ABSTRACT. Key words: Tiltmeter, extensometer, deformation, tilt, compression. 1. Introduction

Similar documents
MEASUREMENT OF SURFACE DEFORMATION ASSOCIATED WITH HYDROFRACTURE

Pre-failure Deformability of Geomaterials. Hsin-yu Shan Dept. of Civil Engineering National Chiao Tung University

Geology 229 Engineering Geology. Lecture 5. Engineering Properties of Rocks (West, Ch. 6)

2. THE TIDAL POTENTIAL AND TIDE GENERATED DISPLACEMENTS. The reference system: the vertical axis points to the centre of the Earth

INFLUENCE OF THE SOIL-STRUCTURE INTERACTION ON THE SEISMIC BEHAVIOR OF BUILDINGS ON SHALLOW FOUNDATIONS

Numerical analysis for an interpretation of the pressuremeter test in cohesive soil

Timofeev V.Y.*, Ducarme B.**, Saricheva Y.K*, Vandercoilden L.***

The Mine Geostress Testing Methods and Design

Monitoring Tidal and Non-tidal Tilt Variations in Lanzarote Island (Spain)

Sensitivity Analysis of Boundary Detection on Spatial Features of Heterogeneous Landscape

Unit 4 Lesson 7 Mountain Building

Failure Mechanism and Evolution Law of Fractured-Rocks based on Moment Tensor Inversion

Numerical Modelling of Dynamic Earth Force Transmission to Underground Structures

Analysis and measurements of settlement for heavy loaded rigid footing

ENV-5004B/ENVK5005B. Figure 6. Student Registration No. ENV-5004B/ENVK5005B Version 2

The Results of HLS Measurement and Geological Investigation at Pohang Light Source

Introduction and Background

Topographic Mapping at the 1: Scale in Quebec: Two Techniques; One Product

GEOTECHNICAL ENGINEERING INVESTIGATION HANDBOOK Second Edition

COMPOSITION and PHYSICAL PROPERTIES GENERAL SUBJECTS. GEODESY and GRAVITY

Analytical Stress Modeling for Mine related Microseismicity

PETROLEUM AND GAS RESEACH BY REMOTE SENSING IN SOUTH CHINA SEA

To the best of our knowledge, the FG5 gravimeter represents the current state-of-the-art in the measurement of absolute gravity.

The effect of installation angle of rock bolts on the stability of rock slopes

Haulage Drift Stability Analysis- A Sensitivity Approach

Landslide FE Stability Analysis

Gravity Tectonics Volcanism Atmosphere Water Winds Chemistry. Planetary Surfaces

Theory at a Glance (for IES, GATE, PSU)

Basic Concepts of Strain and Tilt. Evelyn Roeloffs, USGS June 2008

Chapter Two: Mechanical Properties of materials

Earthquakes Chapter 19

1.103 CIVIL ENGINEERING MATERIALS LABORATORY (1-2-3) Dr. J.T. Germaine Spring 2004 LABORATORY ASSIGNMENT NUMBER 6

PBO Strainmeters and Tiltmeters

Earthquakes and Earthquake Hazards Earth - Chapter 11 Stan Hatfield Southwestern Illinois College

SDLV121 - Wave planes shearing in an elastic column

Experimental study of sand deformations during a CPT

20. Rheology & Linear Elasticity

TWO DIMENSIONAL MODELING AND STABILITY ANALYSIS OF SLOPES OVERLAYING TO SHAHID RAGAEE POWER PLANT

Brittle Deformation. Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm

Weak Rock - Controlling Ground Deformations

Experimental Research on Ground Deformation of Double Close-spaced Tunnel Construction

Supplementary Uniaxial Compressive Strength Testing of DGR-3 and DGR-4 Core

STRESS DROP AS A RESULT OF SPLITTING, BRITTLE AND TRANSITIONAL FAULTING OF ROCK SAMPLES IN UNIAXIAL AND TRIAXIAL COMPRESSION TESTS

Earthquakes. Building Earth s Surface, Part 2. Science 330 Summer What is an earthquake?

