Upon completion of the course, the student should be competent to perform the following tasks:

Similar documents
The course covers physics topics, including mechanics, wave motion, sound, heat, electromagnetism, optics, and modern physics.

Upon successful completion of this course, students should be competent to perform the following tasks:

MASTER SYLLABUS

Upon successful completion of this course, students should be competent to perform the following tasks:

Describe the forces and torques exerted on an electric dipole in a field.

COWLEY COLLEGE & Area Vocational Technical School

OAKTON COMMUNITY COLLEGE COURSE SYLLABUS. I. Course Course Course Prefix Number Name Credit: Lecture Lab. PHY 132 College Physics II 4 3 2

PHY 112 GENERAL PHYSICS II WITH LAB

College Physics 10th edition

4 credits, 3-hrs. lecture/2-hrs. lab/2-hrs. recitation Lecture:

AP PHYSICS (B) SYLLABUS. Text: Physics, Sixth Edition by Cutnell and Johnson ISBN , Wiley and Sons, 2004 COURSE OVERVIEW

SPRING GROVE AREA SCHOOL DISTRICT. Course Description. Instructional Strategies, Learning Practices, Activities, and Experiences.

Unit assessments are composed of multiple choice and free response questions from AP exams.

TEACHERS OF SCIENCE: Physics 9-12 FORM I-D GRID

Welcome to PHY2054C. Office hours: MoTuWeTh 10:00-11:00am (and after class) at PS140

ESSEX COUNTY COLLEGE Mathematics and Physics Division PHY 104 General Physics II Course Outline

Waves. Decibels. Chapter 21: Dimension

Mineral Area College FALL credit hours

10/11/2018 1:48 PM Approved (Changed Course) PHYS 42 Course Outline as of Fall 2017

Modesto Junior College Course Outline of Record PHYS 143

Introductory Physics

Outline of College Physics OpenStax Book

COURSE OUTLINE. Upon completion of this course the student will be able to:

Physics For Scientists and Engineers A Strategic Approach 3 rd Edition, AP Edition, 2013 Knight

AP Physics 2 Sample Syllabus 4

TEACHER CERTIFICATION STUDY GUIDE

PELLISSIPPI STATE COMMUNITY COLLEGE MASTER SYLLABUS CALCULUS BASED PHYSICS I PHYS 2110

PELLISSIPPI STATE TECHNICAL COMMUNITY COLLEGE MASTER SYLLABUS ELEMENTS OF PHYSICS II W/LAB PHY 2220

SCIENCE DEPT CHAIR: Mr. Scheidt AS 212B

AP Physics B Course Syllabus and Framework 2011/12

Subject Area Competencies and Skills (22nd Edition)

AP Physics B Syllabus

PHYS F212X FE1+FE2+FE3

Dynamics inertia, mass, force. Including centripetal acceleration

AP Physics Syllabus Course Overview. Text: Physics by Giancoli, 5th edition Course Outline

Study Guide for Physics 1100 Final Exam

University of Colorado at Boulder Summer 2017, Session B Tuesday, July 11 - Friday, August 11. Prof. Mik Sawicki PHYS 1120 COURSE CALENDAR WEEK 1

A. Kinematics (including vectors, vector algebra, components of vectors, coordinate systems, displacement, velocity, and acceleration)

University of Connecticut General Physics 122Q ECE Equivalent COURSE SYLLABUS Instructor: Hans Drenkard Trumbull High School

Miami Dade College. PHY Physics with Applications

Praxis Physics: Content Knowledge (5265) Study Plan Description of content

High School. Prentice Hall. Conceptual Physics South Carolina Science Academic Standards - Physics High School

Wallingford Public Schools - HIGH SCHOOL COURSE OUTLINE. Department: Science Grade(s): 11-12

CENTRAL TEXAS COLLEGE SYLLABUS FOR PHYS 2426 UNIVERSITY PHYSICS II. Semester Hours Credit: 4 INSTRUCTOR: OFFICE HOURS:

