mik.pte.hu 2018.03.23.

Normal Generator 1.55V 600 Ω0 Zero Level, Sound Level, Noise Level (Examples) Level (rel./abs.) dbm dbu dbi / dbd Gain (db) Ratio PWR standard reference in denominator (db, dbm, dbu) 1 mw reference 0.775 V reference (600ohm!) antenna gain (to isotropic / dipole) Ratio Intensity 0 1 1 3 2 1.41 6 4 2 10 10 3.16 20 100 10 30 1 000 31.6 40 10 000 100 4 gyurcsek.istvan@mik.pte.hu 2018.03.23.

History Np and/or db H = H e jφ ln H = ln H + jφ Re H = ln H, Im H = φ ratio db Np int H X = X 2 X 1 h X (db) = 20 log HX h X (Np) = ln HX pwr H P = P 2 P 1 h P (db) = 10 log HP h P (Np) = 1 2 ln H P 1 db = 0.115 Np, 1 Np = 8.686 db 5 gyurcsek.istvan@mik.pte.hu 2018.03.23.

History Hendrik Wade Bode (eng., dutch, 1905 1982) Alexander Graham Bell (phisics, scottish,1847 1922) John Neper (of Merchiston) (maths, scottish,1550 1617) Harry Nyquist (eng., swedish,1889 1976) 6 gyurcsek.istvan@mik.pte.hu 2018.03.23.

Progress in Content The Decibel Scale (gain, level, db, neper) Transfer Function (freq. response, represent.) Bode Plots (magnitude, phase. building blocks) Use Cases (base circuits, Nyquist/Bode plots) Outlook (practical examples) 7 gyurcsek.istvan@mik.pte.hu 2018.03.23.

Frequency Response Frequency response Variation in circuits behavior with change in signal FRQ Variation of the GAIN and PHASE with FRQ Transfer function (network function H(ω) FRQ-dept. ratio of a phasor output Y(ω ) to a phasor input X(ω). Four possible transfer functions Voltage gain Current gain H ω = V o ω V i ω H ω = I o ω I i ω Transfer impedance Transfer admittance H ω = V o ω I i ω H ω = I o ω V i ω H ω = Y ω X ω = N ω D ω Roots of N ω = 0 zeros (jω = s = z 1, z 2, z 3, ) Roots of D ω = 0 poles (jω = s = p 1, p 2, p 3, ) 8 gyurcsek.istvan@mik.pte.hu 2018.03.23.

Frequency Response Example Magnitude and phase of G(s) as a function of frequency. 9 gyurcsek.istvan@mik.pte.hu 2018.03.23.

Graphical Representation 1 Nyquist Diagram Parametric plot frequency response (Harry Nyquist, engineer at Bell Labs, 1932) Frequency is swept as a parameter. Used in automatic control and signal processing (stability of a system with feedback). H ω = Y(ω) X(ω) = b m jω m + + b 1 jω 1 + b 0 a n jω n + + a 1 jω 1 + a 0 In Cartesian coordinates Re(H) X axis. Im (H) Y axis. In polar coordinates Gain of H radial coordinate Phase of H angular coordinate Work diagram param dependent analysis 10 gyurcsek.istvan@mik.pte.hu 2018.03.23.

Graphical Representation 2 Bode Plot(s) Simple but accurate graphic method Gain plot of frequency response Phase-shift plot of frequency response Hendrik Wade Bode, eng. at Bell Labs, 1938, dutch) Used in electrical engineering and control theory Ideas Horizontal axis proportional to the log(ω) Gain is measured in db Use asymptote method H db = 20 log H(ω) φ = Arc H(ω = tan 1 Im H(ω) Re H(ω) 11 gyurcsek.istvan@mik.pte.hu 2018.03.23.

Progress in Content The Decibel Scale (gain, level, db, neper) Transfer Function (freq. response, represent.) Bode Plots (magnitude, phase. building blocks) Use Cases (base circuits, Nyquist/Bode plots) Outlook (practical examples) 12 gyurcsek.istvan@mik.pte.hu 2018.03.23.

Bode Plots Factorising the transfer function standard form H ω = N ω D ω = Seven types of factors A gain K K jω ±1 1 + jω z1 1 + j2ζ ω 1 ωk + jω 1 + p1 1 + j2ζ ω 2 ωn + K 2 jω ωn 2 jω ωk A pole or zero at the origin A simple pole or zero A quadratic pole or zero (ζ - damping factor) jω ±1 jω 1 + jω z1 or 1 + p1 1 + j2ζ 1 ω ωk + 2 jω ωl or 1 + j2ζ2 ω ωn + 7factors 2 jω ωn IDEA plot the building blocks (factors) separately and add them due to the log scale. 13 gyurcsek.istvan@mik.pte.hu 2018.03.23.