Small variation of annual temperature in deep tunnel can produce annual variation in tilt and strain

A NEW ROCK BOLT CONCEPT FOR UNDERGROUND EXCAVATIONS UNDER HIGH STRESS CONDITIONS

ON THE FACE STABILITY OF TUNNELS IN WEAK ROCKS

Gravimetric Tide observation at Lake Nasser Region, Aswan, Egypt

The Structure of the Earth and Plate Tectonics

Surface changes caused by erosion and sedimentation were treated by solving: (2)

Engineering Geophysical Application to Mine Subsidence Risk Assessment

Background. Valley fills Sites in the Area. Construction over Mine Spoil Fills

The science of elasticity

A mathematical and experimental study of rock bump mechanics

UNITS AND DEFINITIONS RELATED TO BIOMECHANICAL AND ELECTROMYOGRAPHICAL MEASUREMENTS

STRAIN GAUGES YEDITEPE UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERING

Analysis of soil failure modes using flume tests

Influence of micropile inclination on the performance of a micropile network

Engineer. Engineering. Engineering. (in-ja-neer ) A person trained and skilled in any of the various branches of engineering: a civil engineer

Seismic analysis of horseshoe tunnels under dynamic loads due to earthquakes

7.2.1 Seismic waves. Waves in a mass- spring system

The Main Point. Other Properties Earth has one large Moon. Earth has a strong Magnetic Field. Lecture #11: Earth: Geology and Interior

DEVELOPMENT OF AUTOMATIC CONTROL OF MULTI-STAGE TRIAXIAL TESTS AT THE UNIVERSITY OF MISKOLC

1. classic definition = study of deformed rocks in the upper crust

Supporting Information for Inferring field-scale properties of a fractured aquifer from ground surface deformation during a well test

IDENTIFICATION OF THE ELASTIC PROPERTIES ON COMPOSITE MATERIALS AS A FUNCTION OF TEMPERATURE

EVALUATION OF DAMAGES DUE TO ALKALI-SILICA REACTION WITH ACOUSTICS TECHNIQUES. DEVELOPMENT OF A NEW NONLINEAR METHOD.

Assessment Schedule 2015 Earth and Space Science: Demonstrate understanding of the causes of extreme Earth events in New Zealand (91191)

Effect of intermediate principal stresses on compressive strength of Phra Wihan sandstone

Analysis of the behaviour of the CLIC SiD iron return yoke during a seismic event

Dam Monitoring With Tiltmeters

Chapter 4 Earthquakes and Tsunamis

Chapter 4 Earthquakes and Tsunamis. Geology of the Hawaiian Islands. Any Questions? Class March Mean = 78.

MONITORING LOCAL GEODYNAMICAL MOVEMENTS AND DEFORMATIONS BY BOREHOLE TILTMETERS IN HUNGARY

Earthquakes Earth, 9th edition, Chapter 11 Key Concepts What is an earthquake? Earthquake focus and epicenter What is an earthquake?

SEEPAGE ANALYSIS AND SEISMIC BEHAVIOUR OF EARTH FILL DAM USING GEO-STUDIO

ME 243. Mechanics of Solids

IN-SITU STRESS ESTIMATION IN OFFSHORE EASTERN MEDITERRANEAN WITH FINITE ELEMENT ANALYSIS

(extended abstract) Gerhard Jentzsch 1, Steffen Graupner 1, Adelheid Weise 1, Hiroshi Ishii 2 and Shigeru Nakao 3

STUDY OF THE MECHANICAL BEHAVIOUR OF THE BALLAST USING

SETTLEMENT TROUGH DUE TO TUNNELING IN COHESIVE GROUND

Pullout Tests of Geogrids Embedded in Non-cohesive Soil

Nonlinear Time-Dependent Soil Behavior due to Construction of Buried Structures

In situ fracturing mechanics stress measurements to improve underground quarry stability analyses

Earthquake Loads According to IBC IBC Safety Concept

7. Foundation and Slope Stability

Previously Documented Basin-localized Extension on Mercury

TAKE HOME EXAM 8R - Geology

Soil-Structure Interaction in Nonlinear Pushover Analysis of Frame RC Structures: Nonhomogeneous Soil Condition

Frequency response analysis of soil-structure interaction for concrete gravity dams

Back Calculation of Rock Mass Modulus using Finite Element Code (COMSOL)

EDEM DISCRETIZATION (Phase II) Normal Direction Structure Idealization Tangential Direction Pore spring Contact spring SPRING TYPES Inner edge Inner d

Advanced Workshop on Evaluating, Monitoring and Communicating Volcanic and Seismic Hazards in East Africa.