AP Physics 2. Approach. 2 nd Edition. Pearson Addison-Wesley. San Francisco. Course Overview

Units (Different systems of units, SI units, fundamental and derived units)

Updated: Page 1 of 6

WALNUT HIGH SCHOOL Regular Physics Syllabus

Introductory Physics PHYS 120 Challenge Program Course - Southwest Minnesota State University

University Of Pennsylvania Department of Physics PHYS 141/151 Engineering Physics II (Course Outline)

Chapter 1: Electrostatics

AP Goal 1. Physics knowledge

OKLAHOMA SUBJECT AREA TESTS (OSAT )

AP Physics B - Syllabus G. Bonney

PHY 102: Notes. FBDs and Buoyancy: How does one solve problems?

AP Physics C Electricity and Magnetism

Massachusetts Tests for Educator Licensure (MTEL )

Knowledge of basic math concepts is expected (conversions, units, trigonometry, vectors, etc.)

PELLISSIPPI STATE TECHNICAL COMMUNITY COLLEGE MASTER SYLLABUS ELECTRICITY & MAGNETISM W/LAB PHY 2310

Wilson Area School District Planned Course Guide

SUGGESTED LESSON PLANS FOR PHY 097 SEMESTER NOV10 Text Book : PHYSICS FOR SCIENTISTS & ENGINEERS WITH MODERN PHYSICS BY GIANCOLI, FOURTH EDITION

AP Physics B Syllabus

PHYS 1112: Introductory Physics-Electricity and Magnetism, Optics, Modern Physics

AP Physics C Liberty High School, Hillsboro, OR (PCC PHY 213 General Physics (Calculus))

University Physics (Volume 2) by Young and Freedman, 14th ed., with Modern Physics for Modified Mastering. ISBN13:

PHYSICS PHYSICS FOR SCIENTISTS AND ENGINEERS. Course Outline - Spring 2009

Advanced Physics in Creation Table of Contents

Physics 201/202 Phys 201 (Fall 2016) and Phys 202 (Spring 2017) Instructor: Dr. John LeRose

EASTERN ARIZONA COLLEGE Physics with Calculus I

SUBJECT & PEDAGOGICAL CONTENT STANDARDS FOR PHYSICS TEACHERS (GRADES 9-10)

CHINO VALLEY UNIFIED SCHOOL DISTRICT INSTRUCTIONAL GUIDE PHYSICS B ADVANCED PLACEMENT

Course Outline of Record Los Medanos College 2700 East Leland Road Pittsburg CA (925)

PHYSICS. Downloaded From: Time Allowed : 3 Hrs. Max. Marks 60

LURLEEN B. WALLACE COMMUNITY COLLEGE COURSE SYLLABUS

TS EAMCET 2016 SYLLABUS ENGINEERING STREAM

Physics by Discovery Standards (2nd Semester)

PHYS 208, sections , Spring 2017

Chapter Topic Subtopic

Maharashtra Board Syllabus PHYSICS. (Syllabus) Std. XI

Ackroyd, Anderson, Berg, and Martin: Physics (Alberta Edition); Pearson. 38 Classes (assuming that we can have one early morning class per week)

PHYS 208, sections , Spring 2018

AP Physics B Syllabus

With Modern Physics For Scientists and Engineers

Physics and Concepts

Saint Lucie County Science Scope and Sequence

PELLISSIPPI STATE COMMUNITY COLLEGE MASTER SYLLABUS MECHANICS & HEAT W/ LAB II PHYS 1320

AP Physics B Course Syllabus

Modesto Junior College Course Outline of Record PHYS 142

Contents PART ONE. To access a particular chapter, double click on that chapter below.