Constant term (gain K) H ω = 20 log K = constant, φ ω = 0, if K < 0 φ ω = 180 14 gyurcsek.istvan@mik.pte.hu 2018.03.23.

Pole / Zero at the Origin For pole H ω = 20 log jω, φ ω = 90, slope 20 db dec For zero H ω = 20 log jω, φ ω = 90, slope 20 db dec in general H ω = 20 log jω N, φ ω = N 90, slope N 20 db dec 15 gyurcsek.istvan@mik.pte.hu 2018.03.23.

Simple Pole / Zero H ω = 20 log 1 + H ω = 20 log 1 + φ ω = tan 1 ω z1 jω z1 = 20 log 1 = 0 as ω 0 jω z1 = 20 log ω z1 as ω Asymptotes ω z 1 zero slope ω z 1 20 db dec slope Corner frequency (break frequency) ω = z 1 Line approx. in magnitude (error) 20 log 1 + j = 20 log 2 3 db Line approx in phase (see figure) 16 gyurcsek.istvan@mik.pte.hu 2018.03.23.

Quadratic Pole / Zero H ω = 20 log 1 + j2ζ 2 ω ωn + 2 jω ωn = 20 log 1 = 0 as ω 0 H ω = 20 log 1 + j2ζ 2 ω ωn + 2 jω ωn φ ω = tan 2ζ ω 1 2 p1 1 ω 2 2 ω n = 40 log ω ω n as ω Asymptotes ω ω n zero slope ω ω n 40 db dec slope Damping factor dependent exact curves. 17 gyurcsek.istvan@mik.pte.hu 2018.03.23.

Remark Damping Factor Dependent Exact Curves ω H ω n = 20 log 1 + j2ζ n 2 ωn + = 20 log j2ζ 2 = 20 log 2ζ 2 CASE A critically damped ζ 2 = 1 H ω 0 CASE B overdamped real roots 2 jω n ωn p 1,2 = repeated double roots = 20 log 2 1 = 3 db ζ 2 > 1 H ω 0 = 20 log 2ζ 2 3 db CASE C underdamped conjugate complex roots ζ 2 < 1 H ω 0 = 20 log 2ζ 2 < 3 db CASE D undamped conjugate imaginary roots ζ 2 = 0 H ω 0 = 20 log 0 ± Roots 2ζ 2 ωn ± 2 4ζ 2 2 ω 4 2 n ω n 2 2 ωn = ω n ζ 2 ± ζ 2 2 1 18 gyurcsek.istvan@mik.pte.hu 2018.03.23.

Quick Procedure Idea Zeros cause an increase in slope Poles cause a decrease is slope Bode plot immediately from the transfer function without making individual plots and adding them Procedure Starting with the low-frequency asymptote of the Bode plot Increasing or decreasing the slope at each corner frequency moving along the FRQ axis Comment Software packages (MATLAB, Mathcad, Micro-Cap, Pspice) generate frequency response plots. 19 gyurcsek.istvan@mik.pte.hu 2018.03.23.

Phase (deg); Magnitude (db) To: Y(1) Example Using Matlab For Frequency Response G s = 5.000 s + 10 s + 1 s + 500 = 5.000s + 50.000 s 2 + 501s + 500 40 30 Bode Diagrams num = [5000 50000]; den = [1 501 500]; Bode (num,den) 20 10 0-10 0-20 1 10 100 500 Blue - calculated magn. and phase plots (exact) Red Bode (approximate) plot for the magn. 3 db error at the corner frequencies! -40-60 -80 Bode for: G jω = 100 1 + jω 10 1 + jω 1 1 + jω 500-100 10-1 10 0 10 1 10 2 10 3 10 4 Frequency (rad/sec) 20 gyurcsek.istvan@mik.pte.hu 2018.03.23.

Analytical Method for Determining the Phase For example H ω = 100 jω 10 + 1 jω + 1 jω 500 + 1 Arc H ω = φ = tan 1 ω 10 tan 1 ω 1 tan 1 ω 500 In general H ω = He jφ = A Beφ B Ce φ C De φ D Ee φ E φ = φ B +φ C φ D φ E ± = tan 1 im B re B + tan 1 im C re C tan 1 im D re D tan 1 im E re E ± 21 gyurcsek.istvan@mik.pte.hu 2018.03.23.

Summary 1 Factor Magnitude Phase K 22 gyurcsek.istvan@mik.pte.hu 2018.03.23.

Summary 2 Factor Magnitude Phase jω N 1 jω N 23 gyurcsek.istvan@mik.pte.hu 2018.03.23.

Summary 3 Factor Magnitude Phase 1 + jω z N 1 + jω p N 24 gyurcsek.istvan@mik.pte.hu 2018.03.23.

Summary 4 Factor Magnitude Phase 1 + j2ζ ω ωn + 2 jω N ωn 1 1 + j2ζ ω ωk + jω ωk 2 N 25 gyurcsek.istvan@mik.pte.hu 2018.03.23.