The Structure of the Earth and Plate Tectonics

Physical and Biological Properties of Agricultural Products Acoustic, Electrical and Optical Properties and Biochemical Property

Effect Of The In-Situ Stress Field On Casing Failure *

Dynamic Soil Pressures on Embedded Retaining Walls: Predictive Capacity Under Varying Loading Frequencies

NONLINEAR ANALYSIS OF A DAM-RESERVOIR-FOUNDATION SYSTEM UNDER SPATIALLY VARIABLE SEISMIC EXCITATIONS

Introduction to Geotechnical Earthquake Engineering

Chapter 11: Elasticity and Periodic Motion

Transcription:

ISPRS SIPT IGU UCI CIG ACSG Table of contents Table des matières Authors index Index des auteurs Search Recherches Exit Sortir UNDERGROUND DEFORMATION MEASUREMENT USING NEW QUARTZ INSTRUMENTS Bassam Saleh Dept. of Surveying and Geomatics Engineering, Faculty of Engineering, Al-Balqa Applied University, Al-Salt 19117, Jordan. E-mail:bassaleh@yahoo.com or E-mail: bsaleh@firstnet.com.jo ABSTRACT This work demonstrates the usage of two new quartz instruments, which are a tiltmeter and an extensometer that we developed lately to measure with high accuracy deformations of structures, volcanoes, tunnels, and ground surface. The stability of an underground quarry, near Paris in France was the subject of the study. The deformation of the quarry under different cases of loading during the process of constructing a highway that passes over it was analyzed. Tiltmeters were installed on the floor of the quarry and extensometers on the pillars to measure the deformations induced by the load of the fill materials applied over the quarry. The tilt and the compression were measured for different loading periods and for different durations depending on working conditions. Continuous records of measurements were executed during this experiment to show continuously all variations in the quarry deformation. The results of the tilt measurements showed instantaneous deformation associated with loading change. Meanwhile the compression measurement showed late effects after loading. A mathematical model was used to calculate the deformation under the same loading conditions. This was done in order to find positions of maximum tilt and compression in the quarry where the instruments can be installed. The model as well, enabled us to fix the range and sensitivity of the instruments. Finally, we compared between the measured and the theoretical values and we discussed the results. Key words: Tiltmeter, extensometer, deformation, tilt, compression. 1. Introduction The analysis of special phenomena such as earth tides, volcanic eruptions, earthquakes, failure of structures, etc. requires deformation measurement with specific instruments of high accuracy (King and Bilham 1973; Beauducel 1998; Dal Moro and Zadro 1998; Teskey 1988). This study demonstrates two types of measuring instruments, which are tiltmeter, and extensometer. Several types of sensitive tiltmeters and extensometers have been developed during the past three decades to observe and measure ground deformations (Shuhua et al. 1999; D Orye 1998; Blair et al. 1997; Saleh et al. 1991; Wyatt and Berger 1980; Gaulty 1976). A tiltmeter gives the rotation of a line segment fixed in the earth about a chosen horizontal axis perpendicular to the local gravity vector. An extensometer measures the change in distance between two points on the earth which are a finite distance apart. Tiltmeters were first used for earth tides observation and evaluation (Melchior 1983; Blum 1977) and now are used in many fields such as volcanology, seismology, civil engineering, etc. (Beauducel 1998; Lesage et al. 1983; Saleh et al. 1990). Extensometers are used for strain, settlement, extension and compression measurements in many fields such as mining, geophysics, civil engineering, etc. (Lili 1997; Crochet et al. 1983). Due to the importance of measuring tilts and extensions using accurate devices of low drift and low cost, two instruments were developed by Blum and Saleh in 1986 (Saleh 1986), a tiltmeter and an extensometer of high resolution, in the range of 10-8 rad and 10-8 m respectively. The instruments were tested on many sites over the world for monitoring the stability of dams, buildings, tunnels, retaining walls, volcanoes, etc. (Saleh et al. 1990; Beauducel 1998). They enabled the detection of small deformations that cannot be detected and measured by ordinary surveying instruments. These instruments were used to study the behavior of an underground quarry under the impact of a fill material load during the construction of a highway. The underground quarry is situated in Villiers-Adam, at 50 km to the north of Paris. Two tiltmeters and two extensometers were used in the experiment for measuring the quarry deformation. Symposium on Geospatial Theory, Processing and Applications, Symposium sur la théorie, les traitements et les applications des données Géospatiales, Ottawa 2002