AP Physics C Syllabus

Alabama Department of Postsecondary Education

Science Curriculum Matrix

Norton City Schools Standards-Based Science Course of Study 2003

qq k d Chapter 16 Electric and Magnetic Forces Electric charge Electric charges Negative (electron) Positive (proton)

PELLISSIPPI STATE TECHNICAL COMMUNITY COLLEGE MASTER SYLLABUS MECHANICS & HEAT W/ LAB II PHYS 1320

Miami-Dade Community College PHY 2053 College Physics I

AP Physics C. Electricity - Term 3

PHYS 208, sections , Fall 2017

PHYS 208, Sections , Spring 2017

Physics Overview. Assessments Assessments Adopted from course materials Teacher-created assessments Standard Physical Science

Transcription:

COURSE INFORMATION Course Prefix/Number: PHY 222 Course Title: University Physics I Lecture Hours/Week: 3.0 Lab Hours/Week: 3.0 Credit Hours/Semester: 4.0 VA Statement/Distance Learning Attendance Textbook Information Student Code and Grievance Policy Attendance Statement (3-30-4000.1) COURSE DESCRIPTION This course is a continuation of a calculus based treatment of the following topics: thermodynamics, kinetic theory of gases, electricity and magnetism, including electrostatics, dielectrics, electric circuits, magnetic fields, and induction phenomena. Optics will also be included as a part of the course. COURSE COMPETENCIES / PERFORMANCE OBJECTIVES Upon completion of the course, the student should be competent to perform the following tasks: Module1: Static Equilibrium Demonstrate an understanding of the requirements for equilibrium. Define center of gravity, indeterminate structure. Prepare force diagrams and determine forces on a body using concepts of static equilibrium. Obtain data in the laboratory manually and with transducers and a graphing calculator interface to verify concepts introduced in this module, and properly report results of laboratory work. Module 2: Fluids Define fluid, density, pressure, specific gravity. State commonly used units of pressure. Apply the hydrostatic equation to determine pressures in liquid columns. Apply Pascal s Principle to problems in hydraulics. Define buoyant force, apparent weight. Apply Archimedes Principle to problems involving floating and submerged objects. Demonstrate an understanding of the Equation of Continuity and apply this concept to fluids in conduits. Utilize Bernoulli s Equation to estimate pressures in closed conduits. PHY 222 1 of 5 Revised 12/2015

Obtain data in the laboratory manually and with transducers and a graphing calculator interface to verify concepts introduced in this module, and properly report results of laboratory work. Module 3: Temperature, Heat, Gas Laws and Thermodynamics Know four scales used to indicate temperature and be able to convert temperatures from one scale to another. Determine changes in length, area and volume given a change in temperature. Explain the unique behavior of water as it approaches its freezing point. Explain triple point of water as a reference temperature. Apply the equivalence of heat and mechanical energy in the solution of problems involving heat and work. Define specific heat, latent heat of fusion and latent heat of vaporization, and apply these concepts to problems in calorimetry. State three method of heat transfer, and be aware of variables involved with each method. Define ideal gas, atomic mass, atomic number, molecule, moles, kinetic theory, RMS average. Demonstrate an understanding of and apply the ideal gas law to determine volume, pressure, temperature, mass and number of molecules. Explain pressure and temperature in terms of the ideal gas theory. Give examples of macroscopic and microscopic properties, define thermodynamic system, internal energy, isobaric process, isochoric process, isothermal process, adiabatic process, Carnot engine, thermal efficiency, cycle, ideal work, entropy. State to zeroth, first, and second laws of thermodynamics. Apply the first and second laws of thermodynamics to processes. Calculate temperature, heat flow and efficiency of Carnot engines. Graph pressure, temperature and volume relationships for heat engines and determine work in or out of a cycle. Relate basic thermodynamic processes to practical applications involving steam and the compression of gases. Determine changes in entropy for processes. Relate entropy to probability and statistics, and its implications to philosophical concepts such as the arrow of time, and heat death of the universe. Safely and properly use equipment in the laboratory in order to verify concepts introduced in this module. Properly report results of laboratory work. Module 4: Electricity and Magnetism Give practical applications involving static electricity. Define electric charge, insulator, conductor, charging by induction, electric field, neutron, electric dipole, dipole moment, electric potential, electron volt, capacitance, permittivity constant, quanta of charge, dielectric, time constant, electric current, resistance, internal resistance, saturation, magnetic domain. Apply Coulomb s law to problems involving electric charges. Compare properties of electric fields, gravitational fields and strong fields. Be aware of classic and modern concepts of fields. Determine electric field for point charges and charged plates. Determine electric field for an electric dipole. PHY 222 2 of 5 Revised 12/2015