Progress in Content The Decibel Scale (gain, level, db, neper) Transfer Function (freq. response, represent.) Bode Plots (magnitude, phase. building blocks) Use Cases (base circuits, Nyquist/Bode plots) Outlook (practical examples) 26 gyurcsek.istvan@mik.pte.hu 2018.03.23.

Use Case 1 Proportional Transfer Function (P) TF in time domain v t = A u t TF in frequency domain Y jω = A Im Y A Nyquist / Bode Plots Re Y Y [db] 20lgA lg lg 27 gyurcsek.istvan@mik.pte.hu 2018.03.23.

Use Case 2 Differential Transfer Function (D) TF in time domain: TF in frequency domain v t = T D du(t) dt Y jω = jωt D Y [db] 20 db/dek Nyquist / Bode Plots Im Y = 1 T D lg Re Y lg 28 gyurcsek.istvan@mik.pte.hu 2018.03.23.

Use Case 3 Integral Transfer Function (I) TF in time domain: TF in frequency domain: Nyquist / Bode Plots T 1 dv(t) dt Im Y = A u t v t = A න u t dt + v 0, where A = T T 1 T I 1 Y jω = 1 jωt I Re Y 0 t Y [db] -20 db/dek lg = 1 T I lg 29 gyurcsek.istvan@mik.pte.hu 2018.03.23.

Use Case 4 Proportional Diferential Transfer Function (PD) TF in time domain: TF in frequency domain Nyquist / Bode Plots Im Y v t = A 1 + T D du(t) dt Y jω = A 1 + jωt D A Re Y Y [db] 20lgA 20 db/dek = 1 lg T D lg 30 gyurcsek.istvan@mik.pte.hu 2018.03.23.

Use Case 5 Proportional Integral Transfer Function (PI) t TF in time domain: TF in frequency domain: Nyquist / Bode Plots v t = A + A න u t dt + v(0) T I Y jω = A 1 + 1 jωt I 0 = A 1 + jωt I jωt I Y [db] 20lgA -20 db/dek = 1 T I lg Im Y A Re Y P tag I tag PD tag lg 31 gyurcsek.istvan@mik.pte.hu 2018.03.23.

Use Case 6 Proportional Transfer Function with one Storage (PT1) TF in time domain: TF in frequency domain: Nyquist / Bode Plots T dv(t) dt Im Y + v(t) = A u(t) Y jω = A 1 T A 1 + jωt Re Y Y [db] 20lgA -20 db/dek lg = 1 T lg 32 gyurcsek.istvan@mik.pte.hu 2018.03.23.

Progress in Content The Decibel Scale (gain, level, db, neper) Transfer Function (freq. response, represent.) Bode Plots (magnitude, phase. building blocks) Use Cases (base circuits, Nyquist/Bode plots) Outlook (practical examples) 33 gyurcsek.istvan@mik.pte.hu 2018.03.23.

OUTLOOK 1: PID Control Loop in Industrial Control System PID: control signal depends on the errors in past, present and the future. Effects of varying PID parameters (K p,k i,k d ) on the step response of a system. 34 gyurcsek.istvan@mik.pte.hu 2018.03.23.

OUTLOOK 2: Common Filter Transfer Function Families Butterworth filter (en.wikipedia.org/wiki/butterworth_filter) Maximally flat in passband and stopband for the given order Chebyshev filter (Type I) (en.wikipedia.org/wiki/chebyshev_filter) Max. flat in stopband, sharper cutoff than Butterworth Chebyshev filter (Type II) (en.wikipedia.org/wiki/chebyshev_filter) Max. flat in passband, sharper cutoff than Butterworth Bessel filter (en.wikipedia.org/wiki/bessel_filter) Best pulse response for a given order, no group delay ripple Elliptic filter (en.wikipedia.org/wiki/elliptic_filter) Sharpest cutoff (narrow transition bw. pass band and stop band) Optimum "L" filter (en.wikipedia.org/wiki/optimum_%22l%22_filter) Gaussian filter (en.wikipedia.org/wiki/gaussian_filter) Minimum group delay; gives no overshoot to a step function. Hourglass filter (en.wikipedia.org/wiki/hourglass_filter) Raised-cosine filter (en.wikipedia.org/wiki/raised-cosine_filter) Example: Fourth-order type I Chebyshev low-pass filter 35 gyurcsek.istvan@mik.pte.hu 2018.03.23.

OUTLOOK 3: Active Crossover Filter (Example) CIRCUIT EXAMPLE FOR AN ACTIVE FOURTH-ORDER CROSSOVER FILTER (LEFT CHANNEL) 36 gyurcsek.istvan@mik.pte.hu 2018.03.23.

Questions 37 gyurcsek.istvan@mik.pte.hu 2018.03.23.