2. Instruments and measurements 2.1 Quartz tiltmeter The Tiltmeter which has been developed is a horizontal pendulum of Zollner suspension, made of melted quartz that operates in a vacuum (Saleh et al. 1991) (see Fig. 1). A photoelectric detector is used to transform the rotation of the pendulum mass into voltage variation. The range, as well as the resolution, both depend on the pre-chosen natural period of the pendulum. For this case study, the natural period is 4 sec, which gives a resolution of 5x 10-8 rad ( 0.01 sec) and a range of ± 100 x 10-6 rad (± 20 sec). 2.2 Quartz extensometer The extensometer which has been developed is a displacement transducer using a differential transformer. A deformable frame made of melted quartz is used in the device to transmit any compression or extension to the transducer (see Fig.2). The transducer is composed of a mobile ferrite moving inside a reel, and the two parts are fixed to the frame using quartz bars. Fig. 1. Photography of quartz tiltmeter Fig. 2. Photography of quartz extensometer

2.3 Measurements The tilt is measured in two directions by two tiltmeters oriented north-south and east-west. The tiltmeters were installed on the floor of the quarry between two pillars, at few meters of the load application. The compression is measured by two extensometers of one meter length each, installed vertically on different pillars under the load. A laptop is used for the acquisition of data, in the order of one measurement every 20 minutes. The thermal effect on the instruments and the rock inside the quarry is negligible, due to the low temperature variation inside it, which is less than one degree Celsius per year. The tilt signals recorded by the tiltmeters and extensometers for different cases of loading are shown in Fig. 3 and Fig. 4. 3. Analysis 3.1 Measured tilts and compressions The tilt curves observed for one day and a loading of about 2800 m 3 of fill are shown in Fig. 3. The results show that the tilts can be separated into different periods, depending on the change of tilt, which is correlated to the change of loading during the day as follows: (i) Before 7:30 am, no tilt variation before load application. (ii) Between 7:30 am and 12:00 noon, an important tilt variation is recorded in the east-west direction and in the northsouth direction due to loading. (iii) Between 12:00 noon and 1:30 pm, the tilt variation is negligible due to a short stop (lunch time). (iv) Between 1:30 pm and 6:00 pm, the tilt variation is important due to continued load application. (v) After 6:00 pm, the tilt variation is negligible due to stop of loading. Fig. 3. Observed Tilts for one day of loading The total tilt for one day of loading is about 5 x 10-6 rad for the east-west direction and 1.8 x 10-6 rad for the north-south direction, so the resultant tilt is 5.3 x 10-6 rad. The load was applied at 15 m from the tiltmeters and very close to the eastwest direction, which explains a more important tilt in this direction. The results in Fig. 4 show the compression signals recorded by two extensometers, which are installed over the pillars and for one day of loading. The compression measurements can be separated into different periods as follows: (i) (ii) Before 7:30 am, the compression variation is negligible before load application. Between 7:30 am and 12:00 noon, an important compression variation is recorded by the two extensometers due to loading.

(iii) (iv) (v) Between 12:00 noon and 1:30 pm, the compression variation is negligible due to a short stop (lunch time). Between 1:30 pm and 6:00 pm, the compression variation is important due to continued load application. After 6:00 pm, end of loading, the compression variation is negligible for the first extensometer and important for the second extensometer, which is explained by a plastic deformation of the second pillar. Fig. 4. Observed Compressions for one day of loading The total compression recorded by the first and second extensometers between 7:30 am and 18h:00 pm is about 3 x 10-6 m for a volume of fill of 1600m 3. 3.2 Theoretical tilts and compressions The tilt and compression are calculated using Boussinesq model (Berest 1991). The model calculates the vertical displacement at any point inside a homogeneous, isotropic, linearly elastic half-space due to a concentrated point load acting perpendicular to the surface using the following equation: W Where: 2 F(1 + ν ) 1 ν z + Eπ ρ 2ρ = 3 Z = Vertical distance ρ = (r 2 +Z 2 ) r = horizontal distance ν = Poisson s ratio E = Young modulus F = Point load The tilt is given by the first derivative of the above formula with respect to r. The compression is calculated by taking the difference between two vertical displacements for different values of Z and the same value of r. The Curves of calculated tilt and compression in function of the horizontal distance r are shown in Fig. 5. The following values were used in the tilt and compression calculation: Z = 25 m, ν = 0.2, E = 50 000kgf/cm 2, and F = 10 3 kgf. Fig. 5 shows that the maximum tilt is located at 15 m from the point of application of the load and the maximum compression is exactly under it. At r equal 100 m, the tilt is (1/ 12) of its maximum value, and at r equal 60 m, the