Apply Gauss Law to determine electric field. Determine electric potential and work in situations involving point charges and charged surfaces. Demonstrate an understanding of relationships between charge, potential difference and capacitance. Determine capacitance of capacitors in combination. Apply Ohm s law in direct current circuits. Determine resistance of resistors in combination. Determine power and energy in series and parallel electric circuits. Explain the atomic view of the nature of a dielectric Explain the nature of magnetism in terms of atomic theory and domains. Demonstrate an understanding of relationship between electric current and magnetic field. Use right-hand rules to determine direction of field, current, and force. Determine magnetic forces on moving charges. Use Ampere s Law to find magnetic field. Determine torque on a current loop. Apply Faraday s Law of Induction to problems involving conductors and magnetic fields. Apply Lenz s Law to determine electric and magnetic polarity. Define electromotive force and magnetic flux and apply these concepts to generators and motors. Calculate electromotive force and magnetic flux for rotating conductors, and graph these relationships versus angle and time. Describe a typical transformer and determine input and output relationships between voltage and current. Safely and properly use equipment in the laboratory in order to verify concepts in electricity and magnetism. Properly report results of laboratory work. Module 5: Optics Demonstrate an understanding of models of light. Define angle of incidence, angle of reflection, specular reflection, diffuse reflection, index of refraction, total internal reflection, thin lens, focal length, focal point, virtual image, real image, inverted image, dispersion, constructive and destructive interference, primary colors, chromatic aberration. Apply the law of reflection in ray diagrams. Apply Snell s law to problems involving refraction. Determine object and image relations for convex and concave lens by ray tracing and by using the thin lens equation. Determine ray paths for convex, concave and parabolic mirrors. Apply the lens maker s equation to determine index of refraction and focal length. Demonstrate an understanding of how lenses are used to correct nearsighted and farsighted vision. Demonstrate an understanding of Huygen s Principle and applications in wave optics involving reflection and refraction. Safely and properly use equipment in the laboratory in order to verify concepts in optics. Properly report results of laboratory work. PHY 222 3 of 5 Revised 12/2015

MINIMAL STANDARDS Minimal standards of performance for receiving credit for the course are indicated by 60% accuracy on all evaluation instruments (see evaluation strategies listed below) that address the performance objectives listed above. COURSE REQUIREMENTS Withdrawal from the Course A student may withdraw from a course after the drop/add period until midterm with a grade of W. Withdrawals after midterm will result in either a grade of W or WF depending upon the student s academic performance and attendance in the course at the time of the withdrawal. Academic Integrity The policies stated in the York Technical College Handbook will be enforced. Any student violating these policies will be subject to academic discipline. EVALUATION STRATEGIES/GRADING Assessment for each module shall consist of: Comprehensive exam covering material introduced in the module Homework and quizzes relevant to material in the module Assignments in the laboratory (amounting to 25 percent of the total grade for the module) The weighting of the final grade for the course shall be as follows: Module 1... 10% Module 2... 10% Module 3... 25% Module 4... 40% Module 5... 15% Grading Procedures Grade Range A 90-100 B 80-89 C 70-79 D 60-69 F Below 60 The above requirements and topics are standard and required for the course. Additional requirements and/or policy depend on the instructor for the course; the additional requirements and/or policy are attached. ENTRY LEVEL SKILLS None PREREQUISITES PHY 221 - University Physics I PHY 222 4 of 5 Revised 12/2015

CO-REQUISITES None DISABILITIES STATEMENT Any student who feels s/he may need an accommodation based on the impact of a disability should contact the Special Resources Office (SRO) at 803-327-8007 in the 300 area of Student Services. The SRO coordinates reasonable accommodations for students with documented disabilities. PHY 222 5 of 5 Revised 12/2015