compression is close to zero. The theoretically calculated tilt is 5x 10-6 rad for a load of 5600 x 10 3 kgf (2800 m 3 ) at r equal 15 m. Meanwhile the measured value is 5.3 x 10-6 rad for the same conditions of loading which shows compatible results. The theoretically calculated compression value is 4 x 10-6 m for a load of 3200 x 10 3 kgf (1600 m 3 ) applied over the point of measurement. This theoretical value is compatible as well with the measured value 3 x 10-6 m for the same conditions of loading. It should be noted that the difference between the theoretical and the measured values is due to many approximations in the model as well as in the values of the parameters ν, E, Z and r. Fig. 5. Calculated tilt and compression 4. Conclusion The following points can be concluded: - The quartz tiltmeter and extensometer are accurate instruments and measure very small movements which cannot be measured with ordinary surveying instruments. - The quartz tiltmeter and extensometer are low drift, low cost, easy to use and easy to install on a horizontal or vertical surface. - Tilt and compression measurements enable to observe the behavior of a medium under loading, and whether its deformation is elastic or plastic. Our experiment showed negligible deformations under loading. - Finally, the experiment could be considered as a nondestructive approach to evaluate the elastic modulus of the tested medium. References Beauducel F (1998) Structure et comportement mécanique du volcan Merapi (Java): une approche méthodologique du champ de deformation. PhD thesis, Paris 7 University, France.

Berest P, Hetuin E, Blum PA, and Saleh B (1991) Mesure en place du module elastique des terrains de surface. Proceedings of the Tenth European Conference on Soil Mechanics and Foundations Engineering, Italy, 26-30 May. Blair SC, Sweider D, Trettenero S, and Boro C (1997) A new reflective optical extensometer (ROX) system for geomechanical deformation measurements. International Journal of Rock Mechanics and Mining Science and Geomechanics Abstracts, vol.34, no.3. pp.617-627. Blum PA (1977) Discrimination dans le spectre de la marée clinométrique d effet océaniques et barométriques. Annales de Géophysique, 33, 67-72. Crochet Ph, Lesage Ph, Blum PA, and Vadell M (1983) Extensometric deformations linked with rainfalls. Annales Geophysice, 1(4-5), 329-334. Dal Moro G, and Zadro M (1998) Subsurface deformations induced by rainfall and atmospheric pressure: tilt/strain measurements in the NE-Italy seismic area. Earth and Planetary Science Letters, vol.164, no.1, pp.193-203. D Oreye LN (1998) Qualification test of a dual-axis bubble type resistive tiltmeter (AGI-700 series): earth tides recorded and analyzed in the underground laboratory of Walferdange. Marees Terrestres Bulletin d Information, 129, 9953-9961. Goulty NR (1976) Strainmeters and tiltmeters in geophysics. Tectonophysics,34, 245-256. King GCP, and Bilham RG (1973) Tilt measurement in Europe. Nature, 243, 74. Lesage Ph, Blum PA, Vadell M, and Fels JF (1983) Etude des déformations et inclinaisons du sous-sol: Développement instrumentaux et applications dans la région sismique d Arette, France. Pageoph, 121, 5/6, 889-902. Lili (1997) Etude experimental du comportement hydromecanique d une fracture, PhD thesis, Paris 7 University. France. Melchior PJ (1983) The Tides of the Planet Earth. Franklin Book Company, second edition. Saleh B. (1986) Developpemnt d une nouvelle instrumentation pour les mesures de deformations Applications au génie civil. PhD thesis, Paris 6 University, France. Saleh B, Blum PA (1990) Study of temperature effect on behavior of structures. Journal of Surveying Engineering, ASCE, Vol. 116, No.1, 1-12. Saleh B, Blum PA, and Delorme H (1991) New silica compact tiltmeter for deformations measurement. Journal of Surveying Engineering, ASCE, Vol. 117, No.1, 27-35. Shuhua F, Shuchao W, and Jun L (1999) Measurement of earth crust tilt tides with a folded pendulum. Chinese Science Bulletin = Kexue Tongbao, 44(1), 83-91. Teskey WF (1988) Special survey instrumentation for deformation measurements. Journal of Surveying Engineering, ASCE, 114(1), 2-12. Wyatt F, and Berger J (1980) Investigation of tilt measurements using shallow borehole tiltmeters. Journal of Geophysical Research, 85(B8), 4351-4362.